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Web Appendix A

LEMMA 1: Eigenvalues for Ri

As shown in Web Appendix A of Li et al. (2018b): Theorem 8.3.4 and 8.4.4 (Graybill, 1983) states that any u × u

exchangeable matrix A = xIu + yJu is invertible if and only if x ≠ 0 and x + uy ≠ 0. The inverse is,

A
−1

=
1
xIu −

y

x(x + uy)Ju, (1)

and the determinant is,

det(A) = x
u−1(x + uy). (2)

A Corollary is that A has two eigenvalues, x with multiplicity u−1 and x+uy with multiplicity 1, provided uy ≠ 0.

Under a closed-cohort design at both the subcluster and subject levels (design variant A), we let B = IK ⊗ {(1 −

α0−λ)IN + (α0− ρ0)JN}+JK ⊗ ρ0JN and C = IK ⊗ {(α2−α1)IN + (α1− ρ1)JN}+JK ⊗ ρ1JN . The eigenvalues

of Ri are given by the roots of the characteristic equation,

0 = det(Ri − λITKN)

= det(IT ⊗ (B −C) + JT ⊗C)

= det(B −C)T−1
det(B + (T − 1)C)

where the last quantity is given by Theorem 8.9.1 (Graybill, 1983). Since B−C and B+(T −1)C are exchangeable

we can apply equation (2) to get the following six eigenvalues,

λ1 = 1 − α0 − α2 + α1

λ2 = 1 − α0 − α2 + α1 +N(α0 − α1 − ρ0 + ρ1)

λ3 = 1 − α0 − α2 + α1 +N{α0 − α1 + (K − 1)(ρ0 − ρ1)}

λ4 = 1 − α0 + (T − 1)(α2 − α1)

λ5 = 1 − α0 + (T − 1)(α2 − α1) +N{α0 − ρ0 + (T − 1)(α1 − ρ1)}

λ6 = 1 − α0 + (T − 1)(α2 − α1) +N[α0 + (T − 1)α1 + (K − 1){ρ0 + (T − 1)ρ1}], (3)

with algebraic multiplicities (T −1)K(N−1), (T −1)(K−1), T −1, K(N−1), K−1, and 1 respectively. Eigenvalue

expressions and their respective multiplicities under each design variant (A, B, and C) can be found in Web Table

1.
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LEMMA 2: Derivation of R
−1
i

By section 2.1 of Leiva (2007) we know that given a block exchangeable matrix of the form,

A = Iu ⊗ (B −C) + Ju ⊗C,

if B −C and B + (u − 1)C are non-singular matrices, then

A
−1

= Iu ⊗ (B −C)−1 + Ju ⊗
1
u[{B + (u − 1)C}−1 − (B −C)−1]. (4)

Closed-cohort design at both the subcluster and subject levels (design A)

Recall that we have the following correlation matrix, Ri = IT ⊗ (B −C)+ JT ⊗C with B = (1−α0)IKN + (α0 −

ρ0)IK ⊗ JN + ρ0JKN and C = (α2 − α1)IKN + (α1 − ρ1)IK ⊗ JN + ρ1JKN . By equation (4) we know that,

R
−1
i = IT ⊗ (B −C)−1 + JT ⊗

1

T
[{B + (T − 1)C}−1 − (B −C)−1],

if B −C and B + (u − 1)C are non-singular matrices. Looking at each required term, B −C and B + (T − 1)C,

in terms of the eigenvalues we have:

B −C = IK ⊗ (λ1IN +
λ2 − λ1

N
JN) + JK ⊗

λ3 − λ2

KN
JN

B + (T − 1)C = IK ⊗ (λ4IN +
λ5 − λ4

N
JN) + JK ⊗

λ6 − λ5

KN
JN .

Both terms are non-singular matrices and exchangeable. Therefore, each term can be inverted using equations (4)

and (1) giving us a closed-form expression of R
−1
i .

(B −C)−1 = IK ⊗ ( 1

λ1
IN −

λ2 − λ1

Nλ1λ2
JN) + JK ⊗

λ2 − λ3

KNλ2λ3
JN

{B + (T − 1)C}−1 = IK ⊗ ( 1

λ4
IN −

λ5 − λ4

Nλ4λ5
JN) + JK ⊗

λ5 − λ6

KNλ5λ6
JN

R
−1
i = IT ⊗ {IK ⊗ ( 1

λ1
IN −

λ2 − λ1

Nλ1λ2
JN) + JK ⊗

λ2 − λ3

KNλ2λ3
JN}

+ JT ⊗
1

T
[IK ⊗ {( 1

λ4
−

1

λ1
)IN + (λ2 − λ1

Nλ1λ2
−

λ5 − λ4

Nλ4λ5
)JN} + JK ⊗

1

K
(λ5 − λ6

Nλ5λ6
−

λ2 − λ3

Nλ2λ3
)JN].
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Note that this expression for R
−1
i is the same across all design variants using the eigenvalues shown in Web Table

1.

THEOREM 1: Derivation of var(δ̂) & relationship with ICCs

THEOREM 1: Assuming known variance components, the closed-form variance of the intervention effect estimator

based on a linear mixed model with a Gaussian outcome is

var(δ̂) = σ
2

IKNtr(Ω) ×
Tλ6λ3

Tλ6 − {1 + (T − 1)τX}(λ6 − λ3)
, (5)

where Ω = I
−1 ∑I

i=1 XiX
⊤
i − (I−1 ∑I

i=1 Xi)(I−1 ∑I
i=1 X

⊤
i ) is the covariance matrix of the intervention vector under

a specific design and τX = {(T − 1)tr(Ω)}−1{1⊤
Ω1 − tr(Ω)} ∈ [−1, 1] is the generalized ICC of the intervention,

which is the ratio of average covariance over the average variance and measures the similarity between the inter-

vention status for each cluster in different periods (Kistner and Muller, 2004). With all other design parameters

fixed, larger values of the within-period ICCs, {α0, ρ0}, are always associated with larger required sample size,

whereas larger values of the between-period ICCs, {α1, ρ1, α2}, are associated with smaller required sample size

when τX < (λ2
6 − λ

2
3)/{λ2

6 + (T − 1)λ2
3}.

Proof: Let 1u be a u × 1 vector of ones. We define Xi as the treatment randomization schedule for cluster i

and Zi = (IT ,Xi)⊗ 1K ⊗ 1N . We know that var(δ̂) is the lower-right corner element of σ
2(∑I

i=1 Z
⊤
i R

−1
i Zi)−1. In

addition,

I

∑
i=1

Z
⊤
i R

−1
i Zi =

I

∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜
⎝

IT

X
⊤
i

⎞
⎟⎟⎟
⎠
⊗ 1

⊤
K ⊗ 1

⊤
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
R

−1
i [( IT Xi )⊗ 1K ⊗ 1N] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 Ω12

Ω21 Ω22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Ω11 is of dimension T ×T , Ω12 = Ω
⊤
21 is of dimension T × 1, and Ω22 is a scalar. Block matrix inversion gives

us var(δ̂) = (Ω22 − Ω21Ω
−1
11Ω12)−1. Recall we have the following inverse correlation matrix,

R
−1
i = IT ⊗ {IK ⊗ ( 1

λ1
IN −

λ2 − λ1

Nλ1λ2
JN) + JK ⊗

λ2 − λ3

KNλ2λ3
JN}

+ JT ⊗
1

T
[IK ⊗ {( 1

λ4
−

1

λ1
)IN + (λ2 − λ1

Nλ1λ2
−

λ5 − λ4

Nλ4λ5
)JN} + JK ⊗

1

K
(λ5 − λ6

Nλ5λ6
−

λ2 − λ3

Nλ2λ3
)JN].

Which is of the form,

R
−1
i = ãIT ⊗ IK ⊗ IN + b̃IT ⊗ IK ⊗ JN + c̃IT ⊗ JK ⊗ JN + d̃JT ⊗ IK ⊗ IN + ẽJT ⊗ IK ⊗ JN + f̃JT ⊗ JK ⊗ JN

where ã =
1

λ1
, b̃ = −

λ2 − λ1

Nλ2λ1
, c̃ =

λ2 − λ3

KNλ2λ3
, d̃ =

1

Tλ4
−

1

Tλ1
, ẽ =

λ2 − λ1

TNλ2λ1
−

λ5 − λ4

TNλ4λ5
, f̃ =

λ5 − λ6

TKNλ5λ6
−

λ2 − λ3

TKNλ2λ3
.
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First, let’s generate Ω11,

Ω11 =

I

∑
i=1

{(IT ⊗ 1
⊤
K ⊗ 1

⊤
N)R−1

i (IT ⊗ 1K ⊗ 1N)}

=

I

∑
i=1

KN{(ã +Nb̃ +KNc̃)IT + (d̃ +Nẽ +KNf̃)JT }

= IKN( 1

λ3
IT +

λ3 − λ6

Tλ6λ3
JT ).

We need the inverse of Ω11 for our block matrix inversion formula. Using equation (1) we know that,

Ω
−1
11 =

1

IKN
(λ3IT +

λ6 − λ3

T
JT).

Similarly, we can generate Ω12 = Ω
⊤
21,

Ω12 =

I

∑
i=1

{(IT ⊗ 1
⊤
K ⊗ 1

⊤
N)R−1

i (Xi ⊗ 1K ⊗ 1N)}

=

I

∑
i=1

KN{(ã +Nb̃ +KNc̃)Xi + (d̃ +Nẽ +KNf̃)
T

∑
j=1

Xij1T}

= KN( 1

λ3

I

∑
i=1

Xi +
λ3 − λ6

Tλ6λ3

I

∑
i=1

T

∑
j=1

Xij1T ).

Finally, we can generate Ω22,

Ω22 =

I

∑
i=1

{(X⊤
i ⊗ 1

⊤
K ⊗ 1

⊤
N)R−1

i (Xi ⊗ 1K ⊗ 1N)}

=

I

∑
i=1

KN{(ã +Nb̃ +KNc̃)
T

∑
j=1

X
2
ij + (d̃ +Nẽ +KNf̃)(

T

∑
j=1

Xij)
2

}

= KN{ 1

λ3

I

∑
i=1

T

∑
j=1

X
2
ij +

λ3 − λ6

Tλ6λ3

I

∑
i=1

(
T

∑
j=1

Xij)
2

}.

Let U = ∑I
i=1 ∑T

j=1 Xij = ∑I
i=1 ∑T

j=1 X
2
ij , V = ∑I

i=1(∑T
j=1 Xij)2, and W = ∑T

j=1(∑I
i=1 Xij)2. This gives us the

following Ωs for our block inversion formula,

Ω
−1
11 =

1

IKN
(λ3IT +

λ6 − λ3

T
JT )

Ω12 = Ω
⊤
21 = KN( 1

λ3

I

∑
i=1

Xi −
λ6 − λ3

Tλ6λ3
U1T )

Ω22 = KN( 1

λ3
U −

λ6 − λ3

Tλ6λ3
V ).
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Carrying out the block matrix inversion gives us,

var(δ̂) = (σ2/KN)ITλ6λ3

(U2 + ITU − TW − IV )λ6 − (U2 − IV )λ3

. (6)

Given that 1
⊤
Ω1 = I

−2(IV − U
2) and tr(Ω) = I

−2(IU −W ), the variance can be rewritten as,

var(δ̂) = σ
2

IKNtr(Ω) ×
Tλ6λ3

Tλ6 − {1 + (T − 1)τX}(λ6 − λ3)
.

Using the eigenvalue expressions under each design variant shown in Web Table 1, this expression for var(δ̂) can be

used across all design variants. Further, this variance expression can be used for longitudinal parallel or any type

of crossover design through the specification of tr(Ω) and τX .

Relationship with ICCs

The partial derivative of var(δ̂) with respect to ICC, θ, is

∂

∂θ
var(δ̂) = σ

2
T

IKNtr(Ω)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ3
∂

∂θ
λ6 + λ6

∂

∂θ
λ3

Tλ6 − {1 + (T − 1)τX}(λ6 − λ3)
−

λ6λ3 {T
∂

∂θ
λ6 − {1 + (T − 1)τX} ( ∂

∂θ
λ6 −

∂

∂θ
λ3)}

{Tλ6 − {1 + (T − 1)τX}(λ6 − λ3)}2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

In order for Ri to be positive definite we have the constraint, min(λ1, λ2, λ3, λ4, λ5, λ6) > 0. We also assume

that all ICCs are positive (as expected in SW-CRTs). The following exploration assumes a closed-cohort design

at both the subcluster and subject levels (design variant A), but conclusions remain the same across design variants.

Relationship with within-period, within-subcluster, α0

The partial derivative of λ3 and λ6 with respect to α0 are,

∂

∂α0
λ3 = N − 1

∂

∂α0
λ6 = N − 1.

Looking at equation (7) we see that

λ3
∂

∂α0
λ6 + λ6

∂

∂α0
λ3 = (N − 1)(λ3 + λ6)

T
∂

∂α0
λ6 − {1 + (T − 1)τX}( ∂

∂α0
λ6 −

∂

∂α0
λ3) = T (N − 1).
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After some algebra this gives us,

∂

∂α0
var(δ̂) = σ

2
T (T − 1)(N − 1)
IKNtr(Ω) ×

λ
2
6 + λ

2
3 − (λ2

6 − λ
2
3)τX

[Tλ6 − {1 + (T − 1)τX}(λ6 − λ3)]2
> 0

Therefore, holding all other ICCs constant, an increase in α0 leads to an increase in var(δ̂).

Relationship with within-period, between-subcluster, ρ0

The partial derivative of λ3 and λ6 with respect to ρ0 are,

∂

∂ρ0
λ3 = N(K − 1)

∂

∂ρ0
λ6 = N(K − 1).

Looking at equation (7) we see that

λ3
∂

∂ρ0
λ6 + λ6

∂

∂ρ0
λ3 = N(K − 1)(λ3 + λ6)

T
∂

∂ρ0
λ6 − {1 + (T − 1)τX}( ∂

∂ρ0
λ6 −

∂

∂ρ0
λ3) = TN(K − 1).

