Supplementary Information

Supplementary Methods

General experimental procedures. HPLC was performed using a Thermo Scientific Dionex UltiMate 3000 HPLC system equipped with a diode array detector (DAD). LC-HRMS analysis was carried out on a Q-ExactiveTM Focus Hybrid Quadrupole Orbitrap Mass Spectrometer coupled to a Thermo Scientific Dionex UltiMate 3000 UHPLC system with a multiple wavelength detector. NMR spectra were recorded on a Bruker Avance III HD 800 MHz NMR spectrometer in dimethyl sulfoxide-d₆. Polymerase chain reaction (PCR) was performed on a Bio-Rad T100TM Thermal Cycler. The UV-vis spectrum was recorded on a Lamda750S spectrometer (PerkinElmer). Electroporation was carried out using mode Ec2 (2.5 kV) on a Bio-Rad (USA) MicroPulser Electroporator.

Chemicals and biochemicals. All chemicals and biochemicals were obtained from commercial sources and used without further purification unless otherwise specified. ACS/HPLC certified MeCN and MeOH were purchased from J&K Scientific (Beijing, China). Watsons water (distilled) was used as the LC and LC-MS analysis. Antibiotics (kanamycin for pRSFDuet and pET-28a(+) plasmids, ampicillin for pETDuet plasmid) were provided by Sangon Biotech (Shanghai, China). Phanta[®] Max Super-Fidelity DNA Polymerase was purchased from Vazyme Biotech (Nanjing, China). KOD OneTM PCR Master Mix was ordered from TOYOBO Biotech (Japan). Restriction enzymes were purchased from Takara Biotech (Dalian, China) or New England Biolabs (NEB, USA). Ni NTA beads were purchased from Smart lifesciences (Changzhou, China). Regular chemical reagents were ordered from Sinopharm Co. Ltd (Beijing, China). Culture media such as tryptone and yeast extract were brought from the Oxoid Inc. (Thermo Fisher Scientific, USA). Trypsin protease ($\geq 7,500$ BAEE units/mg solid) was purchased from Sigma-Aldrich (USA). S-adenosyl-L-methionine (SAM) was supplied by Macklin Inc. (Shanghai, China). H₂¹⁸O containing at least 98 atom % O-18 was purchased from Meryer (Shanghai) Chemical Technology Co., Ltd. Isopropyl B-D-thiogalactopyranoside (IPTG) was acquired from Sangon Biotech. Molecular biology kits including DNA purification kit, plasmid mini preparation kit, ClonExpress II one step cloning kit, ClonExpress MultiS One Step Cloning Kit, Mut Express II fast mutagenesis kit, and Bradford assay kit were brought from CWbio Co. Ltd (Beijing, China), TIANGEN Biotech (Beijing, China), and Vazyme Biotech. Chemically-competent E. coli cells comprising DH5a, BL21(DE3), and BL21 Star (DE3) were purchased from Vazyme Biotech. For desalting of proteins or fusion precursor peptides, PD-10 Minitrap G-25 columns (GE Healthcare, USA) were used. Synthetic genes inserted into expression vectors were obtained from Genewiz Co. Ltd (Suzhou, China). The constructed plasmids were verified by Sanger sequencing analysis offered by Genewiz Co. Ltd and Sangon Biotech. All oligonucleotide primers were purchased from Genewiz Co. Ltd and Sangon Biotech. Solid-phase peptide synthesis of $DarA_{pk}$ was offered by Sangon Biotech.

Culture media. All bacterial strains used in this study were grown in lysogeny broth (LB) medium at 37 °C and maintained in glycerol stocks (20% v/v) at - 80 °C. The LB medium was prepared with 10 g/L tryptone, 5 g/L yeast extract, and 5 g/L NaCl, and supplemented with 50 mg/L kanamycin or/and 100 mg/L ampicillin

when required for the purpose of selection. The terrific broth (TB) medium was made as follows: add 900 mL of water to 24 g yeast extract, 20 g tryptone, and 4 mL glycerol. Prepare 100 mL phosphate buffer (0.17 M KH₂PO₄, 0.72 M K₂HPO₄). Sterilize the respective solutions by autoclaving separately and allow the solution to cool to about 60 °C, prior to mixing them vigorously.

