Human microRNA (miR-20b-5p) modulates Alzheimer's disease pathways and neuronal function, and a specific polymorphism close to the *MIR20B* gene influences Alzheimer's biomarkers.

Ruizhi Wang,^{1*} Nipun Chopra,^{1*} Kwangsik Nho,^{2*} Bryan Maloney,¹ Alexander G. Obukhov,³ Peter T. Nelson, ⁴ Scott E. Counts,⁵ Debomoy K. Lahiri ^{1,6#}

¹Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN-46202, USA;

²Radiology, Indiana University School of Medicine, Indianapolis, IN-46202, USA;

³Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN-46202, USA;

⁴Sanders-Brown Center on Aging, University of Kentucky, Kentucky Alzheimer's Disease Research Center, Lexington, KY, 40536, USA;

⁵Departments of Translational Neuroscience and Family Medicine, Michigan State University, Grand Rapids, MI, USA; Michigan Alzheimer's Disease Research Center, Ann Arbor, MI, 48109, USA

⁶Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA;

*NC, RW and KN contributed equally

Present address: N. Chopra: DePauw University, Greencastle, IN 46135

Corresponding author: <u>dlahiri@iupui.edu</u>

Supplemental Table 1. Tjur's ${\it D}$ of miR-20b vs. diagnosis models

Effect	Absolute Quantitation			ΔΔСΤ				
	Full	TLa	CB	PCC	Full	TL	CB	PCC
	Model				Model			
miR-20b	0.021	0.003	0.044	< 0.001	0.024	0.117	0.048	< 0.001
APOEε4 presence	0.010	0.013	0.031	< 0.001	0.085	0.191	0.098	< 0.001
Brain Region	0.004	0.029	< 0.001	< 0.001	0.091	0.150	0.144	< 0.001
APOEε4 × miR-20b	< 0.001	0.001	0.005	< 0.001	0.020	0.110	0.039	< 0.001

 $^{^{\}mathrm{a}}$ TL, CB, and PCC refer to D calculated on the predictions of that brain region.

Supplemental Table 2. Major AD-related proteins used as network building seeds.

Protein	Categorya	miR-20bb
ADAM10	Amyloid	+
ADAM17	Amyloid	+
ADAM9	Amyloid	+
APOE	Regulator	
APP	Amyloid	+
BACE1	Amyloid	+
ECE1	Clearance	
GSK3A	Tau	
GSK3B	Tau	
IDE	Clearance	+
IL1A	Amyloid	+
IRP1	Amyloid	
IRP2	Amyloid	
MAPK13	Tau	
MAPT	Tau	+
MME	Clearance	+
PSD95	Synaptic	
PSEN1	Amyloid	
PSEN2	Amyloid	
REST	Regulator	
SNAP25	Synaptic	+
SNCA	Regulator	+
SYPH	Synaptic	

^aClassification vs. AD relationship, specifically, Amyloid: APP, APP processing enzyme, or APP translation factor; Clearance: $A\beta$ clearing enzyme; Regulator: Protein with functions/effects on both $A\beta$ and hyperphosphorylated tau protein; Tau: either MAPT or one of its major kinases. bPredicted or confirmed to interact with miR-20b-50

Supplemental Table 3. Predicted miR-20b-5p sites on VGCC subunits

Subunit	Proba	ΔG	
CACNA1A	no sites	no sites	
CACNA1B	0.148	-17.4	
CACNA1C	0.453	-19.0	
CACNA1C	0.386	-16.9	
CACNA1C	0.373	-15.4	
CACNA1C	0.305	-17.7	
CACNA1D	0.524	-14.1	
CACNA1D	0.431	-20.1	
CACNA1E	0.488	-16.6	
CACNA1E	0.298	-14.7	
CACNA1F	no sites	no sites	
CACNA1G	no sites	no sites	
CACNA1H	no sites	no sites	
CACNA1I	0.125	-24.3	
CACNA1I	0.101	-22.4	
CACNA1S	no sites	no sites	
CACNA2D1	0.768	-24.3	
CACNA2D1	0.604	-15.8	
CACNA2D1	0.550	-14.4	
CACNA2D1	0.375	-13.8	
CACNA2D2	0.272	-21.5	
CACNA2D3	no sites	no sites	
CACNA2D4	0.430	-18.8	
CACNB1	0.272	-16.6	
CACNB2	0.812	-19.9	
CACNB2	0.463	-21.0	
CACNB3	no sites	no sites	
CACNB4	0.840	-19.8	

^aEstimated probability that the sequence affinity site is likely to be a miRNA binding site.

Fig. S1. Treatment with miR-20b-5p and APP siRNA alters Calcium influx. A) "Idealized" Fura response curve derived from mean of all traces. Specific points and distances of interest are described in main text. **B**) Raw mean Fura traces by treatment. **C**) Fura curves with values adjusted to the distance between "0" and "I" = 0. **D**) Fura curves scaled to minimum and maximum values for each treatment.

Fig. S2. Typical photomicrographs of miR-20b treatment of PHB cultures. PHB cultures were treated with miR-20b as described in the main text and grown in an incubator while photographed with the IncuCyte. Typical photographs for **A**) Mock-treated and **B**) miR-20b treated cells are shown. Apparent cell density reduction accompanied miR-20b treatment. Scales are shown on photographs.

Fig. S3. Model of miR-20b-5p effects via APP on development and neurodegeneration. A proposed model that relates our data to overall neurological effects on miR-20b-5p. A) Under developmental downregulation, increased miR-20b-5p would downregulate APP, resulting, through different pathways, of neurological pruning. B) If miR-20b-5p were upregulated, this would contribute to neuroproliferation. C) Late in life, elevation of miR-20b-5p would effectively enhance neuropreservation primarily through reducing excitotoxic processes. D) Reduction of miR-20b-5p late in life would contribute to excitotoxicity through APP upregulation, leading to neurodegeneration.

S1 A. "Idealized" Response B. Raw Response 1.18 -0.61 1.16 Π 0.59 a'1.14 Adjusted Signal (C₀ = $350/380 \div 1000$ 0.57 1.12 b'0.55 1.10 0 I 0.53 1.08 a0.51 1.06 0.49 1.04 0 1.02 0.47 Mock miR-20b-5p — APP siRNA 0.45 1.00 100 50 150 200 50 100 150 200 Cycle Cycle C. Adjusted to $Cycle_0 = 1$ D. Min/Max Scaled 1.35 1.20 miR-20b-5p Moçk APP siRNA 1.30 Min/Max Sc aled Signal 1.00 Adjusted Signal ($C_0 =$ 1.25 0.80 1.20 0.60 1.15 0.40 1.10 0.20 1.05 Mock miR-20b-5p — APP siRNA 1.00 0.00 100 50 50 150 200 100 200 150 0 Cycle Cycle

A. Mock

B. miR-20b

S3

A. Developmental Downregulation

The principle of the pr

B. Developmental Upregulation

C. Late-Life Maintenance

†miR-20b-5p | Calcium | Excitoxocitiy | | Influx/Efflux | | Preservation |

D. Late-Life Degeneration