After some algebra this gives us,

∂

∂ρ0
var(δ̂) = σ

2
T (T − 1)(K − 1)

IKtr(Ω) ×
λ
2
6 + λ

2
3 − (λ2

6 − λ
2
3)τX

[Tλ6 − {1 + (T − 1)τX}(λ6 − λ3)]2
> 0

Therefore, holding all other ICCs constant, an increase in ρ0 leads to an increase in var(δ̂).

Relationship with between-period, within-subcluster, α1

The partial derivative of λ3 and λ6 with respect to α1 are,

∂

∂α1
λ3 = −(N − 1)

∂

∂α1
λ6 = (T − 1)(N − 1).

Looking at equation (7) we see that

λ3
∂

∂α1
λ6 + λ6

∂

∂α1
λ3 = (N − 1){(T − 1)λ3 − λ6}

T
∂

∂α1
λ6 − {1 + (T − 1)τX}( ∂

∂α1
λ6 −

∂

∂α1
λ3) = T (N − 1)[(T − 1) − {1 + (T − 1)τX}].
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After some algebra this gives us,

∂

∂α1
var(δ̂) = σ

2
T (T − 1)(N − 1)
IKNtr(Ω) ×

−[λ2
6 − λ

2
3 − {λ2

6 + (T − 1)λ2
3}τX]

[Tλ6 − {1 + (T − 1)τX}(λ6 − λ3)]2

which is negative only under certain constraints (discussed below).

Relationship with between-period, between-subcluster, ρ1

The partial derivative of λ3 and λ6 with respect to ρ1 are,

∂

∂ρ1
λ3 = −N(K − 1)

∂

∂ρ1
λ6 = N(K − 1)(T − 1).

Looking at equation (7) we see that

λ3
∂

∂ρ1
λ6 + λ6

∂

∂ρ1
λ3 = N(K − 1){(T − 1)λ3 − λ6}

T
∂

∂ρ1
λ6 − {1 + (T − 1)τX}( ∂

∂ρ1
λ6 −

∂

∂ρ1
λ3) = TN(K − 1)[(T − 1) − {1 + (T − 1)τX}].

After some algebra this gives us,

∂

∂ρ1
var(δ̂) = σ

2
T (T − 1)(K − 1)

IKtr(Ω) ×
−[λ2

6 − λ
2
3 − {λ2

6 + (T − 1)λ2
3}τX]

[Tλ6 − {1 + (T − 1)τX}(λ6 − λ3)]2

which is negative only under certain constraints (discussed below).

Relationship with within-subject auto-correlation, α2

The partial derivative of λ3 and λ6 with respect to α2 are,

∂

∂α2
λ3 = −1

∂

∂α2
λ6 = T − 1.

Looking at equation (7) we see that

λ3
∂

∂α2
λ6 + λ6

∂

∂α2
λ3 = (T − 1)λ3 − λ6

T
∂

∂α2
λ6 − {1 + (T − 1)τX}( ∂

∂α2
λ6 −

∂

∂α2
λ3) = T [(T − 1) − {1 + (T − 1)τX}].

8



After some algebra this gives us,

∂

∂α2
var(δ̂) = σ

2
T

IKNtr(Ω) ×
−[λ2

6 − λ
2
3 − {λ2

6 + (T − 1)λ2
3}τX]

[Tλ6 − {1 + (T − 1)τX}(λ6 − λ3)]2

which is negative only under certain constraints.

Constraint in which the partial derivatives for α1, ρ1, and α2 are negative

The partial derivatives for α1, ρ1, and α2 are negative if

{λ2
6 + (T − 1)λ2

3}τX < λ
2
6 − λ

2
3

⇒ τX <
λ
2
6 − λ

2
3

λ2
6 + (T − 1)λ2

3

where 0 < (λ2
6 − λ

2
3)/{λ2

6 + (T − 1)λ2
3} < 1. Therefore, the partial derivatives for α1, ρ1, and α2 are negative for all

τX < 0. For τX > 0, the condition above must be verified.

Web Appendix B

Optimal cluster allocation for SW-CRTs with subclusters

The optimal treatment allocation minimizes the variance (5) through maximization of the denominator. In the

absence of any subclusters, Lawrie et al. (2015) and Li et al. (2018a) proved that the most efficient SW-CRT

allocated more clusters to the intervention during the second and last period, based on a simple exchangeable

and block exchangeable correlation model. Specifically, Theorem 1 of Li et al. (2018a) focused on maximizing the

denominator of the variance expression defined as, Q(π) = {(IU−W )γ+(U2−IV )ξ}/I2, where γ = 1+(N−1)α0+

(T−1)(N−1)α1+(T−1)α2 and ξ = (N−1)α1+α2 with α0 defined as the within-period within-cluster ICC; α1 defined

as the between-period within-cluster ICC; and α2 defined as the within-subject auto-correlation (i.e. a closed-cohort

SW-CRT in the absence of subclusters). U , V , and W are the same design constants described previously, but

have been re-parameterized in terms of the proportion of clusters receiving the intervention at a specific period j,

π = (π1, . . . , πT−1) with π1 = 0 and ∑T
j=2 πj = 1 by definition, such that, U = I∑T−1

j=1 jπj , V = I∑T−1
j=1 j

2
πj , and

W = I
2 ∑T−1

j=1 (∑T−1
s=j πs)

2
. Li et al. (2018b) derived the eigenvalues for this block exchangeable correlation matrix

and found that the variance expression only depends on two eigenvalues, λ3 = 1 + (N − 1)(α0 − α1) − α2 and

λ4 = 1 + (N − 1)α0 + (T − 1)(N − 1)α1 + (T − 1)α2. Right away we can see that γ = λ4 and rewriting the Q

function in terms of the eigenvalues gives us, Q(π) = {(U2 + ITU −TW − IV )λ4 − (U2 − IV )λ3}/I2. If we rewrite

9



our variance expression (5) in the following form,

var(δ̂) = (σ2/KN)ITλ6λ3

(U2 + ITU − TW − IV )λ6 − (U2 − IV )λ3

,

where U = ∑I
i=1 ∑T

j=1 Xij , V = ∑I
i=1(∑T

j=1 Xij)2, and W = ∑T
j=1(∑I

i=1 Xij)2, our Q function (using the same re-

parameterized functions for U , V , and W ) is Q(π) = {(U2+ITU −TW −IV )λ6−(U2−IV )λ3}/I2 and only differs

from the Q function above through the eigenvalue expressions. Therefore, by a similar argument to Theorem 1 of Li

et al. (2018a) we can show that the same conclusion holds in the presence of subclusters with the proposed extended

block exchangeable correlation model. Specifically, among all possible randomization schemes that allocates πjI

clusters during the jth period, the optimal allocation ratio that leads to the smallest var(δ̂) is given by

π2 = πT =
3λ6 + (T − 3)λ3

2Tλ6
, πj =

λ6 − λ3

Tλ6
, ∀ j = 3, . . . , T − 1. (8)

In other words, the allocation ratio in each period in the most efficient SW-CRT with subclusters depends on the

five ICCs only through the two eigenvalues of the extended block exchangeable correlation matrix as well as the

total number of periods.

Web Appendix C

Approximation of Vi and Ṽi under a GLMM framework

Using individual-level outcomes

Recall our generalized linear mixed model (GLMM) is the following,

µijkl = g
−1(ηijkl) = g

−1(βj + δXij + bi + cik + sij + πijk + γikl),

where g is a link function, βj represents the categorical secular trend, Xij is the intervention status for cluster i at pe-

riod j, δ is the intervention effect on the link function scale, bi ∼ N(0, σ2
b ) is the random cluster effect, cik ∼ N(0, σ2

c)

is the random subcluster effect, sij ∼ N(0, σ2
s) is the random cluster-by-period interaction, πijk ∼ N(0, σ2

π) is the

random subcluster-by-period interaction, and γikl ∼ N(0, σ2
γ) is the random subject-level effect. We define the

conditional variance of the outcome as ϕζ(µijkl), where ϕ is a common dispersion. Without loss of generality, we

assume ϕ = 1 but the following procedure applies to arbitrary ϕ > 0.

We can re-write our GLMM using matrix notation. Let Yij = (Yij11, . . . , YijKN)⊤, µij = (µij11, . . . , µijKN)⊤,

ηij = (ηij11, . . . , ηijKN)⊤, Zij = (ej , Xij)⊗1KN (ej is the jth row of IT ), θ = (β1, . . . , βT , δ)⊤, cij = (ci1, . . . , ciK)⊤,
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πij = (πij1, . . . , πijK)⊤, and γij = (γi11, . . . , γiKN)⊤. Using these vectors and matrices our GLMM becomes,

µij = g
−1(ηij) = g

−1(Zijθ + 1KNbi + (IK ⊗ 1N)ci + 1KNsij + (IK ⊗ 1N)πij + γi).

Next, we linearize the GLMM using a first-order Taylor expansion about the estimated fixed- and random-effects

(Breslow and Clayton, 1993; Amatya and Bhaumik, 2018) such that,

Yij =µ̂ij + ∆̂ijZij(θ − θ̂) + ∆̂ij1KN(bi − b̂i) + ∆̂ij(IK ⊗ 1N)(cij − ĉij)

+ ∆̂ij1KN(sij − ŝij) + ∆̂ij(IK ⊗ 1N)(πij − π̂ij) + ∆̂ij(γij − γ̂ij) + ϵij , (9)

where∆ij = diag(∆ij11, . . . ,∆ijKN) = {∂g−1(ηij)/∂η⊤
ij}−1 is a diagonal matrix of derivatives, ϵij = (ϵij11, . . . , ϵijKN)⊤

and var(ϵijkl) = ζ(µijkl). Therefore, if we define the vector of pseudo-outcomes as Y
∗
ij = ∆̂

−1
ij (Yij−µ̂ij)+η̂ij and re-

arrange the terms in (9), we obtain an approximate linear mixed model with Y
∗
ij = ηij+ϵ

∗
ij , with a modified random

residual error ϵ
∗
ij = ∆̂

−1
ij ϵij . Define the collection of all pseudo-outcomes in cluster i as Y

∗
i = (Y ∗⊤

i1 , . . . ,Y
∗⊤
iT )⊤, the

covariance expression for the pseudo-observations, Vi, is comprised of two parts, within-period and between-period,

and has a block exchangeable matrix structure such that

Vi = IT ⊗ (B −C) + JT ⊗C,

where B = var(Y ∗
ij ) and C = cov(Y ∗

ij ,Y
∗
ij ′) for j ≠ j

′
. We can easily generate these covariance expressions to get

B = var(Y ∗
ij ) = ∆

−1
ij ζ(µij)∆−1

ij + (σ2
b + σ

2
s)JKN + (σ2

c + σ
2
π)(IK ⊗ JN) + σ

2
γ(IK ⊗ IN)

C = cov(Y ∗
ij ,Y

∗
ij ′) = σ

2
bJKN + σ

2
c(IK ⊗ JN) + σ

2
γ(IK ⊗ IN).

Combining these expressions gives us

Vi = IT ⊗ (B −C) + JT ⊗C

≈ E{∆−1
i ζ(µi)∆−1

i } + σ
2
s(IT ⊗ JKN) + σ

2
π(IT ⊗ IK ⊗ JN) + σ

2
bJTKN + σ

2
c(JT ⊗ IK ⊗ JN) + σ

2
γ(JT ⊗ IKN)

= (Ei ⊗ IKN) + σ
2
s(IT ⊗ JKN) + σ

2
π(IT ⊗ IK ⊗ JN) + σ

2
bJTKN + σ

2
c(JT ⊗ IK ⊗ JN) + σ

2
γ(JT ⊗ IKN) (10)

with ∆i = ⊕T
j=1∆ij where “⊕” is a block diagonal operator with nonzero matrices along the diagonal and zero

values elsewhere, and the expectation is taken over the distribution of all the random effects. We simplify this

notation by defining Ei = diag [E{∆−1
i111ζ(µi111)∆−1

i111}, . . . ,E{∆−1
iT11ζ(µiT11)∆−1

iT11}].

For example, if we have a binary outcome and our link function is the canonical logit, then g
−1

is the inverse logit

11



and ∆ is the derivative of the inverse logit which gives us

g
−1(ηijkl) =

exp(ηijkl)
1 + exp(ηijkl)

∆
−1
ijkl = {

∂g
−1(ηijkl)
∂η⊤ijkl

}
−1

=
{1 + exp(ηijkl)}2

exp(ηijkl)

ζ(µijkl) = µijkl(1 − µijkl) =
exp(ηijkl)

{1 + exp(ηijkl)}2
.

Let ζ(µi) be a TKN × TKN diagonal matrix with elements exp(ηijkl)/{1 + exp(ηijkl)}2 and ∆
−1
i be a TKN ×

TKN diagonal matrix with elements {1 + exp(ηijkl)}2/ exp(ηijkl), then ∆
−1
i ζ(µi) is ITKN . This means that,

∆
−1
i ζ(µi)∆−1

i = ∆
−1
i . Looking at the diagonal elements of ∆

−1
i further we can rewrite them as

∆
−1
ijkl = 2 + exp(−ηijkl) + exp(ηijkl).

Next, we take the expectation of ∆
−1
ijkl with respect to the random effects to get

E(∆−1
ijkl) = E{2 + exp(−ηijkl) + exp(ηijkl)}

= 2 + exp {0.5 (σ2
b + σ

2
c + σ

2
s + σ

2
π + σ

2
γ)} {exp(−βj − δXij) + exp(βj + δXij)}

= 2 + 2 exp {0.5 (σ2
b + σ

2
c + σ

2
s + σ

2
π + σ

2
γ)} cosh (βj +Xijδ) ,

where cosh(t) = (et + e
−t)/2 is the hyperbolic cosine function. Note that the expectation only depends on i and j.