Plasmid construction. Coexpression of precursor peptide and the modifying rSAM enzymes were performed in a way similar to a recent study.⁴ Synthetic $darA_{pk}$ and $darE_{pk}$ genes from *Photorhabdus khanii* HGB1456 were inserted into the first multiple cloning site (MCS1) included with a NHis tag and the second multiple cloning site (MCS2), respectively, at the *BamHI/XhoI* restriction sites of the pRSFDuet based vector, thus creating plasmid *pRSFDuet-darAE_{pk}*. Similarly, the genes $darBCD_{pk}$ from the gene cluster were synthesized and then assembled to the pETDuet vector at the *NcoI/XhoI* restriction sites, constructing plasmid *pRSFDuetdarBCD_{pk}*. Note that all the intergenic regions were removed and the genes $darABCDE_{pk}$ were expressed streamlined under the control of T7-lac promoter.

Mutagenesis of the active-site [4Fe-4S] cluster was carried out on the constructed *pRSFDuet-darAE_{pk}* using the Mut Express[®] II fast mutagenesis kit. One cysteine to alanine mutation (C83A) was made in a single mutagenesis step for the conserved N-terminal Fe-S cluster (247T>G, 248G>C) following the manufacturer's instructions. Single colonies were selected for Sanger sequencing and the correct DarA_{pk}/DarE_{pk}-C83A mutant was thus successfully produced.

Plasmid pET28a- $darA_{pk}$ carries the gene $darA_{pk}$ alone, which was amplified from the constructed pRSFDuet- $darAE_{pk}$ as template and then cloned into the pET-28a(+) based vector at BamHI/HindIII restriction sites via homologous recombination implemented by ClonExpress II kit.

After exhaustive attempts, we achieved soluble expression of RS enzyme $DarE_{pk}$ through co-expressing the modified enzyme $DarE_{pk}$ with the substrate $DarA_{pk}$. The purified PCR fragment $DarE_{pk}$ was assembled with a NHis tag into the MCS1 of pRSFDuet-1, which had been linearized using the *Bam*HI/*Hin*dIII restriction enzymes. On the other hand, fragment $DarA_{pk}$ lacking his-tag was inserted into MCS2 at *NdeI/XhoI* cloning sites though One-step assembly method, therefore generating the constructed plasmid *pRSFDuet-darEA_{pk}*.

In a similar manner, synthetic $darA_{yi}$ and $darE_{yi}$ genes from *Yersinia intermedia* were inserted into the MCS1 included with a NHis tag and the MCS2, respectively, at the *BamHI/XhoI* cloning sites of the pRSFDuet based vector, consequently engendering plasmid *pRSFDuet-darAE*_{yi}.

Plasmid *pRSFDuet-darAE*_{pa} carried synthetic DNA sequences of $darA_{pa}$ and $darE_{pa}$ from *Photorhabdus* asymbiotica, which were amplified and assembled to the *Bam*HI/XhoI l linearized pRSFDuet vector.

All these constructed plasmids were verified by Sanger sequencing. The constructed plasmids were subsequently transformed into chemically-competent *E. coli* BL21(DE3) or BL21 Star (DE3) cells by heat shock or electrocompetent cells for expression (vide infra), see Supplementary Table 3. The primers used for this study are listed in Supplementary Table 4.

Expression of full *dar* **cluster.** 1 μ L of constructed *pETDuet-darBCD_{pk}* harboring *darBCD_{pk}* was added to 70 μ L of *E. coli* BL21(DE3): *darAE_{pk}* electrocompetent cells, which were transformed in a 2 mm electroporation cuvette. The transformed cells were then grown overnight at 37 °C on LB agar supplemented with 50 μ g/mL kanamycin and 100 μ g/mL ampicillin. The resulting double transformants carrying the *dar* cluster (*darABCDE_{pk}*)

were picked up and maintained with appropriate antibiotics for co-expression. 10 mL of freshly cultured cells were used to inoculate 1 L of TB medium, which was cultivated at 37 °C/200 rpm, until reaching an OD₆₀₀ of 0.6–0.8. At that point, the two plasmids (*pRSFDuet-darAE_{pk}* and *pETDuet-darBCD_{pk}*) were induced with 0.2 mM IPTG. After the induction, the cells were incubated at 18 °C, with 120 rpm shaking for 24 h before sample treatment. For protein purification, the whole process was identical to that of co-expression of DarAE_{pk} and the resulting peptide was further subjected to the LC-HRMS analysis (method A).

Sample preparation and detection of mature darobactin. The mature peptide darobactin was analyzed by the LC-HRMS approach. From the co-expression culture of $DarAE_{pk}$, 20 mL aliquot was taken and centrifuged at 4,500 rpm to separate the medium and the bacterial cell. The medium was lyophilized, 5 mL methanol was added, the mixture was sonicated for 30 min, and centrifuged at 14,000 rpm for 5min. The methanol was discarded, and the pellet was resuspended in 2 mL deionized water. After a final centrifugation for 5 min, the sample of culture medium was ready to be injected to LC-HRMS analysis. To prepare the sample from the cell pellet, 1 mL of methanol was added prior to sonication for 30 min. Next, 1 mL of deionized water was added, and the further sonication was continued for another 30 min. Thereafter, the solution was centrifuged to pelletize the insoluble part and the supernatant was sent for the LC-HRMS analysis. Both of the analytic conditions corresponded to the method A mentioned above.

Heterologous expression of DarE_{pk}. BL21 Star (DE3) cells harboring *pRSFDuet-darEA_{pk}* were obtained by electroporation and plated on LB agar plates containing 50 µg/mL kanamycin at 37 °C. After 20 h, single colonies were inoculated with 100 mL of LB containing the same concentration of antibiotics and grown at 37 °C for overnight. Saturated pre-cultures were inoculated into 1.5 L TB medium in a 1% (v/v) ratio and grown at 37 °C until reaching OD₆₀₀ 1.5–2.0. For protein expression, cultures was induced with 0.2 mM IPTG and supplemented with 0.1 mM ferrous ammonium sulfate [Fe(NH₄)₂(SO₄)₂] and 0.1 mM L-cystine after cooling on ice for 30 min, and subsequently shaken at 37 °C, 150 rpm for 16-20 h before harvest. The cultures were harvested by centrifugation at 4,500 rpm for 10 min, washed with lysis buffer (10 mM imidazole, 20 mM MOPS, 200 mM NaCl, pH = 8.0), then flash-frozen and stored at –80 °C until use.

Protein purification was carried out in an anaerobic chamber under a strictly anaerobic condition (with less than 2 ppm of oxygen). All buffers used for purification were degassed and placed in the anaerobic chamber 24 h in advance. Cells were re-suspended in lysis buffer supplemented with 2 mg/ml lysozyme and protease inhibitor cocktail at 1:100 (v/v) dilution, and then incubated on ice for 1h. The culture was lysed via sonication according to the following procedure for 40 min on ice: 3 s sonication, 20 s interval with 35% power. Lysate was clarified by centrifugation at 13,000 rpm for 40 min at 4 °C and the supernatant decanted. Afterwards, Ni-NTA-based purification was performed in an anaerobic glove box as well. The supernatant was added to lysis-buffer I pre-equilibrated Ni-NTA resin and flowed though for three times. The column was washed with 10 column volumes of lysis buffer I followed by 10 column volumes of wash buffer (50 mM imidazole, 20 mM MOPS, 200 mM NaCl, pH = 8.0) until resin recovery wathet. All fractions were analyzed by 10% SDS-PAGE gel and fractions containing DarE_{pk} were pooled and concentrated by a 30,000 Da molecular weight cut-off Amicon Ultra centrifugal filter. The concentrated protein was then exchanged into desalting buffer I (50

mM MOPS, 25 mM NaCl, 10 mM dithiothreitol, 2.5% glycerol) using a PD-10 desalting column per manufacturer's protocol. Protein concentration was quantified using Bradford assay kit based on bovine serum albumin (BSA) as a standard.

In vitro chemical reconstitution of $DarE_{pk}$. Reconstitution of $DarE_{pk}$ was performed according to a standard procedure.⁵ Briefly, fresh solutions of dithiothreitol (DTT, 1 M), sodium sulfide (Na₂S·9H₂O, 50 mM), and ferrous iron ((NH₄)₂Fe(SO₄)₂, 500 mM) were prepared under strictly anaerobic condition. The concentration of $DarE_{pk}$ was adjusted to 100 µM and maintained at 4 °C in an anaerobic chamber. Subsequently, freshly prepared DTT was added to protein solution to a final concentration of 10 mM and (NH₄)₂Fe(SO₄)₂ was carefully added to a final concentration of 1 mM. After a 10 min incubation on ice, the mixture was supplemented with Na₂S·9H₂O repeatedly for three times until a final concentration reaching 1 mM, each time incubated on ice for 20 min. The reconstitution reaction was further proceeded at 4 °C for 16-18 h, after which, excess iron and sulfur were removed from blackish reaction mixture via PD-10 column as described above.