Therefore, we can express the unique values in matrix form as

Ei = 2IT + 2 exp {0.5 (σ2
b + σ

2
c + σ

2
s + σ

2
π + σ

2
γ)} diag{cosh (β1 +Xi1δ) , . . . , cosh (βT +XiT δ)}.

Using equation (10) we now have the following variance expression

Vi ≈ [2IT + 2 exp {0.5 (σ2
b + σ

2
c + σ

2
s + σ

2
π + σ

2
γ)}diag {cosh (β1 +Xi1δ) , . . . , cosh (βT +XiT δ)} ]⊗ IKN

+ σ
2
s(IT ⊗ JKN) + σ

2
π(IT ⊗ IK ⊗ JN) + σ

2
bJTKN + σ

2
c(JT ⊗ IK ⊗ JN) + σ

2
γ(JT ⊗ IKN), (11)

which depends on the conditional mean of the outcomes through the secular trend and intervention status, thus

Vi will be cluster-specific. The variance of our treatment effect, var(δ̂), is the lower-right corner element of

ϕ (∑I
i=1 Z

⊤
i V

−1
i Zi)

−1
which is equal to

var(δ̂) = ϕ{
I

∑
i=1

H
⊤
i V

−1
i Hi − (

I

∑
i=1

H
⊤
i V

−1
i )F (

I

∑
i=1

F
⊤
V

−1
i F )

−1

F
⊤(

I

∑
i=1

V
−1
i Hi)}

−1

, (12)

12



where Hi = Xi ⊗ 1KN and F = IT ⊗ 1KN and requires an algorithm to compute due to Vi being cluster-specific.

Using cluster-period means

One limitation of our variance expression (10) is that the dimension of our covariance matrix, Vi, increases with

increasing number of subclusters per cluster (K) and participants per subcluster (N) which in turn increases the

computational burden. To reduce the computational burden we could use a cluster-period means approach. This

approach reduces our covariance matrix from a TKN×TKN matrix to a T×T matrix. Using a cluster-period means

approach the variance of our treatment effect, var(δ̂), is the lower-right corner element of ϕ (∑I
i=1 Z

⊤
2iṼ

−1
i Z2i)

−1

with Z2i = (IT ,Xi) which is equal to

var(δ̂) = ϕ{
I

∑
i=1

X
⊤
i Ṽ

−1
i Xi − (

I

∑
i=1

X
⊤
i Ṽ

−1
i )(

I

∑
i=1

Ṽ
−1
i )

−1

(
I

∑
i=1

Ṽ
−1
i Xi)}

−1

, (13)

where Ṽi is the covariance matrix for Y
∗
i = (Y ∗

i1, . . . , Y
∗
iT )⊤.

First, we focus on deriving Ṽi. This matrix is made up of within-period and between-period components. The

within-period can be expressed as

B = var(Y ∗
ij) = var( 1

KN

K

∑
k=1

N

∑
l=1

Y
∗
ijkl)

=

var(Y ∗
ijkl) + (N − 1)cov(Y ∗

ijkl, Y
∗
ijkl′) +N(K − 1)cov(Y ∗

ijkl, Y
∗
ijk′l)

KN

=
Ei + σ

2
γ

KN
+

σ
2
c + σ

2
π

K
+ σ

2
b + σ

2
s .

The between-period can be expressed as

C = cov(Y ∗
ij , Y

∗
ij ′) = cov( 1

KN

K

∑
k=1

N

∑
l=1

Y
∗
ijkl,

1

KN

K

∑
k=1

N

∑
l=1

Y
∗
ij ′kl)

=

cov(Y ∗
ijkl, Y

∗
ij ′kl) + (N − 1)cov(Y ∗

ijkl, Y
∗
ij ′kl′) +N(K − 1)cov(Y ∗

ijkl, Y
∗
ij ′k′l)

KN

= σ
2
b +

σ
2
c

K
+

σ
2
γ

KN
.

Putting both of these components together we can generate our final covariance matrix for Y
∗
i ,

Ṽi = (B −C)IT +CJT

≈
Ei

KN
+ (σ

2
π

K
+ σ

2
s)IT + (σ2

b +
σ
2
c

K
+

σ
2
γ

KN
)JT . (14)

For example, if our outcome is binary with the canonical logit link then Ei is the same as previously derived giving

13



us

Ṽi ≈ (KN)−1 [2IT + 2 exp {0.5 (σ2
b + σ

2
c + σ

2
s + σ

2
π + σ

2
γ)} diag{cosh (β1 +Xi1δ) , . . . , cosh (βT +XiT δ)}]

+ (σ
2
π

K
+ σ

2
s)IT + (σ2

b +
σ
2
c

K
+

σ
2
γ

KN
)JT . (15)

LEMMA 3: Equivalence of var(δ̂) approaches

LEMMA 3: The variance of the intervention effect estimator in the generalized linear mixed model is equivalently

written as

var(δ̂) = {
I

∑
i=1

X
⊤
i Ṽ

−1
i Xi − (

I

∑
i=1

X
⊤
i Ṽ

−1
i )(

I

∑
i=1

Ṽ
−1
i )

−1

(
I

∑
i=1

Ṽ
−1
i Xi)}

−1

,

where Ṽi = (KN)−1Ei + (K−1
σ
2
π + σ

2
s)IT + {σ2

b + K
−1
σ
2
c + (KN)−1σ2

γ}JT is the T × T matrix characterizing

the covariance of the cluster-period means of the pseudo-outcomes Y
∗
i = (KN)−1(IT ⊗ 1

⊤
KN)Y ∗

i , and Ei =

diag [E{∆−1
i111ζ(µi111)∆−1

i111}, . . . ,E{∆−1
iT11ζ(µiT11)∆−1

iT11}].

Proof: To prove Lemma 3 holds we need to show that the variance expression under individual-level outcomes is

equivalent to the variance expression under a cluster-period means approach, that is that

var(δ̂) = {
I

∑
i=1

H
⊤
i V

−1
i Hi − (

I

∑
i=1

H
⊤
i V

−1
i )F (

I

∑
i=1

F
⊤
V

−1
i F )

−1

F
⊤(

I

∑
i=1

V
−1
i Hi)}

−1

= {
I

∑
i=1

X
⊤
i Ṽ

−1
i Xi − (

I

∑
i=1

X
⊤
i Ṽ

−1
i )(

I

∑
i=1

Ṽ
−1
i )

−1

(
I

∑
i=1

Ṽ
−1
i Xi)}

−1

.

We claim that the expressions for var(δ̂) are equivalent if for each cluster i,

(KN)−2F⊤
V

−1
i F = (F⊤

ViF )−1. (16)

First, note that the covariance of Y
∗
i can be written in the form Vi = (Qi1−Qi2)⊗IN +Qi2⊗JN with Qi1−Qi2 =

(Ei + σ
2
γJT )⊗ IK and Q2i = (σ2

πIT + σ
2
cJT )⊗ IK + (σ2

sIT + σ
2
bJT )⊗ JK . Therefore, the inverse can be obtained

using formula (4) giving us

V
−1
i = (Qi1 −Qi2)−1 ⊗ IN +

1

N
[ {Qi1 + (N − 1)Qi2}−1 − (Qi1 −Qi2)−1]⊗ JN .

14



Looking at each sub-inverse we have

(Qi1 −Qi2)−1 = (Ei + σ
2
γJT )−1 ⊗ IK

= A
−1
i ⊗ IK

{Qi1 + (N − 1)Qi2}−1 = [{Ei +Nσ
2
πIT + (σ2

γ +Nσ
2
c)JT }⊗ IK +N(σ2

sIT + σ
2
bJT )⊗ JK]−1 .

We can easily rewrite Qi1 + (N − 1)Qi2 in the form of (Wi1 − Wi2) ⊗ IK + Wi2 ⊗ JK with Wi1 − Wi2 =

Ei +Nσ
2
πIT + (σ2

γ +Nσ
2
c)JT and Wi2 = N(σ2

sIT + σ
2
bJT ), therefore, to generate the inverse we can apply formula

(4) again to get

{Qi1 + (N − 1)Qi2}−1 = (Wi1 −Wi2)−1 ⊗ IK +
1

K
[ {Wi1 + (K − 1)Wi2}−1 − (Wi1 −Wi2)−1]⊗ JK

= B
−1
i ⊗ IK +

1

K
(C−1

i −B
−1
i )⊗ JK .

Putting these components together gives us

V
−1
i = A

−1
i ⊗ IK ⊗ IN +N

−1(B−1
i −A

−1
i )⊗ IK ⊗ JN + (KN)−1(C−1

i −B
−1
i )⊗ JK ⊗ JN .

Now that we have an expression for the inverse we can calculate the following directly,

F
⊤
V

−1
i F = KN {Ei + (Nσ

2
π +KNσ

2
s)IT + (σ2

γ +Nσ
2
c +KNσ

2
b )JT }

−1
.

Comparing this result to the following,

(F⊤
ViF )−1 = (KN)−1 {Ei + (Nσ

2
π +KNσ

2
s)IT + (σ2

γ +Nσ
2
c +KNσ

2
b )JT }

−1
,

we see that equation (16) holds. By definition, Ṽi = (KN)−2F⊤
ViF , therefore, by equation (16) we know that

Ṽ
−1
i = F

⊤
V

−1
i F . We can further show that

H
⊤
i V

−1
i Hi = KNX

⊤
i {Ei + (Nσ

2
π +KNσ

2
s)IT + (σ2

γ +Nσ
2
c +KNσ

2
b )JT }

−1
Xi

= X
⊤
i Ṽ

−1
i Xi

and

H
⊤
i V

−1
i F = KNX

⊤
i {Ei + (Nσ

2
π +KNσ

2
s)IT + (σ2

γ +Nσ
2
c +KNσ

2
b )JT }

−1
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= X
⊤
i Ṽ

−1
i .

Therefore, we have shown that

var(δ̂) = {
I

∑
i=1

H
⊤
i V

−1
i Hi − (

I

∑
i=1

H
⊤
i V

−1
i )F (

I

∑
i=1

F
⊤
V

−1
i F )

−1

F
⊤(

I

∑
i=1

V
−1
i Hi)}

−1

= {
I

∑
i=1

X
⊤
i Ṽ

−1
i Xi − (

I

∑
i=1

X
⊤
i Ṽ

−1
i )(

I

∑
i=1

Ṽ
−1
i )

−1

(
I

∑
i=1

Ṽ
−1
i Xi)}

−1

.

Web Appendix D

Count and gamma outcomes under a GLMM framework

Count outcome with canonical log link

Under a count outcome with canonical log link, we have ζ(µijkl) = µijkl = exp(ηijkl) and ∆
−1
ijkl = exp(−ηijkl).

Therefore, ∆
−1
ijklζ(µijkl)∆−1

ijkl = ∆
−1
ijkl = exp(−ηijkl). Taking the expectation with respect to the random effects

and using the property of the Gaussian moment generating function allows us to obtain

E{exp(−ηijkl)} = exp(
σ
2
b + σ

2
c + σ

2
s + σ

2
π + σ

2
γ

2
) exp (−βj −Xijδ) .

Therefore,

Ei = exp(
σ
2
b + σ

2
c + σ

2
s + σ

2
π + σ

2
γ

2
)diag{exp(−β1 −Xi1δ), . . . , exp(−βT −XiT δ)}.

Gamma outcome with canonical inverse link

Under a gamma distribution with canonical inverse link function, we have ζ(µijkl) = µ
2
ijkl = 1/η2ijkl and ∆

−1
ijkl =

−η2ijkl. Therefore, ∆
−1
ijklζ(µijkl)∆−1

ijkl = −∆−1
ijkl = η

2
ijkl. Taking the expectation with respect to the random effects

we have

E(η2ijkl) = (βj +Xijδ)2 + σ
2
b + σ

2
c + σ

2
s + σ

2
π + σ

2
γ .

Therefore,

Ei = (σ2
b + σ

2
c + σ

2
s + σ

2
π + σ

2
γ)IT + diag{(β1 +Xi1δ)2, . . . , (βT +XiT δ)2}.
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Web Appendix E

Gaussian outcomes

Under a Gaussian outcome with unequal cluster sizes our induced correlation matrix given by

Ri = (1 − α0 − α2 + α1)ITKN + (α0 − ρ0 − α1 + ρ1)ITK ⊗ JN + (ρ0 − ρ1)IT ⊗ JKN

+ (α2 − α1)JT ⊗ IKN + (α1 − ρ1)JT ⊗ IK ⊗ JN + ρ1JTKN ,

becomes

Ri = (1 − α0 − α2 + α1)ITKiNi
+ (α0 − ρ0 − α1 + ρ1)ITKi

⊗ JNi
+ (ρ0 − ρ1)IT ⊗ JKiNi

+ (α2 − α1)JT ⊗ IKiNi
+ (α1 − ρ1)JT ⊗ IKi

⊗ JNi
+ ρ1JTKiNi

,

which is a TKiNi × TKiNi matrix. Thus, σ
2(∑I

i=1 Z
⊤
i R

−1
i Zi)−1 must be derived numerically due to Ri being

cluster-specific, a process simplified by using a cluster-period means approach.