S-adenosyl-L-methionine (SAM) cleavage assay for $DarE_{pk}$. To perform SAM cleavage assay, ~10 µM $DarE_{pk}$ was incubated with 2 mM SAM and 5 mM sodium dithionite in 20 mM Tris buffer (pH = 8.0). Reaction volumes were typically 100 µL and were maintained at r.t. in glove box for 2 h prior to quenching. The reactions were quenched by boiling at 95 °C for 10 min. After removal of the protein precipitates by centrifugation, the supernatant was sent for the LC-HRMS analysis.

LC-HRMS (method B) was performed in positive ion mode using a C18 column (Accucore XL C18, Thermo Scientific, 150×2.1 mm, 4 µm). The column was equilibrated with 98% solvent A (0.1% formic acid in H₂O) and 2% solvent B (MeCN), and developed at a flow rate of 0.3 mL/min: 0–1.5 min, 2% B; 1.5–3.5 min, a linear gradient to 95%B; 3.5–5 min, 95%B.

Heterologous expression of DarA_{pk} and purification. In order to heterologously express DarA_{pk}, plasmids pET28a-darA_{pk} were transformed into chemically-competent BL21 (DE3) cells by heat shock. The transformants were obtained and protein expression were performed as previously described. For protein purification, the whole process was analogous to that of co-expression of DarAE_{pk}. The expected peptides were stored in -80 °C upon further LC-HRMS analysis (method A).

Solid phase peptide synthesis (SPPS). Peptides were synthesized using standard fluorenylmethyloxy-carbonyl (Fmoc) based solid phase peptide synthesis (SPPS) techniques using a Rainin PS3 peptide synthesizer. Preloaded resin (either Wang or 2-chlorotrityl; 0.1 mmol) was first swollen in dimethylformamide (DMF). Fmoc-amino acids (0.4 mmol, 4 equiv) were coupled using O-(1H-6-chloro-benzotriazol-1-yl)-N,N,N0,N0-tetramethyluronium hexafluorophosphate (HCTU, 165 mg, 0.4 mmol, 4 equiv) as coupling reagent and 0.4 M N-methyl morpholine (NMM) as activating reagent (45 min). Fmoc deprotection was performed with piperidine. After completion of the coupling of the final amino acid, the Fmoc group was removed to generate the free amino group.

Peptides were cleaved from the resin by adding a solution of trifluoroacetic acid (TFA) (5 mL), triisopropylsilane (TIPS) (100 μ L), and H₂O (100 μ L) to the resin (0.1 mmol), and stirring the solution for 2 h

at room temperature. The solution was concentrated by purging with a nitrogen stream and peptides were precipitated with cold diethyl ether. The crude peptides were dissolved in 0.1% aqueous TFA, lyophilized, and purified by preparative RP-HPLC. HPLC fractions containing products as confirmed by mass spectrometry were collected and lyophilized.

Enrichment and isolation of the modified tryptic fragment DarA_{yi(55-60}-1. Large-scale heterologous coexpression of DarAE_{yi} to generate enough product for NMR analysis was carried out on about 60 L scale according to the previous procedure. The full-length peptides were purified via Ni-affinity column, then desalted with semi-preparative HPLC, and dried by lyophilization, affording over 200 mg dried material. The obtained peptides were at batches resuspended in 20 mM Tris buffer (pH = 8.0) and digested with trypsin protease. The reaction was typically carried out on a 500 μ L with 10 mg peptide, and trypsin was added to a final concentration of 100:1 substrate to enzyme. Reactions were allowed to incubate for about 6 hours at 37 °C.After the proteolytic digestion, the reaction mixtures were boiled and centrifugated. The pellets were resuspended in denaturing buffer I and centrifugated. The resulting supernatant was then subjected to analysis by HPLC equipped with a YMC-Triart C8 analytical column (4.6 × 250 mm, 5 μ m). Next, repeated injections were performed on a semipreparative YMC-Triart C8 column (10.0 × 250 mm, 5 μ m). The desired tryptic fragment was eluted with a linear gradient of 5–25% MeCN (25 min) over 16 min at a flow rate of 3 mL/min. Fractions containing the expected product were pooled and lyophilized, yielding the final peptide (DarA_{yi(55-66)}-1, 2 mg).

Structural elucidation of the tryptic fragment DarA_{yi(55-66)}-1. On the basis of the doubly protonated ion at m/z 740.3335 $[M+2H]^{2+}$ in the HRMS spectrum, its molecular formular was determined to be $C_{68}H_{90}N_{18}O_{20}$ with 33 double bond equivalents (DBEs). The observation of a number of exchangeable amide NH protons ($\delta_{\rm H}$ 5.6–8.4 ppm) from ¹H NMR assured its peptidic nature. Although a high degree of spectral overlap existed, twelve spin systems were assembled from the integrative analysis of 2D NMR data including COSY, HSQC, and NOESY spectra, Supplementary Figure 13-15. Briefly, among the deduced subunits were the amino acids N-terminal Ile, 2 × Ala, 2 × Ser, 2 × Trp, 1 × Arg, 1 × Thr, 1 × Asn, 1 × Phe, and C-terminal Glu. Notably, some abnormal resonances could be seen in the residues Trp4, Trp6, and Arg8. The aromatic regions of the ¹H NMR only exhibited four peaks associated with each Trp, and no signals could be attributed to the W⁴-H₇ and W⁶-H₆, indicative of quaternary carbons at the two aromatic positions. Consistent with this fact was the absent COSY correlations between H₇ and H₆ for W⁴ or W⁶. Likewise, the β positions of W⁶ and R⁸ were now occupied by the substituted methines. Importantly, a significant downfield shift of W⁶-H_β at 5.99 ppm strongly proved it to be oxidized at C_{β} , a new methine at 75.19 ppm. The defined residues were step-wise connected via a combination of HMBC correlations from α -hydrogens to the adjacent amide carbonyls and the cross-peaks of $H_{\alpha,\beta}(i)$ to NH(i+1) in the NOESY spectrum to afford the linear sequence of DarA_{vi(55-66)}-1, which gave a congruent result for the *in silico* predicted peptide sequence. The so far delineated structure accounted for 31 out of the 33 total DBEs, necessitating two cyclization events to satisfy the final mass data. Digesting all the information above, we could anticipate the presence of a Trp6C₆-to-Arg8C_{β} crosslink through a new C(sp²)– $C(sp^3)$ bond and an ether linkage between C_β of W⁶ and C₇ of W⁴, although we were unable to obtain the conclusive correlations from the HMBC spectrum owing to the low sample quantity. Collectively, the tailing enzyme DarE alone installs two consecutive Trp6-Arg8 C-C and Trp4-Trp6 C-O-C crosslinks on its peptide

substrate, thereby generating a unique fused bicyclo modification. And at this point, we have completed the 2D structure of $DarA_{yi(55-66)}$ -1 as shown. This doubly cross-linked pattern was identical to that of reported darobactin, nevertheless there is little overall resemblance between the two 1D NMR spectra, largely due to the differently applied solvents (DMSO-d₆ vs. 94%H₂O:4%D₂O:2%formic acid-d₂).

As for the configurational discussion, the macrocycle crosslinks engender two stereogenic centers at the β -carbons of W⁶ and R⁸. The approximate *trans*-axial relationship between H_a and H_b of R⁸ was determined by their large vicinal coupling (${}^{3}J$ = 9.2 Hz, Supplementary Figure 15). Based on a biosynthetic logic of the enzyme employed, the ribosomal synthesis of precursor DarA suggests that the Ca positions for the amino acid backbone should remain the stereochemical fidelity as L-configurations. Thereafter, the newly formed chiral center at R⁸- C_{β} was assigned as S-configuration, which was further supported by the intense NOE correlation between H_{β} and NH of R^8 (Supplementary Figure 15). In a similar manner, the C_β of W^6 was accordingly determined to be R-configuration. On the other hand, taking into account the asymmetric nature of the O-indole ether bridge (W⁴) and the indole cyclophane bridge (W⁶), coupled with hindered rotation, it is conceivable that the substituted indoles would bring about the distinct types of planar chirality. To probe this hypothesis, we extensively analyzed the NOESY correlations within the macrocycle to assign the orientation of the modified indole rings. Further observations of dipolar correlations within the WNWSR macrocycle, in conjunction with the molecular modelling studies as shown in main text, clearly favor that both of the two cyclophanes indeed have planar chirality and should adopt 7S_p of W⁴ and 6S_p of W⁶ configurations, respectively, mainly based on the correlations of (1) W^4 -H₂/-H_{α}/N⁵-NH, W^4 -H₄/-H_{β}, and W^6 -H₆/-H_{β} (2) W^6 -H₂/-H_{α}/W⁴-H₁, W^6 -H₄/-H_{β}, W^6 -H₅/R⁸-H_{β}/-NH, and W⁶-H₇/R⁸-H_{α}/-H_{γ}/-H_{δ} (Figures S15).