Under a cluster-period means approach our correlation matrix is

R̃i =
1 − α2 + (Ni − 1)(α0 − α1) +Ni(Ki − 1)(ρ0 − ρ1)

KiNi
IT +

α2 + (Ni − 1)α1 +Ni(Ki − 1)ρ1
KiNi

JT ,

which is a T × T exchangeable matrix with diagonal elements {1 + (Ni − 1)α0 + Ni(Ki − 1)ρ0}/(KiNi) and off-

diagonal elements {α2+ (Ni−1)α1+Ni(Ki−1)ρ1}/(KiNi). Re-writing R̃i in terms of the eigenvalues (Web Table

1) and using equation (1) we have

R̃
−1
i =

KiNi

λ3i
IT −

KiNi(λ6i − λ3i)
Tλ3iλ6i

JT , (17)

where λ3i = 1−α0 −α2 +α1 +Ni{α0 −α1 + (Ki − 1)(ρ0 − ρ1)} and λ6i = 1−α0 + (T − 1)(α2 −α1)+Ni{α0 + (T −

1)α1 + (Ki − 1)(ρ0 + (T − 1)ρ1)} under design variant A. Therefore, var(δ̂) will still depend on the ICCs through

the same two eigenvalues of the extended block exchangeable correlation matrix as seen in Web Appendix A. The

variance of the intervention effect estimate under a cluster-period means approach is the (T + 1, T + 1)th element

of

(
I

∑
i=1

Z
⊤
2iR̃

−1
i Z2i)

−1

=

⎛
⎜⎜⎜
⎝

I

∑
i=1

⎛
⎜⎜⎜
⎝

IT

X
⊤
i

⎞
⎟⎟⎟
⎠
R̃

−1
i ( IT Xi )

⎞
⎟⎟⎟
⎠

−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 Ω12

Ω21 Ω22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

,
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where Z2i = (IT ,Xi), Ω11 is of dimension T × T , Ω12 = Ω
⊤
21 is of dimension T × 1, and Ω22 is a scalar. For a given

cluster i we have

Ω11i = R̃
−1
i

Ω12i =
KiNi

λ3i
Xi −

KiNi(λ6i − λ3i)
Tλ3iλ6i

T

∑
j=1

Xij1T

Ω22i =
KiNi

λ3i

T

∑
j=1

X
2
ij −

KiNi(λ6i − λ3i)
Tλ3iλ6i

(
T

∑
j=1

Xij)
2

Equivalence of var(δ̂) approaches under equal cluster sizes

We already know according to Lemma 3 that the individual-level outcomes approach is equivalent to the cluster-

period means approach under equal cluster sizes. Therefore, we should be able to derive the same variance expression

(6) from Web Appendix A using cluster-period means.

If we have equal cluster sizes, Ki = K and Ni = N , then we would have

Ω11 =

I

∑
i=1

Ω11i = I {KN

λ3
IT −

KN(λ6 − λ3)
Tλ3λ6

JT} .

We can apply equation (1) to get the inverse

Ω
−1
11 = (IKN)−1 (λ3IT +

λ6 − λ3

T
JT ) .

We would also have

Ω12 =

I

∑
i=1

Ω12i =
KN

λ3

I

∑
i=1

Xi −
KN(λ6 − λ3)

Tλ3λ6
U1T

Ω22 =

I

∑
i=1

Ω22i =
KN

λ3
U −

KN(λ6 − λ3)
Tλ3λ6

V.
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Using block matrix inversion we can generate var(δ̂) = (Ω22 − Ω21Ω
−1
11Ω12)

−1
which gives us

var(δ̂) = (σ2/KN)ITλ6λ3

(U2 + ITU − TW − IV )λ6 − (U2 − IV )λ3

,

which is the same variance expression (6) derived in Web Appendix A using individual-level outcomes. Therefore,

the cluster-period means approach is equivalent to using individual-level outcomes when cluster sizes are equal as

expected. Since R̃i is cluster-specific when cluster sizes are unequal we cannot derive a closed-form expression. In

this case, the proof for Lemma 3A below is sufficient.

Non-Gaussian outcomes

Under non-Gaussian outcomes we already utilize numerical methods using cluster-period means which can be easily

modified to accommodate cluster-specific sizes. The covariance of the cluster-period means of the pseudo-outcomes

becomes

Ṽi = (KiNi)−1Ei + (K−1
i σ

2
π + σ

2
s)IT + {σ2

b +K
−1
i σ

2
c + (KiNi)−1σ2

γ}JT , (18)

with the same Ei and variance components as defined in Web Appendix C. Under the individual-level outcomes

approach with unequal cluster sizes Vi becomes

Vi = (Ei ⊗ IKiNi
) + σ

2
s(IT ⊗ JKiNi

) + σ
2
π(IT ⊗ IKi

⊗ JNi
) + σ

2
bJTKiNi

+ σ
2
c(JT ⊗ IKi

⊗ JNi
) + σ

2
γ(JT ⊗ IKiNi

),

which is a TKiNi × TKiNi matrix. These variance expressions will be used in Lemma 3A below.

LEMMA 3A: Equivalence of var(δ̂) approaches under unequal cluster sizes

LEMMA 3A: The variance of the intervention effect estimator in the generalized linear mixed model under unequal

cluster sizes is equivalently written as

var(δ̂) = {
I

∑
i=1

X
⊤
i Ṽ

−1
i Xi − (

I

∑
i=1

X
⊤
i Ṽ

−1
i )(

I

∑
i=1

Ṽ
−1
i )

−1

(
I

∑
i=1

Ṽ
−1
i Xi)}

−1

,

where Ṽi = (KiNi)−1Ei + (K−1
i σ

2
π + σ

2
s)IT + {σ2

b + K
−1
i σ

2
c + (KiNi)−1σ2

γ}JT is the T × T matrix character-

izing the covariance of the cluster-period means of the pseudo-outcomes Y
∗
i = (KiNi)−1(IT ⊗ 1

⊤
KiNi

)Y ∗
i , and

Ei = diag [E{∆−1
i111ζ(µi111)∆−1

i111}, . . . ,E{∆−1
iT11ζ(µiT11)∆−1

iT11}].

Proof: To prove Lemma 3A holds we need to show that the variance expression under individual-level outcomes is
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equivalent to the variance expression under a cluster-period means approach, that is that,

var(δ̂) = {
I

∑
i=1

H
⊤
i V

−1
i Hi − (

I

∑
i=1

H
⊤
i V

−1
i )Fi(

I

∑
i=1

F
⊤
i V

−1
i Fi)

−1

F
⊤
i (

I

∑
i=1

V
−1
i Hi)}

−1

= {
I

∑
i=1

X
⊤
i Ṽ

−1
i Xi − (

I

∑
i=1

X
⊤
i Ṽ

−1
i )(

I

∑
i=1

Ṽ
−1
i )

−1

(
I

∑
i=1

Ṽ
−1
i Xi)}

−1

.

where Hi = Xi ⊗ 1KiNi
and Fi = IT ⊗ 1KiNi

. We claim that the expressions for var(δ̂) are equivalent if for each

cluster i,

(KiNi)−2F⊤
i V

−1
i Fi = (F⊤

i ViFi)−1. (19)

First, note that the covariance of Y
∗
i can be written in the form Vi = (Qi1 − Qi2) ⊗ INi

+ Qi2 ⊗ JNi
with

Qi1 −Qi2 = (Ei +σ
2
γJT )⊗ IKi

and Q2i = (σ2
πIT +σ

2
cJT )⊗ IKi

+ (σ2
sIT +σ

2
bJT )⊗JKi

. Therefore, the inverse can

be obtained using formula (4) giving us

V
−1
i = (Qi1 −Qi2)−1 ⊗ INi

+
1

Ni
[ {Qi1 + (Ni − 1)Qi2}−1 − (Qi1 −Qi2)−1]⊗ JNi

.

Looking at each sub-inverse we have

(Qi1 −Qi2)−1 = (Ei + σ
2
γJT )−1 ⊗ IKi

= A
−1
i ⊗ IKi

{Qi1 + (Ni − 1)Qi2}−1 = [{Ei +Niσ
2
πIT + (σ2

γ +Niσ
2
c)JT }⊗ IKi

+Ni(σ2
sIT + σ

2
bJT )⊗ JKi

]−1.

We can easily rewrite Qi1 + (Ni − 1)Qi2 in the form of (Wi1 − Wi2) ⊗ IKi
+ Wi2 ⊗ JKi

with Wi1 − Wi2 =

Ei+Niσ
2
πIT + (σ2

γ +Niσ
2
c)JT and Wi2 = Ni(σ2

sIT +σ
2
bJT ), therefore, to generate the inverse we can apply formula

(4) again to get

{Qi1 + (Ni − 1)Qi2}−1 = (Wi1 −Wi2)−1 ⊗ IKi
+

1

Ki
[{Wi1 + (Ki − 1)Wi2}−1 − (Wi1 −Wi2)−1]⊗ JKi

= B
−1
i ⊗ IKi

+
1

Ki
(C−1

i −B
−1
i )⊗ JKi

.

Putting these components together gives us

V
−1
i = A

−1
i ⊗ IKi

⊗ INi
+N

−1
i (B−1

i −A
−1
i )⊗ IKi

⊗ JNi
+ (KiNi)−1(C−1

i −B
−1
i )⊗ JKi

⊗ JNi
.
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Now that we have an expression for the inverse we can calculate the following directly,

F
⊤
i V

−1
i Fi = KiNi{Ei + (Niσ

2
π +KiNiσ

2
s)IT + (σ2

γ +Niσ
2
c +KiNiσ

2
b )JT }−1.

Comparing this result to the following,

(F⊤
i ViFi)−1 = (KiNi)−1{Ei + (Niσ

2
π +KiNiσ

2
s)IT + (σ2

γ +Niσ
2
c +KiNiσ

2
b )JT }−1,

we see that equation (19) holds. By definition, Ṽi = (KiNi)−2F⊤
i ViFi, therefore, by equation (19) we know that

Ṽ
−1
i = F

⊤
i V

−1
i Fi. We can further show that

H
⊤
i V

−1
i Hi = KiNiX

⊤
i {Ei + (Niσ

2
π +KiNiσ

2
s)IT + (σ2

γ +Niσ
2
c +KiNiσ

2
b )JT }−1Xi

= X
⊤
i Ṽ

−1
i Xi

and

H
⊤
i V

−1
i Fi = KiNiX

⊤
i {Ei + (Niσ

2
π +KiNiσ

2
s)IT + (σ2

γ +Niσ
2
c +KiNiσ

2
b )JT }−1

= X
⊤
i Ṽ

−1
i .

Therefore, we have shown that,

var(δ̂) = {
I

∑
i=1

H
⊤
i V

−1
i Hi − (

I

∑
i=1

H
⊤
i V

−1
i )Fi(

I

∑
i=1

F
⊤
i V

−1
i Fi)

−1

F
⊤
i (

I

∑
i=1

V
−1
i Hi)}

−1

= {
I

∑
i=1

X
⊤
i Ṽ

−1
i Xi − (

I

∑
i=1

X
⊤
i Ṽ

−1
i )(

I

∑
i=1

Ṽ
−1
i )

−1

(
I

∑
i=1

Ṽ
−1
i Xi)}

−1

.

Additional details regarding the procedure for deriving var(δ̂) under unequal cluster

sizes

We provide the specific steps used in deriving var(δ̂) under unequal cluster sizes.

1. Specify inputs: Specify the number of clusters (I), number of periods (T ), average number of subclusters per

cluster (K), average number of subjects per subcluster (N), coefficient of variation for the number of subclus-

ters (CVK) and number of subjects (CVN ), ICCs (α0,α1,α2,ρ0,ρ1) or equivalently the variance parameters

(σ
2
b , σ

2
c , σ

2
s , σ

2
π, σ

2
γ), effect size on the link function scale (δ), and period effects on the link function scale (βj).

2. Simulate cluster sizes: For each cluster i ∈ {1, . . . , I}, simulate the number of subclusters (Ki) and subjects

per subcluster (Ni) such that the average number of subclusters per cluster is K and average number of
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subjects per subcluster is N . In particular, we can assume Ki ∼ fK(Ki;K,CVK) and Ni ∼ fN(Ni;N,CVN),

where f(•; a, b) represents a valid density or mass function with mean a and coefficient of variation b. Any

distribution could be designated for fK and fN . For example, we could assume Ki ∼ Gamma(shape =

CV
−2
K , rate = K

−1
CV

−2
K ) and Ni ∼ Gamma(shape = CV

−2
N , rate = N

−1
CV

−2
N ) with Ki and Ni rounded to the

nearest integers in each draw. Each simulation replicate, O = {(Ki, Ni), i = 1, . . . , I}, represents a specific

design with unequal cluster sizes. Repeat this step R (i.e. R = 1000) times and record each replicate using

O(r)
for r ∈ {1, . . . , R}.

3. Generate var(δ̂∣O(r)) for each replicate O(r)
: Using a cluster-period means approach (Lemma 3A) we generate

var(δ̂∣O(r)) for each replicate O(r)
. Under a Gaussian outcome, we generate R̃

−1
i (17) and use this with

σ
2(∑I

i=1 Z
⊤
2iR̃

−1
i Z2i)−1 and Z2i = (IT ,Xi) to generate var(δ̂∣O(r)) which is the (T + 1, T + 1)th element.

Under a non-Gaussian outcome, we generate Ṽi (18) and use ϕ(∑I
i=1 Z

⊤
2iṼ

−1
i Z2i)−1 with Z2i = (IT ,Xi) to

generate var(δ̂∣O(r)) which is the (T + 1, T + 1)th element.

4. Generate var(δ̂): Calculate var(δ̂) by taking the average over all var(δ̂∣O(r)), var(δ̂) ≈ R
−1 ∑R

r=1 var(δ̂∣O
(r)).

Var(δ̂) can then be used with the power formula to aid in sample size calculations of SW-CRTs with subclusters

and unequal cluster sizes.

Web Appendix F

Derivation of variance components using ICCs under each design variant

Investigators generally have a better idea of what ICCs to expect in a trial rather than individual variance compo-

nents. Here, we derive the variance components given the ICCs under each design variant.