Recent years have witnessed a sharp increase in the use of quantum chemistry calculations in solving structure elucidation and validation problems, expedited by the remarkable advances in computer methodologies and hardware. Strikingly, the accuracy of the gauge-including atomic orbital (GIAO) method has been largely improved and is now around 2.0 ppm for ¹³C NMR chemical shifts, which has made the density functional theory (DFT)-based structural elucidation quite effective.^{6,7} In this context, to verify the proposed structure, especially for the newly furnished macrocyclic core, we took intuitive to perform the ¹³C NMR chemical shift calculations by DFT-GIAO approach. After a short screening of functionals, we turned our attention to the light level of theory [ω B97X-D/6-31G(d)// B3LYP/6-31G(d)]. In order to reduce computational cost, we truncated the system as shown in Supplementary Figure 16, maintaining that the omitted side residues do not significantly affect the calculated chemical shifts of the rigid macrocyclic moiety. Much to our satisfactory, after the linear scaling, this method displayed minor errors ($R^2 = 0.999$, CMAE = 0.94 ppm, CRMSD = 1.10 ppm, CMaxErr = 2.36 ppm, see Supplementary Figure 16), thus leaving little doubt that the structure of our model molecule of interest was indeed assigned correctly.

Computational details. The 3D structure of the model substructure $DarA_{yi(55-66)}$ -1 was firstly established according to 2D NOESY spectra and ³*J* couplings. Conformational searches were run with Spartan 14 (Wavenfunction, Irvine, CA, USA, 2014) using the Monte Carlo algorithm and Merck molecular force field (MMFF94) with standard parameters and convergence criteria with a maximum of 10,000 steps. The MMFF minima, within an energy window of 5 kcal/mol, found by conformational search were analyzed using the

derived NOEs and ${}^{3}J$ couplings as postprocessor filter. The low-energy conformers corresponding perfectly to NOE and ${}^{3}J_{HH}$ filter were optimized with DFT method at B3LYP/6-31G(d) level in gas phase with the help of Gaussian 16 package, and were further checked by frequency calculation to ascertain no imaginary frequencies. GIAO 13 C NMR computation was implemented with the following components: (a) magnetic shielding: ω B97xD/6-31G(d) with the PCM for dimethyl sulfoxide; (b) scaling of isotropic magnetic shielding tensors according to the reported parameters to obtain chemical shifts. (c) The obtained values of chemical shifts in ppm are further linearly corrected with experimental chemical shifts. Such additional linear scaling is believed to better match the experimental values in more polar solvents, especially for dimethyl sulfoxide.

Supplementary Figure 1. Representative rSAM-dependent cyclic RiPPs. The rSAM-mediated RiPPs subfamilies via C–C bond formation include xenorceptide, ryptides (<u>R-Y</u>-crosslinked peptides), pyrroloquinoline quinone (PQQ), streptide, a tetrahydrobenzindole motif-containing peptide, and mycofactocin. Examples of cyclic RiPPs via C–S bond formation contain sactipeptides like streptosctin and ranthipeptides (<u>radical non-a-carbon thioether</u> peptides). Rotapeptides (<u>radical oxygen-to-alpha-carbon-linked peptides</u>) is the first number of ether-containing RiPPs family. Darobactin A holds an unprecedented scaffold bearing ether linkage and C–C bond double crosslinks, although the mechanism employed is not yet understood. The bonds forming the macrocycle are highlighted in cyan. Enzymes responsible for macrocyclization of peptides are shown in parentheses.

Supplementary Figure 2. Constructs used for heterologous expression of darobactin BGC in *E. coli* BL21(DE3). Each gene was expressed under the control of a separate T7 promoter, and all intergenic regions were removed.