Closed-cohort on subcluster and individual levels (design A)

Under this design we have the following ICCs,

α0 =
σ
2
b + σ

2
c + σ

2
s + σ

2
π

σ2
b + σ2

c + σ2
s + σ2

π + σ2
γ + σ2

ϵ

ρ0 =
σ
2
b + σ

2
s

σ2
b + σ2

c + σ2
s + σ2

π + σ2
γ + σ2

ϵ

α1 =
σ
2
b + σ

2
c

σ2
b + σ2

c + σ2
s + σ2

π + σ2
γ + σ2

ϵ

ρ1 =
σ
2
b

σ2
b + σ2

c + σ2
s + σ2

π + σ2
γ + σ2

ϵ

α2 =
σ
2
b + σ

2
c + σ

2
γ

σ2
b + σ2

c + σ2
s + σ2

π + σ2
γ + σ2

ϵ

.
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Note that α0 + α2 − α1 = (σ2
b + σ

2
c + σ

2
s + σ

2
π + σ

2
γ)/(σ2

b + σ
2
c + σ

2
s + σ

2
π + σ

2
γ + σ

2
ϵ ). Assuming σ

2
ϵ is known, we can

solve for the total variance of the random effects, x = σ
2
b + σ

2
c + σ

2
s + σ

2
π + σ

2
γ ,

α0 + α2 − α1 =
x

x + σ2
ϵ

⇒ x =
σ
2
ϵ

1 − α0 − α2 + α1
.

We can use this to solve for σ
2
b ,

ρ1 =
σ
2
b (1 − α0 − α2 + α1)

σ2
ϵ

⇒ σ
2
b =

ρ1σ
2
ϵ

1 − α0 − α2 + α1
.

Now we can solve for σ
2
s and σ

2
c ,

ρ0 =

(1 − α0 − α2 + α1)(
ρ1σ

2
ϵ

1 − α0 − α2 + α1
+ σ

2
s)

σ2
ϵ

⇒ σ
2
s =

σ
2
ϵ (ρ0 − ρ1)

1 − α0 − α2 + α1
,

α1 =

(1 − α0 − α2 + α1)(
ρ1σ

2
ϵ

1 − α0 − α2 + α1
+ σ

2
c)

σ2
ϵ

⇒ σ
2
c =

σ
2
ϵ (α1 − ρ1)

1 − α0 − α2 + α1
.

Now we can generate σ
2
π and σ

2
γ ,

α0 =

(1 − α0 − α2 + α1){
ρ1σ

2
ϵ

1 − α0 − α2 + α1
+

σ
2
ϵ (α1 − ρ1)

1 − α0 − α2 + α1
+

σ
2
ϵ (ρ0 − ρ1)

1 − α0 − α2 + α1
+ σ

2
π}

σ2
ϵ

⇒ σ
2
π =

σ
2
ϵ (α0 − α1 − ρ0 + ρ1)
1 − α0 − α2 + α1

,

α2 =

(1 − α0 − α2 + α1){
ρ1σ

2
ϵ

1 − α0 − α2 + α1
+

σ
2
ϵ (α1 − ρ1)

1 − α0 − α2 + α1
+ σ

2
γ}

σ2
ϵ

⇒ σ
2
γ =

σ
2
ϵ (α2 − α1)

1 − α0 − α2 + α1
.
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Closed-cohort on subcluster level and cross-sectional at individual level (design B)

If we change the individual level from closed-cohort to cross-sectional (α2 = α1) then we would have the following,

σ
2
b =

ρ1σ
2
ϵ

1 − α0

σ
2
s =

σ
2
ϵ (ρ0 − ρ1)
1 − α0

σ
2
c =

σ
2
ϵ (α1 − ρ1)
1 − α0

σ
2
π =

σ
2
ϵ (α0 − α1 − ρ0 + ρ1)

1 − α0
.

Cross-sectional on subcluster and individual levels (design C)

If in addition we allow the subcluster level to be cross-sectional (α2 = α1 = ρ1) then we would have the following,

σ
2
b =

ρ1σ
2
ϵ

1 − α0

σ
2
s =

σ
2
ϵ (ρ0 − ρ1)
1 − α0

σ
2
π =

σ
2
ϵ (α0 − ρ0)
1 − α0

.

Web Appendix G

Design Effect

Derivation of design effect

An investigator could use the variance expression (5) combined with the power formula to determine the required

sample size for a longitudinal CRT with subclusters. Alternatively, one could focus on the design effect of a

longitudinal CRT with subclusters compared to an individually randomized trial to ease sample size calculations.

The sample mean difference has a variance of 4σ
2/(IKN), therefore, the variance ratio (design effect) under a

longitudinal CRT with subclusters to individual randomization is

design effect =
1

4tr(Ω) ×
Tλ6λ3

Tλ6 − {1 + (T − 1)τX}(λ6 − λ3)

=
I
2
Tλ6λ3

4(U2 + ITU − TW − IV )λ6 − 4(U2 − IV )λ3

. (20)
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This expression can be generalized to longitudinal parallel or any type of crossover design and we provide the

stepped wedge design as an example. Similar to Woertman et al. (2013) and Li et al. (2018b), we assume an equal

number of clusters cross over to intervention at each step (ms = m) and an equal number of measurements are taken

after each step (cs = c) for each step s = 1, ..., S. We will then have I = Sm clusters, T = b + Sc periods (where b

is the number of measures taken at baseline), and constants U =
1

2
S(S + 1)mc, W = (1

3
S
3 +

1

2
S
2 +

1

6
S)m2

c, and

V = (1
3
S
3 +

1

2
S
2 +

1

6
S)mc

2
. Therefore, the design effect under a SW-CRT with subclusters design to individual

randomization is

design effect =
3

2c(S − 1/S){
(b + Sc)λ3λ6

(Sc/2)λ3 + (b + Sc/2)λ6
}. (21)

Our design effect generalizes to the design effect derived in Li et al. (2018b), Woertman et al. (2013) based on

the Hussey and Hughes (2007) model, and Hooper et al. (2016). To determine the total number of participants

required under a SW-CRT with subclusters, an investigator could first generate the required sample size under

individual randomization, multiply by the design effect (21), and then round up to the nearest integer or multiple

of the number of clusters (I) for a balanced design. Given the total number of participants, the number of clusters

(I), subclusters per cluster (K), and participants per subcluster (N) can be determined. Finally, investigators can

explore the effect of each ICC on the multilevel SW-CRT design effect across design variants (A,B,C) using our

RShiny app (Davis-Plourde, 2021).

Application to Lumbar Imaging with Reporting of Epidemiology (LIRE) trial

In our LIRE application we used the variance expression (5) coupled with the power formula to generate the required

sample size per subcluster (N). Here, we use the design effect to calculate the total required number of subjects

and clusters (I). The LIRE trial is a closed-cohort design on the subcluster level but cross-sectional design at the

subject level (design B) SW-CRT containing I = 100 practices consisting of a total of 1700 primary care providers

(PCPs) over T = 6 periods. Each practice is a cluster and each PCP represents a subcluster. While the number

of PCPs per practice varied, we assume K = 17 PCPs per practice for illustration. The primary outcome was log-

transformed spine-related relative value units (RVUs), a continuous composite measure of back pain. Assuming the

median and total variance of RVU is approximately 3.56 and 2.5, respectively (Jarvik et al., 2020); a 5% reduction

due to treatment corresponds to a standardized effect size of around -0.1. Based on preliminary data, an overall

ICC was estimated to be 0.013 with a 95% confidence interval of (0.00, 0.046). We therefore assume the within-

period within-PCP ICC to be the upper bound of the preliminary estimates, α0 = 0.046, and a slightly smaller

within-period between-PCP ICC of ρ0 = 0.04. Assuming a CAC of 0.5 further gives us α1 = 0.023 and ρ1 = 0.02.

We calculate the required number of subjects and clusters to achieve at least 80% power for a two-sided 5% test.

Under individual randomization and assuming 98 degrees of freedom, a total of 9,860 participants are required to

achieve 87.5% power. Assuming 77 participants are to be recruited at each of the 17 PCPs per practice gives us a
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design effect of 13.3, meaning 130,789 participants are required and 100 practices are needed.

Web Appendix H

LIRE trial: sample size determination under alternative cluster level designs

Closed-cohort design at both the subcluster and subject levels (design A)

In this example we treat the LIRE trial as a closed-cohort design on both the subcluster level and the subject level

(design A). The study planned to randomize I = 100 practices consisting of a total of 1700 primary care providers

(PCPs) over T = 6 periods; each practice is a cluster and each PCP represents a subcluster. While the number of

PCPs per practice varied, we assume K = 17 PCPs per practice for illustration. The primary outcome was log-

transformed spine-related relative value units (RVUs), a continuous composite measure of back pain. Assuming the

median and total variance of RVU is approximately 3.56 and 2.5, respectively (Jarvik et al., 2020); a 5% reduction

in median due to treatment corresponds to a standardized effect size of around -0.1. Based on preliminary data,

an overall ICC was estimated to be 0.013 with a 95% confidence interval of (0.00, 0.046). We therefore assume

the within-period within-PCP ICC to be the upper bound of the preliminary estimates, α0 = 0.046, and a slightly

smaller within-period between-PCP ICC of ρ0 = 0.04. Assuming a CAC of 0.5 further gives us α1 = 0.023 and

ρ1 = 0.02. We also set α2 = 0.1, and calculate the required number of subjects per PCP (N) to achieve at least

80% power for a two-sided 5% test. Based on the power formula and our closed-form variance expression (5),

we found having N = 72 participants per PCP produced 87.5% power. To assess the sensitivity of our power

calculation to ICC specifications, we looked at power trends for varying α0 ∈ (0, 0.1) with various ratios of ρ0/α0

across varying levels of CAC (0.2, 0.5, 0.8) and α2 = (0.1, 0.5). In concordance with our findings in Theorem 1,

we found that higher values of within-period ICCs (α0 and ρ0) and lower values of between-period ICCs (α1, ρ1,

and α2) correspond to more conservative power predictions (Web Figure 3), thus we are confident that our ICC

specifications have likely produced a conservative power estimate.

Cross-sectional design at both the subcluster and subject levels (design C)

In this example we treat the LIRE trial as a cross-sectional design on both the subcluster level and the subject level

(design C). The study planned to randomize I = 100 practices consisting of a total of 1700 primary care providers

(PCPs) over T = 6 periods; each practice is a cluster and each PCP represents a subcluster. While the number

of PCPs per practice varied, we assume K = 17 PCPs per practice for illustration. The primary outcome was

log-transformed spine-related relative value units (RVUs), a continuous composite measure of back pain. Assuming

the median and total variance of RVU is approximately 3.56 and 2.5, respectively (Jarvik et al., 2020); a 5%

reduction due to treatment corresponds to a standardized effect size of around -0.1. Based on preliminary data,

an overall ICC was estimated to be 0.013 with a 95% confidence interval of (0.00, 0.046). We therefore assume
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the within-period within-PCP ICC to be the upper bound of the preliminary estimates, α0 = 0.046, and a slightly

smaller within-period between-PCP ICC of ρ0 = 0.04. Assuming a CAC of 0.5 further gives us ρ1 = 0.02. We

calculate the required number of subjects per PCP (N) to achieve at least 80% power for a two-sided 5% test.

Based on the power formula and our closed-form variance expression (5), we found having N = 99 participants per

PCP produced 87.5% power. To assess the sensitivity of our power calculation to ICC specifications, we looked at

power trends for varying α0 ∈ (0, 0.1) with various ratios of ρ0/α0 across varying levels of CAC (0.2, 0.5, 0.8). In

concordance with our findings in Theorem 1, we found that higher values of within-period ICCs (α0 and ρ0) and

lower values of between-period ICCs (ρ1) correspond to more conservative power predictions (Web Figure 4), thus

we are confident that our ICC specifications have likely produced a conservative power estimate.

Web Appendix I

LIRE trial: sample size determination adjusting for between-cluster size imbalances

In this example we consider a closed-cohort design at the subcluster level and cross-sectional design at the subject

level (design B). The LIRE trial planned to randomize I = 100 practices consisting of a total of 1700 primary

care providers (PCPs) over T = 6 periods; each practice is a cluster and each PCP represents a subcluster. The

primary outcome was log-transformed spine-related relative value units (RVUs), a continuous composite measure

of back pain. Assuming the median and total variance of RVU is approximately 3.56 and 2.5, respectively (Jarvik

et al., 2020); a 5% reduction in median due to treatment corresponds to a standardized effect size of around -

0.1. Based on preliminary data, an overall ICC was estimated to be 0.013 with a 95% confidence interval of (0.00,

0.046). We therefore assume the within-period within-PCP ICC to be the upper bound of the preliminary estimates,

α0 = 0.046, and a slightly smaller within-period between-PCP ICC of ρ0 = 0.04. Assuming a CAC of 0.5 further

gives us α1 = 0.023 and ρ1 = 0.02. To estimate the CVs, we first need to estimate the average number of PCPs and

subjects per PCP over time within each practice, then we calculate the variance of the averages denoted by σ
2
cs.K

and σ
2
cs.N , and finally we generate our CV estimates using CVK = σcs.K/K and CVN = σcs.N/N (assuming cluster

sizes follow a gamma distribution as outlined in Web Appendix E). Overall, the number of PCPs per practice varied

from 2 to 106 with a specific breakdown of the number of PCPs per practice provided in stratified ranges in Table

2 of Jarvik et al. (2015). Using the provided Table, we assume the midpoint of each given range is the average

number of PCPs per cluster which gives us K = 18 and CVK = 1.0. Unfortunately, a breakdown of the number of

subjects per PCP was not provided. Therefore, we used the subject totals by site (Jarvik et al., 2020) with Table

2 (Jarvik et al., 2015) to estimate N = 126 and CVN = 1.1. We calculate the required number of practices (I)

to achieve at least 80% power for a two-sided 5% test. Based on the power formula and our variance algorithm

for unequal cluster sizes, we found having I = 110 practices produced 87.0% power. To assess the sensitivity of

our predicted power to CV specification, we looked at power trends for varying CVK ∈ {0.8, 0.9, 1.0, 1.1, 1.2} and
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CVN ∈ {0.9, 1.0, 1.1, 1.2, 1.3}. The results of our sensitivity analysis are shown in Web Table 11, we found that

the predicted power varied between 83.1% and 89.1% which is still within our goal of at least 80% power. Further,

there appears to be a monotone relationship between power and CVs. Specifically, an increase in CV (either CVK

or CVN ) is associated with a decrease in power.