Supplementary Figure 3. HR-MS/MS analysis of $DarA_{pk(43-58)}$ -1, showing (A) the shorthand representation and (B) MS/MS spectrum of $DarA_{pk(43-58)}$ -1.

MS/MS data assignment of the key tryptic fragments $DarA_{pk(43-58)}$ -1

Ion	Sequence	Obs.	Calc.	Error (ppm)	Shift (ΔDa)	Note
M+2H	IPEITA <mark>WNWSK</mark> SFQEI	980.9750 (z = 2)	980.9756 (z =2)	-0.31	11.9624	[O]-4×[H]
b2	IP	211.1434	211.1441	-3.32	-	
b3	IPE	340.1861	340.1867	-1.76	-	
$b3-H_2O$	IPE	322.1763	322.1761	0.62	-	
b4	IPEI	453.2715	453.2708	1.54	-	
b5	IPEIT	554.3196	554.3184	2.16	-	
b5-H ₂ O	IPEIT	536.3077	536.3079	-0.37	-	

b6	IPEITA	625.3550	625.3556	-0.96	-	
b6-H ₂ O	IPEITA	607.3421	607.3450	-4.77	-	
y2-H ₂ O	EI	243.1339	243.1339	0	-	
y3-H ₂ O	QEI	371.1914	371.1925	-2.96	-	
y10	WNWSK SFQEI	1336.5923	1336.5957	-2.54	11.9602	[O]-4×[H]
		668.7953 (z = 2)	668.8015 (z = 2)	-4.64	11.9512	
y11	A <mark>WNWSK</mark> SFQEI	1407.6328	1407.6328	0	11.9636	[O]-4×[H]
		704.3199 (z = 2)	704.3200 (z = 2)	-0.07	11.9634	
y12	TA <mark>WNWSK</mark> SFQEI	1508.6831	1508.6805	1.72	11.9662	[O]-4×[H]
		754.8375 (z = 2)	754.8439 (z =2)	-4.24	119508	
y13	ITA <mark>WNWSK</mark> SFQEI	811.3859 (z = 2)	811.3859 (z =2)	0	11.9636	[O]-4×[H]
y14	EITA <mark>WNWSK</mark> SFQEI	875.9110 (z = 2)	875.9072 (z =2)	2.17	11.9712	[O]-4×[H]
y15	PEITAWNWSKSFQEI	924.4369 (z = 2)	924.4336 (z =2)	1.79	11.9702	[O]-4×[H]

Supplementary Figure 4. LC-HRMS analysis of $DarA_{pk}$ -1 in vivo. The extracted ion chromatograms (EICs) at m/z = 1010.99 ± 0.1 correspond to the fully modified $DarA_{pk}$ -1 ([M + 8H]⁸⁺). Coexpression of *darA_{pk}* with *darE_{pk}* (EIC trace i), or additional introduction of transporter genes *darBCD_{pk}* (EIC trace ii) did not show apparent difference in the yield and modification pattern of DarApk.

Supplementary Figure 5. Production of the mature darobactin in *E. coli*, showing the EIC (m/z = 483.71 ± 0.01) and the MS spectrum of darobactin.

Supplementary Figure 6. In vitro proteolysis for darobactin maturation, showing the EIC at $m/z = 483.71 \pm 0.01$ (corresponding to darobactin) of DarA_{pk}-1 incubated with DarE_{pk} (blue trace) or the cell lysate *E. coli* BL21 (red trace) for 24h.

Supplementary Figure 7. In vitro analysis of $DarE_{pk}$. a). SDS-PAGE analysis of $DarE_{pk}$ purified by Ni-affinity chromatogram. b). UV–vis spectrum of the as-purified (black line) and the reconstituted (red dash) $DarE_{pk}$. c). LC-HRMS analysis of the $DarE_{pk}$ -catalyzed dAdoH production. EIC at $m/z = 252.11 \pm 0.01$ corresponds to dAdoH, the characteristic product of rSAM enzymes. The analyses were all performed more than three times independently, and the results are very similar.

Supplementary Figure 8. HR-MS/MS analysis of $DarA_{pk(43-53)}$ -2, showing (A) the shorthand representation and (B) MS/MS spectrum of $DarA_{pk(43-53)}$ -2.