Web Appendix J

EPT study: sample size determination under alternative cluster level designs

Closed-cohort design at both the subcluster and subject levels (design A)

In this example we treat the Washington State EPT study as a closed-cohort design on both the subcluster level

and the subject level (design A). The study included I = 24 local health jurisdictions (LHJ) that were randomly

assigned to intervention at one of four steps (T = 5). Each LHJ includes clinics that provide subject-level outcomes

over time. A total of 219 clinics participated in chlamydia testing, but to be conservative we assume the number

of clinics per LHJ is K = 5. In the design of this study, investigators aimed to detect a prevalence ratio of 0.7 and

assumed a baseline prevalence of 0.05. Because the outcome is rare, we assume the effect size expressed as an odds

ratio can be approximated by the prevalence ratio, and obtain the required number of participants per clinic (N)

to achieve at least 80% power for a two-sided 5% test. Without distinguishing between clusters and subclusters, Li

et al. (2021) estimated the within-period ICC to be 0.007 and the between-period ICC to be 0.004 based on marginal

models. We consider these values to be the within-period between-clinic and between-period within-clinic ICCs such

that ρ0 = 0.007 and α1 = 0.004, and set the remaining ICCs to be α0 = 0.008 and ρ1 = 0.0035 (corresponding to

a CAC of 0.5). We also set α2 = 0.2 and assume a slightly decreasing time effect as in our simulations, and find

based on the power formula and variance expressions that including N = 66 participants per clinic gives us 89.5%

power. As a sensitivity analysis, we considered a larger decreasing period effect such that βj−βj+1 = 1×(0.5)j−1 for

j ≥ 1, which increased N = 218 to attain 89.5% power. On the other hand, using a smaller decreasing period effect,

βj − βj+1 = 0.01 × (0.5)j−1 for j ≥ 1, reduced our required number of participants per clinic to N = 59 to achieve

89.6% power. Similarly, we assessed the sensitivity of our power calculation to ICC specifications by examining the

power trends for varying α0 ∈ (0, 0.05) with various ratios of ρ0/α0 across varying levels of CAC (0.2, 0.5, 0.8),

α2 (0.1, 0.5), and time trends (βj − βj+1 = {0.01, 0.1, 1} × (0.5)j−1 for j ≥ 1), however, the highest time trend is

omitted since it produced contour plots that were less than 70% power regardless of α0, ratio of ρ0/α0, CAC, and

α2 (Web Figure 5). We found that higher values of within-period ICCs (α0 and ρ0), lower values of between-period

ICCs (α1, ρ1), and higher values of within-subject auto-correlation (α2) correspond to more conservative power

predictions, thus we are confident that our ICC specifications have likely produced a conservative power estimate.
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Cross-sectional design at both the subcluster and subject levels (design C)

In this example we treat the Washington State EPT study as a cross-sectional design on both the subcluster level

and the subject level (design C). The study included I = 24 local health jurisdictions (LHJ) that were randomly

assigned to intervention at one of four steps (T = 5). Each LHJ includes clinics that provide subject-level outcomes

over time. A total of 219 clinics participated in chlamydia testing, but to be conservative we assume the number

of clinics per LHJ is K = 5. In the design of this study, investigators aimed to detect a prevalence ratio of 0.7

and assumed a baseline prevalence of 0.05. Because the outcome is rare, we assume the effect size expressed as

an odds ratio can be approximated by the prevalence ratio, and obtain the required number of participants per

clinic (N) to achieve at least 80% power for a two-sided 5% test. Without distinguishing between clusters and

subclusters, Li et al. (2021) estimated the within-period ICC to be 0.007 based on marginal models. We consider

this value to be the within-period between-clinic ICC such that ρ0 = 0.007 and set the remaining ICCs to be

α0 = 0.008 and ρ1 = 0.0035 (corresponding to a CAC of 0.5). We assume a slightly decreasing time effect as in

our simulations, and find based on the power formula and variance expressions that including N = 42 participants

per clinic gives us 89.5% power. As a sensitivity analysis, we considered a larger decreasing period effect such that

βj − βj+1 = 1 × (0.5)j−1 for j ≥ 1, which increased N = 139 to attain 89.5% power. On the other hand, using a

smaller decreasing period effect, βj − βj+1 = 0.01 × (0.5)j−1 for j ≥ 1, reduced our required number of participants

per clinic to N = 37 to achieve 89.3% power. Similarly, we assessed the sensitivity of our power calculation to

ICC specifications by examining the power trends for varying α0 ∈ (0, 0.05) with various ratios of ρ0/α0 across

varying levels of CAC (0.2, 0.5, 0.8) and time trends (βj − βj+1 = {0.01, 0.1, 1} × (0.5)j−1 for j ≥ 1) (Web Figure

6). We found that higher values of within-period ICCs (α0 and ρ0) and lower values of between-period ICCs (ρ1)

correspond to more conservative power predictions, thus we are confident that our ICC specifications have likely

produced a conservative power estimate.

Web Appendix K

EPT study: sample size determination adjusting for between-cluster size imbalances

In this example we consider a closed-cohort design at the subcluster level and cross-sectional design at the subject

level (design B). The Washington State EPT study included I = 24 local health jurisdictions (LHJ) that were

randomly assigned to intervention at one of four steps (T = 5). Each LHJ includes clinics that provide subject-level

outcomes over time. A total of 219 clinics participated in chlamydia testing. The average number of clinics per

LHJ is K = 4 and the average number of subjects per clinic is N = 79. To estimate the CVs, we first compute

the average number of clinics and subjects per clinic over time within each LHJ, then we calculate the variance

of the averages denoted by σ
2
cs.K and σ

2
cs.N , and finally we generate our CV estimates using CVK = σcs.K/K and

CVN = σcs.N/N (assuming cluster sizes follow a gamma distribution as outlined in Web Appendix E). Using this
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methodology we estimate CVK = 0.69 and CVN = 0.79. In the design of this study, investigators aimed to detect

a prevalence ratio of 0.7 and assumed a baseline prevalence of 0.05. Because the outcome is rare, we assume the

effect size expressed as an odds ratio can be approximated by the prevalence ratio, and obtain the required number

of LHJs (I) to achieve at least 80% power for a two-sided 5% test. Without distinguishing between clusters and

subclusters, Li et al. (2021) estimated the within-period ICC to be 0.007 and the between-period ICC to be 0.004

based on marginal models. We consider these values to be the within-period between-clinic and between-period

within-clinic ICCs such that ρ0 = 0.007 and α1 = 0.004, and set the remaining ICCs to be α0 = 0.008 and ρ1 = 0.0035

(corresponding to a CAC of 0.5). We also assume a slightly decreasing time effect as in our simulations. Using the

variance algorithm for unequal cluster sizes and power formula we found that including I = 20 clusters gives us

88.5% power. To assess the sensitivity of our predicted power to CV specification, we looked at power trends for

varying CVK ∈ {0.5, 0.6, 0.7, 0.8, 0.9} and CVN ∈ {0.6, 0.7, 0.8, 0.9, 1.0}. The results of our sensitivity analysis are

shown in Web Table 12, we found that the predicted power varied between 83.3% and 91.1% which is still within

our goal of at least 80% power. Further, there appears to be a non-monotone relationship between the CVs and

power. In some cases higher CVs are associated with higher power and in some cases higher CVs are associated

with lower power. Understanding the complex relationship between the CVs and power is beyond the scope of this

study and we leave this open for future exploration.

Web Appendix L

We extend the methodology used in Li et al. (2018b) for Gaussian and non-Gaussian outcomes under a GEE

framework in SW-CRTs without subclusters. Let Yijkl be the outcome of interest for individual l = 1, . . . , Nijk

nested in subcluster k = 1, . . . ,Kij nested in cluster i = 1, . . . , I during period j = 1, . . . , T . For simplicity, we

assume Nijk = N and Kij = K for all i, j, and k. The mean model is given by

µ̃ijkl = g
−1(η̃ijkl) = g

−1(βj + δXij), (22)

where g is a link function, βj represents the categorical secular trend, Xij is the intervention status for cluster i

at period j (equal to 1 if exposed under intervention and 0 otherwise), and δ is the intervention effect of interest

on the link function scale. We define the variance of the outcome as ϕζ(µ̃ijkl), where ϕ is a common dispersion

and ζ(µ̃ijkl) is the variance function. For example, the variance function of a binary outcome is parameterized

as ζ(µ̃ijkl) = µ̃ijkl(1 − µ̃ijkl). Without loss of generality, we assume ϕ = 1 but the following procedure applies

to arbitrary ϕ > 0. We define the covariance matrix under the GEE framework as Mi = A
1/2
i RiA

1/2
i where

Ai is a TKN × TKN diagonal matrix with elements ζ(µ̃ijkl) and Ri is the TKN × TKN extended block ex-

changeable correlation matrix as shown under Gaussian outcomes. Using the model-based variance matrix, var(δ̂)

is the lower-right corner element of ϕ (∑I
i=1 D

⊤
i M

−1
i Di)

−1
where Di = ∂g

−1(η̃i)/∂θ⊤
with η̃i = {η̃i111, . . . , η̃iTKN}.
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For example, if we have a binary outcome and our link function is the canonical logit, then Ai is a diagonal matrix

with elements exp(η̃ijkl)/{1+exp(η̃ijkl)}2 and Di = AiZi where Zi = (IT ,Xi)⊗1KN and Xi is the randomization

schedule for cluster i. The model-based variance of our treatment effect, var(δ̂), is then the lower-right corner

element of

ϕ(
I

∑
i=1

D
⊤
i M

−1
i Di)

−1

= ϕ(
I

∑
i=1

Z
⊤
i AiA

−1/2
i R

−1
i A

−1/2
i AiZi)

−1

= ϕ(
I

∑
i=1

Z
⊤
i WiZi)

−1

,

where Wi = A
1/2
i R

−1
i A

1/2
i which is equivalent to

var(δ̂) = ϕ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

I

∑
i=1

H
⊤
i WiHi − (

I

∑
i=1

H
⊤
i Wi)F (

I

∑
i=1

F
⊤
WiF)

−1

F
⊤ (

I

∑
i=1

WiHi)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

−1

,

where Hi = Xi ⊗ 1KN and F = IT ⊗ 1KN and requires an algorithm to compute due to Wi being cluster-specific.

Using cluster-period means

We can simplify our GEE approach and decrease computation time by using cluster-period means (Tian et al.,

2021). Under this approach, the model-based variance of our treatment effect, var(δ̂), is the lower-right corner

element of ϕ (∑I
i=1 D

⊤

i M̃
−1
i Di)

−1
where Di = ∂g

−1(η̃i)/∂θ⊤
with η̃i = {η̃i1, . . . , η̃iT } and M̃i is the covariance

matrix for Y i = (Y i1, . . . , Y iT )⊤. Here, M̃i = Ã
1/2
i R̃iÃ

1/2
i where Ãi is a T × T diagonal matrix with elements

ζ(µ̃ij11)/(KN) and R̃i is a T × T working correlation matrix for the cluster-period means given by

R̃i =
1 − α2 + (N − 1)(α0 − α1) +N(K − 1)(ρ0 − ρ1)

KN
IT +

α2 + (N − 1)α1 +N(K − 1)ρ1
KN

JT ,

which is an exchangeable matrix with diagonal elements {1 + (N − 1)α0 + N(K − 1)ρ0}/(KN) and off-diagonal

elements {α2 + (N − 1)α1 + N(K − 1)ρ1}/(KN). Re-writing R̃i in terms of the eigenvalues (Web Table 1) and

using equation (1) we have

R̃
−1
i =

KN

λ3
IT −

KN(λ6 − λ3)
Tλ3λ6

JT .

Therefore, var(δ̂) will depend on the ICCs through two eigenvalues of the extended block exchangeable correlation

matrix; the same two eigenvalues found under Gaussian outcomes.
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For example, if we have a binary outcome and our link function is the canonical logit, then Ãi is a diagonal matrix

with elements exp(η̃ij11)/[KN{1+exp(η̃ij11)}2] andDi = ÃiZ2i with Z2i = (IT ,Xi). The model-based variance of

our treatment effect, var(δ̂), is then the lower-right corner element of ϕ (∑I
i=1 Z

⊤
2iW̃iZ2i)

−1
with W̃i = Ã

1/2
i R̃

−1
i Ã

1/2
i

which is equal to

var(δ̂) = ϕ{
I

∑
i=1

X
⊤
i W̃iXi − (

I

∑
i=1

X
⊤
i W̃i)(

I

∑
i=1

W̃i)
−1

(
I

∑
i=1

W̃iXi)}
−1

.
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Web Appendix M: Web Figures
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Figure 1: Contour plots illustrating the relationship between intracluster correlation coefficients (ICCs) and var(δ̂)
for binary outcomes with canonical logit link. ICCs include: within-period within-subcluster α0; between-period
within-subcluster α1; within-period between-subcluster ρ0; between-period between-subcluster ρ1; and within-
subject auto-correlation α2. Various α0 specifications are shown on the y-axis and various ρ0 specifications are
shown on the x-axis as a ratio of α0. Between-period specifications are denoted by the cluster auto-correlation
coefficient (CAC). Darker colors correspond to higher values of variance.
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Figure 2: Contour plots illustrating the relationship between intracluster correlation coefficients (ICCs) and power
in our application study of the Washington State Expedited Partner Therapy trial. ICCs include: within-period
within-subcluster α0; between-period within-subcluster α1; within-period between-subcluster ρ0; and between-
period between-subcluster ρ1. Various α0 specifications are shown on the y-axis and various ρ0 specifications are
shown on the x-axis as a ratio of α0. Between-period specifications are denoted by the cluster auto-correlation
coefficient (CAC). Time effects {−0.01,−0.1,−1} correspond to βj − βj+1 = {0.01, 0.1, 1} × (0.5)j−1 for j ≥ 1.
Darker colors correspond to higher values of power.
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Figure 3: Contour plots illustrating the relationship between intracluster correlation coefficients (ICCs) and power in
our application study of the Lumbar Imaging with Reporting of Epidemiology trial assuming a closed-cohort design
at the subcluster and subject levels. ICCs include: within-period within-subcluster α0; between-period within-
subcluster α1; within-period between-subcluster ρ0; between-period between-subcluster ρ1; and within-subject auto-
correlation α2. Various α0 specifications are shown on the y-axis and various ρ0 specifications are shown on the
x-axis as a ratio of α0. Between-period specifications are denoted by the cluster auto-correlation coefficient (CAC).
Darker colors correspond to higher values of power.
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Figure 4: Contour plots illustrating the relationship between intracluster correlation coefficients (ICCs) and power in
our application study of the Lumbar Imaging with Reporting of Epidemiology trial assuming a cross-sectional design
at the subcluster and subject levels. ICCs include: within-period within-subcluster α0; within-period between-
subcluster ρ0; and between-period between-subcluster ρ1. Various α0 specifications are shown on the y-axis and
various ρ0 specifications are shown on the x-axis as a ratio of α0. Between-period specifications are denoted by the
cluster auto-correlation coefficient (CAC). Darker colors correspond to higher values of power.
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Figure 5: Contour plots illustrating the relationship between intracluster correlation coefficients (ICCs) and power in
our application study of the Washington State Expedited Partner Therapy trial assuming closed-cohort design at the
subcluster and subject levels. ICCs include: within-period within-subcluster α0; between-period within-subcluster
α1; within-period between-subcluster ρ0; between-period between-subcluster ρ1; and within-subject auto-correlation
α2. Various α0 specifications are shown on the y-axis and various ρ0 specifications are shown on the x-axis as a
ratio of α0. Between-period specifications are denoted by the cluster auto-correlation coefficient (CAC). Time effects

{−0.01,−0.1} correspond to βj − βj+1 = {0.01, 0.1} × (0.5)j−1 for j ≥ 1. Darker colors correspond to higher values
of power.
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Figure 6: Contour plots illustrating the relationship between intracluster correlation coefficients (ICCs) and power in
our application study of the Washington State Expedited Partner Therapy trial assuming a cross-sectional design at
subcluster and subject levels. ICCs include: within-period within-subcluster α0; within-period between-subcluster
ρ0; and between-period between-subcluster ρ1. Various α0 specifications are shown on the y-axis and various ρ0
specifications are shown on the x-axis as a ratio of α0. Between-period specifications are denoted by the cluster
auto-correlation coefficient (CAC). Time effects {−0.01,−0.1,−1} correspond to βj −βj+1 = {0.01, 0.1, 1}× (0.5)j−1
for j ≥ 1. Darker colors correspond to higher values of power.
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Web Appendix N: Web Tables

Table 1: Eigenvalues (λ) expressed as functions of intracluster correlation coefficients (ICCs): within-period
within-subcluster (α0), between-period within-subcluster (α1), within-subject auto-correlation (α2), within-period
between-subcluster (ρ0), and between-period between-subcluster (ρ1) under each design variant: (A) Closed-cohort
design at both the subcluster and subject levels, (B) Closed-cohort design on the subcluster level but a cross-
sectional design at the subject level, and (C) Cross-sectional design at both the subcluster and subject level with
T periods, K subclusters per cluster, and N subjects per subcluster.

Multiplicity Eigenvalue expression by design variant

λ1

(T − 1)K(N − 1) (A) 1 − α0 − α2 + α1

(B) 1 − α0TK(N − 1)
(C) 1 − α0

λ2
(T − 1)(K − 1) (A) 1 − α0 − α2 + α1 +N(α0 − α1 − ρ0 + ρ1)

(B) 1 − α0 +N(α0 − α1 − ρ0 + ρ1)
T (K − 1) (C) 1 − α0 +N(α0 − ρ0)

λ3 T − 1
(A) 1 − α0 − α2 + α1 +N{α0 − α1 + (K − 1)(ρ0 − ρ1)}
(B) 1 − α0 +N{α0 − α1 + (K − 1)(ρ0 − ρ1)}
(C) 1 − α0 +N{α0 + (K − 1)ρ0 −Kρ1}

λ4

K(N − 1) (A) 1 − α0 + (T − 1)(α2 − α1)
(B) 1 − α0 = λ1

(C) 1 − α0 = λ1

λ5
K − 1

(A) 1 − α0 + (T − 1)(α2 − α1) +N{α0 − ρ0 + (T − 1)(α1 − ρ1)}
(B) 1 − α0 +N{α0 − ρ0 + (T − 1)(α1 − ρ1)}
(C) 1 − α0 +N(α0 − ρ0) = λ2

λ6 1
(A) 1 − α0 + (T − 1)(α2 − α1) +N[α0 + (T − 1)α1 + (K − 1){ρ0 + (T − 1)ρ1}]
(B) 1 − α0 +N[α0 + (T − 1)α1 + (K − 1){ρ0 + (T − 1)ρ1}]
(C) 1 − α0 +N{α0 + (K − 1)ρ0 + (T − 1)Kρ1}

Table 2: Design constants under stepped wedge (SW), parallel longitudinal (Parallel), and repeated crossover (CXO)
cluster randomized trial designs for a given number of periods (T ).

SW Parallel CXO
T tr(Ω) τX tr(Ω) τX tr(Ω) τX
4 0.44 0.17 0.89 1.00 0.89 -0.33
5 0.63 0.25 1.25 1.00 1.25 -0.20
6 0.80 0.30 1.44 1.00 1.44 -0.20
7 0.97 0.33 1.75 1.00 1.75 -0.14
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Table 3: Predicted power (Predicted) obtained from sample size formula (correctly specifying CAC=0.5) compared
to predicted power (Naive) assuming equal within- and between-period ICCs (incorrectly assuming CAC=1) for
given effect size δ/σ, number of clusters I, subclusters per cluster K, participants per subcluster N , periods T ,
within-period intracluster correlations for within- and between-subcluster (α0, ρ0), and between-period intracluster
correlations for within- and between-subcluster (α1, ρ1) assuming a cluster autocorrelation of 0.5, when outcome is
Gaussian.

δ/σ (α0, ρ0) (α1, ρ1) I K N T Predicted Naive

0.1
(0.03, 0.0075) (0.015, 0.00375) 24 6 15 7 85.3 93.9

30 6 15 4 82.2 84.5
(0.01, 0.0025) (0.005, 0.00125)

24 5 10 7 81.4 81.0

0.2

(0.1, 0.025) (0.05, 0.0125)
24 6 10 4 83.3 98.5
18 3 12 7 81.8 97.0
18 3 15 4 80.0 86.8

(0.03, 0.0075) (0.015, 0.00375)
15 3 10 6 80.8 84.2

(0.01, 0.0025) (0.005, 0.00125)
12 6 10 4 82.6 83.5
10 4 10 6 80.0 79.7

0.25

(0.1, 0.025) (0.05, 0.0125)
21 4 10 4 84.6 97.6
18 2 10 7 83.5 95.1
15 4 8 4 81.4 84.9

(0.03, 0.0075) (0.015, 0.00375)
12 2 10 7 80.2 82.5

(0.01, 0.0025) (0.005, 0.00125)
24 2 8 4 84.3 84.2
10 3 9 6 83.6 82.9

0.35

(0.1, 0.025) (0.05, 0.0125)
12 4 9 4 83.2 96.4
10 3 8 6 82.9 94.3
9 3 12 4 83.5 88.1

(0.03, 0.0075) (0.015, 0.00375)
16 2 5 5 84.0 84.2

(0.01, 0.0025) (0.005, 0.00125)
9 3 9 4 82.9 83.0
8 3 7 5 80.0 79.5

0.4

(0.1, 0.025) (0.05, 0.0125)
18 2 7 4 86.2 93.9
12 2 8 5 82.0 92.2
9 3 8 4 82.5 85.1

(0.03, 0.0075) (0.015, 0.00375)
8 3 7 5 83.5 85.0

(0.01, 0.0025) (0.005, 0.00125)
15 2 5 4 83.3 83.0
12 2 5 5 85.1 84.6

0.5
(0.1, 0.025) (0.05, 0.0125)

12 2 7 4 84.7 92.9
12 2 4 5 82.5 87.0

(0.03, 0.0075) (0.015, 0.00375) 9 2 8 4 85.4 87.1
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Table 4: Predicted power (Predicted) obtained from sample size formula (correctly specifying CAC=0.5) compared
to predicted power (Naive) assuming equal within- and between-period ICCs (incorrectly assuming CAC=1) for
given effect size exp(δ), number of clusters I, subclusters per cluster K, participants per subcluster N , periods T ,
within-period intracluster correlations for within- and between-subcluster (α0, ρ0), and between-period intracluster
correlations for within- and between-subcluster (α1, ρ1) assuming a cluster autocorrelation of 0.5, when outcome is
binary with canonical logit link.

exp(δ) (α0, ρ0) (α1, ρ1) I K N T Predicted Naive

0.8
(0.03, 0.0075) (0.015, 0.00375) 18 6 15 7 80.7 88.0

27 6 15 4 84.2 85.4
(0.01, 0.0025) (0.005, 0.00125)

25 4 12 6 81.0 80.4

0.75

(0.1, 0.025) (0.05, 0.0125)
25 6 15 6 82.8 98.6
24 5 15 7 83.1 98.2
27 5 12 4 80.6 85.4

(0.03, 0.0075) (0.015, 0.00375)
30 3 10 6 83.3 84.9

(0.01, 0.0025) (0.005, 0.00125)
21 6 10 4 80.5 80.9
12 4 15 7 81.5 81.1

0.7

(0.1, 0.025) (0.05, 0.0125)
30 5 14 4 82.3 97.4
18 4 15 7 81.7 97.0
18 6 10 4 80.6 85.1

(0.03, 0.0075) (0.015, 0.00375)
15 3 15 6 81.2 85.3

(0.01, 0.0025) (0.005, 0.00125)
18 4 12 4 82.3 82.6
20 2 15 5 81.8 81.5

0.65

(0.1, 0.025) (0.05, 0.0125)
21 6 12 4 83.6 97.6
18 3 12 7 84.1 95.3
24 3 10 4 85.0 87.1

(0.03, 0.0075) (0.015, 0.00375)
20 2 10 6 83.7 84.5

(0.01, 0.0025) (0.005, 0.00125)
15 4 10 4 82.7 82.8
12 3 14 5 85.2 85.0

0.6

(0.1, 0.025) (0.05, 0.0125)
18 5 10 4 82.3 95.1
12 3 15 7 82.8 96.4
16 2 12 5 83.9 85.8

(0.03, 0.0075) (0.015, 0.00375)
15 2 10 6 84.0 84.9

(0.01, 0.0025) (0.005, 0.00125)
21 2 10 4 85.5 85.3
12 3 8 5 80.0 79.4

0.5
(0.1, 0.025) (0.05, 0.0125)

15 3 10 4 83.2 93.3
16 2 9 5 82.5 90.4

(0.03, 0.0075) (0.015, 0.00375) 15 2 9 4 84.1 85.3
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Table 5: Estimated required number of clusters I, subclusters per cluster K, participants per subcluster N , pe-
riods T , empirical type I error (Test Size), empirical power (Empirical), and predicted power (Predicted) ob-
tained from sample size formula for given effect size δ/σ, within-period intracluster correlations for within- and
between-subcluster (α0, ρ0), and between-period intracluster correlations for within- and between-subcluster (α1,
ρ1) assuming a cluster autocorrelation of 0.5, when outcome is Gaussian using (unrestricted) maximum likelihood
(n=1000).

δ/σ (α0, ρ0) (α1, ρ1) I K N T Test Size Empirical Predicted

0.1
(0.03, 0.0075) (0.015, 0.00375) 24 6 15 7 3.8 89.2 85.3

30 6 15 4 5.1 82.9 82.2
(0.01, 0.0025) (0.005, 0.00125)

24 5 10 7 4.6 83.5 81.4

0.2

(0.1, 0.025) (0.05, 0.0125)
24 6 10 4 5.5 86.4 83.3
18 3 12 7 4.1 85.2 81.8
18 3 15 4 3.5 82.8 80.0

(0.03, 0.0075) (0.015, 0.00375)
15 3 10 6 4.6 82.7 80.8

(0.01, 0.0025) (0.005, 0.00125)
12 6 10 4 3.5 84.5 82.6
10 4 10 6 2.9 81.9 80.0

0.25

(0.1, 0.025) (0.05, 0.0125)
21 4 10 4 6.0 85.0 84.6
18 2 10 7 5.2 84.6 83.5
15 4 8 4 3.1 84.3 81.4

(0.03, 0.0075) (0.015, 0.00375)
12 2 10 7 4.1 82.8 80.2

(0.01, 0.0025) (0.005, 0.00125)
24 2 8 4 4.5 84.1 84.3
10 3 9 6 2.0 85.9 83.6

0.35

(0.1, 0.025) (0.05, 0.0125)
12 4 9 4 3.5 87.0 83.2
10 3 8 6 2.6 86.5 82.9
9 3 12 4 3.1 87.4 83.5

(0.03, 0.0075) (0.015, 0.00375)
16 2 5 5 3.3 88.2 84.0

(0.01, 0.0025) (0.005, 0.00125)
9 3 9 4 2.7 84.8 82.9
8 3 7 5 2.2 81.5 80.0

0.4

(0.1, 0.025) (0.05, 0.0125)
18 2 7 4 3.5 89.2 86.2
12 2 8 5 4.1 83.2 82.0
9 3 8 4 1.7 84.1 82.5

(0.03, 0.0075) (0.015, 0.00375)
8 3 7 5 1.7 87.1 83.5

(0.01, 0.0025) (0.005, 0.00125)
15 2 5 4 3.5 82.0 83.3
12 2 5 5 1.9 87.6 85.1

0.5
(0.1, 0.025) (0.05, 0.0125)

12 2 7 4 4.1 84.3 84.7
12 2 4 5 3.7 86.8 82.5

(0.03, 0.0075) (0.015, 0.00375) 9 2 8 4 2.0 89.2 85.4
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Table 6: Estimated required number of clusters I, average number of subclusters per cluster K, average number
of participants per subcluster N , periods T , empirical type I error (Test Size), empirical power (Empirical), and
predicted power (Predicted) obtained from sample size formula for given effect size δ/σ, within-period intracluster
correlations for within- and between-subcluster (α0, ρ0), between-period intracluster correlations for within- and
between-subcluster (α1, ρ1) assuming a cluster autocorrelation of 0.5, coefficient of variation on the subcluster level
CVK , and coefficient of variation on the subject level CVN , when outcome is Gaussian (n=1000).

δ/σ (α0, ρ0) (α1, ρ1) I K N T CVK CVN Test Size Empirical Predicted

0.1 (0.03, 0.0075) (0.015, 0.00375) 24 6 15 7

0 0 3.6 88.2 85.3
0 0.25 3.6 85.0 84.2
0 0.5 4.0 83.2 82.0
0 0.75 3.7 83.9 80.4
0 1.0 5.3 78.0 78.8

0.25 0 3.8 84.2 82.3
0.25 0.25 5.0 82.4 80.9
0.25 0.5 5.1 80.7 79.7
0.25 0.75 3.4 79.3 78.4
0.25 1.0 4.4 75.7 75.3
0.5 0 4.6 80.3 81.1
0.5 0.25 4.9 79.6 77.8
0.5 0.5 4.1 77.1 78.8
0.5 0.75 4.5 77.2 77.2
0.5 1.0 3.7 76.9 74.5

0.2 (0.03, 0.0075) (0.015, 0.00375) 15 3 10 6

0 0 4.0 81.1 80.8
0 0.25 2.8 80.5 78.8
0 0.5 2.9 76.2 77.2
0 0.75 3.4 73.4 77.8
0 1.0 3.1 74.6 75.7

0.25 0 3.4 74.2 74.0
0.25 0.25 4.1 72.5 72.5
0.25 0.5 3.2 73.1 71.4
0.25 0.75 4.1 69.8 72.7
0.25 1.0 4.2 67.9 65.2
0.5 0 3.9 76.8 76.8
0.5 0.25 4.0 72.5 73.6
0.5 0.5 3.6 73.7 76.4
0.5 0.75 3.4 70.7 70.9
0.5 1.0 2.6 72.2 70.3
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Table 7: Estimated required number of clusters I, average number of subclusters per cluster K, average number
of participants per subcluster N , periods T , empirical type I error (Test Size), empirical power (Empirical), and
predicted power (Predicted) obtained from sample size formula for given effect size δ/σ, within-period intracluster
correlations for within- and between-subcluster (α0, ρ0), between-period intracluster correlations for within- and
between-subcluster (α1, ρ1) assuming a cluster autocorrelation of 0.5, coefficient of variation on the subcluster level
CVK , and coefficient of variation on the subject level CVN , when outcome is Gaussian (n=1000). (Continued)

δ/σ (α0, ρ0) (α1, ρ1) I K N T CVK CVN Test Size Empirical Predicted

0.4 (0.01, 0.0025) (0.005, 0.00125) 12 2 5 5

0 0 1.8 85.4 85.1
0 0.25 2.8 81.8 82.3
0 0.5 1.9 81.9 79.4
0 0.75 2.3 83.3 85.5
0 1.0 2.2 84.0 87.0

0.25 0 2.2 86.1 85.1
0.25 0.25 2.1 79.5 82.1
0.25 0.5 3.0 80.3 84.7
0.25 0.75 2.6 82.9 82.3
0.25 1.0 1.8 84.0 84.9
0.5 0 1.7 88.1 87.6
0.5 0.25 3.4 83.4 84.7
0.5 0.5 2.5 83.2 84.5
0.5 0.75 1.9 86.9 86.9
0.5 1.0 2.4 86.8 88.7

0.5 (0.1, 0.025) (0.05, 0.0125) 12 2 7 4

0 0 3.3 82.6 84.7
0 0.25 2.8 82.6 83.0
0 0.5 3.6 80.6 80.4
0 0.75 3.2 81.4 80.8
0 1.0 3.0 78.6 81.4

0.25 0 2.5 85.3 86.0
0.25 0.25 3.8 83.7 82.2
0.25 0.5 2.5 83.8 80.7
0.25 0.75 2.3 82.8 79.3
0.25 1.0 3.4 80.4 82.3
0.5 0 2.5 88.2 87.7
0.5 0.25 2.6 86.8 86.5
0.5 0.5 3.9 83.0 81.9
0.5 0.75 3.7 83.8 83.3
0.5 1.0 3.4 83.8 83.2
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Table 8: Estimated required number of clusters I, subclusters per cluster K, participants per subcluster N , peri-
ods T , empirical type I error (Test Size), empirical power (Empirical), and predicted power (Predicted) obtained
from sample size formula for given effect size exp(δ), within-period intracluster correlations for within- and between-
subcluster (α0, ρ0), and between-period intracluster correlations for within- and between-subcluster (α1, ρ1) assum-
ing a cluster autocorrelation of 0.5, when outcome is binary with canonical logit link using penalized quasi-likelihood
(n=1000).

exp(δ) (α0, ρ0) (α1, ρ1) I K N T Test Size Empirical Predicted

0.8
(0.03, 0.0075) (0.015, 0.00375) 18 6 15 7 4.4 82.1 80.7

27 6 15 4 5.5 85.5 84.2
(0.01, 0.0025) (0.005, 0.00125)

25 4 12 6 2.8 81.9 81.0

0.75

(0.1, 0.025) (0.05, 0.0125)
25 6 15 6 4.9 85.0 82.8
24 5 15 7 4.5 87.0 83.1
27 5 12 4 5.2 83.2 80.6

(0.03, 0.0075) (0.015, 0.00375)
30 3 10 6 5.0 83.8 83.3

(0.01, 0.0025) (0.005, 0.00125)
21 6 10 4 2.7 81.9 80.5
12 4 15 7 2.4 85.1 81.5

0.7

(0.1, 0.025) (0.05, 0.0125)
30 5 14 4 3.9 81.6 82.3
18 4 15 7 4.0 86.1 81.7
18 6 10 4 4.6 82.4 80.6

(0.03, 0.0075) (0.015, 0.00375)
15 3 15 6 4.5 83.3 81.2

(0.01, 0.0025) (0.005, 0.00125)
18 4 12 4 3.8 83.4 82.3
20 2 15 5 4.1 81.8 81.8

0.65

(0.1, 0.025) (0.05, 0.0125)
21 6 12 4 4.1 87.7 83.6
18 3 12 7 3.8 87.0 84.1
24 3 10 4 4.7 86.4 85.0

(0.03, 0.0075) (0.015, 0.00375)
20 2 10 6 3.2 86.1 83.7

(0.01, 0.0025) (0.005, 0.00125)
15 4 10 4 2.6 85.4 82.7
12 3 14 5 3.2 85.9 85.2

0.6

(0.1, 0.025) (0.05, 0.0125)
18 5 10 4 3.4 84.6 82.3
12 3 15 7 4.6 87.6 82.8
16 2 12 5 4.6 85.6 83.9

(0.03, 0.0075) (0.015, 0.00375)
15 2 10 6 3.8 86.9 84.0

(0.01, 0.0025) (0.005, 0.00125)
21 2 10 4 3.9 84.4 85.5
12 3 8 5 2.5 81.9 80.0

0.5
(0.1, 0.025) (0.05, 0.0125)

15 3 10 4 2.6 86.3 83.2
16 2 9 5 3.3 83.5 82.5

(0.03, 0.0075) (0.015, 0.00375) 15 2 9 4 2.6 88.3 84.1
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Table 9: Estimated required number of clusters I, average number of subclusters per cluster K, average number
of participants per subcluster N , periods T , empirical type I error (Test Size), empirical power (Empirical), and
predicted power (Predicted) obtained from sample size formula for given effect size exp(δ), within-period intracluster
correlations for within- and between-subcluster (α0, ρ0), between-period intracluster correlations for within- and
between-subcluster (α1, ρ1) assuming a cluster autocorrelation of 0.5, coefficient of variation on the subcluster
level CVK , and coefficient of variation on the subject level CVN , when outcome is binary with canonical logit link
(n=1000).

exp(δ) (α0, ρ0) (α1, ρ1) I K N T CVK CVN Test Size Empirical Predicted

0.8 (0.03, 0.0075) (0.015, 0.00375) 18 6 15 7

0 0 4.2 82.2 80.7
0 0.25 4.2 81.9 79.2
0 0.5 5.4 81.0 78.5
0 0.75 4.8 80.7 75.7
0 1.0 5.3 76.2 73.2

0.25 0 4.0 77.6 77.1
0.25 0.25 4.5 76.7 76.5
0.25 0.5 3.6 77.8 77.0
0.25 0.75 4.9 76.9 73.9
0.25 1.0 3.9 72.3 68.9
0.5 0 5.3 80.8 75.5
0.5 0.25 4.1 80.1 74.1
0.5 0.5 5.4 74.6 75.0
0.5 0.75 5.4 73.5 74.1
0.5 1.0 4.4 74.4 67.2

0.75 (0.03, 0.0075) (0.015, 0.00375) 30 3 10 6

0 0 5.2 84.0 83.3
0 0.25 3.8 81.8 80.9
0 0.5 4.9 80.9 80.6
0 0.75 4.9 80.9 78.3
0 1.0 5.3 78.6 79.0

0.25 0 3.2 79.8 77.2
0.25 0.25 3.4 75.9 74.7
0.25 0.5 5.7 74.6 75.6
0.25 0.75 5.9 72.3 73.1
0.25 1.0 3.6 74.6 72.4
0.5 0 4.4 82.4 80.4
0.5 0.25 4.1 79.8 77.9
0.5 0.5 4.9 79.7 74.1
0.5 0.75 3.6 75.4 75.0
0.5 1.0 4.1 75.7 75.1
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Table 10: Estimated required number of clusters I, average number of subclusters per cluster K, average number
of participants per subcluster N , periods T , empirical type I error (Test Size), empirical power (Empirical), and
predicted power (Predicted) obtained from sample size formula for given effect size exp(δ), within-period intracluster
correlations for within- and between-subcluster (α0, ρ0), between-period intracluster correlations for within- and
between-subcluster (α1, ρ1) assuming a cluster autocorrelation of 0.5, coefficient of variation on the subcluster
level CVK , and coefficient of variation on the subject level CVN , when outcome is binary with canonical logit link
(n=1000). (Continued)

exp(δ) (α0, ρ0) (α1, ρ1) I K N T CVK CVN Test Size Empirical Predicted

0.65 (0.01, 0.0025) (0.005, 0.00125) 12 3 14 5

0 0 3.1 85.4 85.2
0 0.25 3.8 85.5 83.8
0 0.5 2.7 83.5 82.1
0 0.75 2.4 81.8 80.7
0 1.0 2.1 79.7 81.7

0.25 0 1.8 79.5 80.2
0.25 0.25 3.4 76.8 76.1
0.25 0.5 3.3 78.2 80.5
0.25 0.75 3.8 74.7 74.1
0.25 1.0 3.9 73.9 74.9
0.5 0 4.1 82.6 82.1
0.5 0.25 2.5 80.8 81.2
0.5 0.5 2.5 79.1 80.1
0.5 0.75 3.3 76.6 82.7
0.5 1.0 2.1 75.5 79.4

0.5 (0.1, 0.025) (0.05, 0.0125) 15 3 10

4

0 0 3.0 86.9 83.2
0 0.25 5.1 83.8 81.2
0 0.5 3.9 83.5 80.7
0 0.75 2.8 83.0 78.5
0 1.0 3.9 80.2 75.6

0.25 0 4.4 80.9 78.1
0.25 0.25 3.7 80.7 78.2
0.25 0.5 3.6 75.7 75.0
0.25 0.75 5.1 76.6 68.4
0.25 1.0 4.3 73.8 74.7
0.5 0 5.2 81.7 79.9
0.5 0.25 3.7 81.6 77.9
0.5 0.5 4.3 81.5 76.3
0.5 0.75 3.4 75.4 77.7
0.5 1.0 5.8 78.4 76.3
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Table 11: Predicted power for the LIRE trial obtained from sample size formula for given between-cluster size
imbalances measured by the coefficient of variation on the primary care provider level CVK and subject level CVN .

Predicted Power
CVN = 0.9 CVN = 1.0 CVN = 1.1 CVN = 1.2 CVN = 1.3

CVK = 0.8 89.1 88.4 87.5 86.4 85.9
CVK = 0.9 88.6 87.8 87.0 86.4 85.4
CVK = 1.0 88.5 87.7 87.0 86.0 84.9
CVK = 1.1 87.7 87.2 85.0 84.5 83.2
CVK = 1.2 87.4 86.6 84.8 83.9 83.1

Table 12: Predicted power for the Washington EPT Study obtained from sample size formula for given between-
cluster size imbalances measured by the coefficient of variation on the clinic level CVK and subject level CVN .

Predicted Power
CVN = 0.6 CVN = 0.7 CVN = 0.8 CVN = 0.9 CVN = 1.0

CVK = 0.5 83.3 86.9 86.2 86.2 85.0
CVK = 0.6 88.9 89.9 88.9 88.1 87.6
CVK = 0.7 88.8 89.3 88.3 86.5 85.9
CVK = 0.8 88.9 89.5 88.5 86.7 86.1
CVK = 0.9 86.0 90.6 91.1 89.7 89.2
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