А

DarA_{pk(43-53)}:

MS/MS data assignment of the key tryptic fragments $DarA_{pk(43-53)}$ -2

Ion	Sequence	Obs.	Calc.(unmod.)	Error (ppm)	Shift (∆Da)	Note
M+2H	IPEITA <mark>WNW</mark> SK	679.8390 (z = 2)	672.8406 (z =2)	-1.2	13.9760	[O]-2×[H]
b2	IP	211.1441	211.1441	0	-	
b3	IPE	340.1860	340.1867	-2.1	-	
b4	IPEI	453.2702	453.2708	-1.3	-	
b5	IPEIT	554.3204	554.3184	3.1	-	
b6	IPEITA	625.3563	625.3556	1.1	-	

b9	IPEITAWNW	1125.5359	1125.5364	-0.4	13.9788	[O]-2×[H]
y1	K	147.1128	147.1128	0	-	
y2	SK	234.1445	234.1448	-1.3	-	
y5	WNWSK	734.3237	734.3257	-2.7	13.9773	[O]-2×[H]
y6	A <mark>WNW</mark> SK	805.3595	805.3628	-4.1	13.9760	[O]-2×[H]
у7	TAWNWSK	906.4104	906.4104	0	13.9792	[O]-2×[H]
y8	ITAWNWSK	1019.4930	1019.4945	-1.5	13.9778	[O]-2×[H]
y9	EITA <mark>WNW</mark> SK	1148.5400	1148.5371	-2.5	13.9822	[O]-2×[H]
y10	PEITA <mark>WNW</mark> SK	1245.5726	1245.5899	-13.9	13.9620	[O]-2×[H]
		623.2984 (z = 2)	623.2986 (z =2)	-0.2	13.9790	

Supplementary Figure 9. LC-HRMS and HR-MS/MS analysis of the tryptic fragement of the DarA_{pk} K53A mutant coexpressed with DarE_{pk}. (A) The extracted ion chromatograms (EICs) at $m/z = 953.45 \pm 0.1$ corresponding to the +14 Da modification. (B) The shorthand representation structure and MS/MS spectrum of DarA(K53A)_{pk(43-58)} after trypsin digestion.

Ten	S	Oha	Calc.(unmod	Error	Shift	Nata
lon	Sequence	0.08.	.)	(ppm)	(ΔDa)	Note
M+2H	IPEITA <mark>WNW</mark> SASFQEI	953.4504 (z = 2)	953.4545 (z =2)	-4.3	13.9793	[O]-2×[H]
b2	IP	211.1429	211.1441	-5.68	-	
b3	IPE	340.1845	340.1867	-6.47	-	
b4	IPEI	453.2681	453.2708	-5.96	-	
b5	IPEIT	554.3166	554.3184	-3.25	-	
b6	IPEITA	625.3541	625.3556	-2.4	-	
b9	IPEITA <mark>WNW</mark>	1125.5313	1111.5571	-4.53	13.9742	[O]-2×[H]
b10	IPEITA <mark>WNW</mark> S	1212.5623	1198.5891	-5.03	13.9732	[O]-2×[H]
b11	IPEITA <mark>WNW</mark> SA	1283.5911	1269.6262	-11.2	13.9649	[O]-2×[H]
b12	IPEITA <mark>WNW</mark> SAS	1370.6323	1356.6583	-3.79	13.9740	[O]-2×[H]
b13	IPEITA <mark>WNW</mark> SASF	1517.6930	1503.7267	-8.57	13.9663	[O]-2×[H]
b14	IPEITA <mark>WNW</mark> SASFQ	1645.7410	1631.7853	-14.28	13.9557	[O]-2×[H]
b15	IPEITA <mark>WNW</mark> SASFQE	887.9034 (z=2)	880.9176 (z=2)	-4.28	13.9716	[O]-2×[H]
y1	Ι	132.1013	132.1019	-4.54	-	
y2	EI	261.1429	261.1445	-6.13	-	
y3	QEI	389.2011	389.2031	-5.14	-	
y4	FQEI	536.2623	536.2715	17.16	-	
y5	SFQEI	623.2983	623.3035	-8.34	-	
y6	ASFQEI	694.3353	694.3406	-7.63	-	
у7	SASFQEI	781.3665	781.3727	-7.93	-	
y11	A <mark>WNW</mark> SASFQEI	1352.6111	1338.6113	15.16	13.9998	[O]-2×[H]

Supplementary Figure 10. HR-MS/MS analysis of $DarA_{pk(43-53)}$ -3, showing (A) the shorthand representation and (B) MS/MS spectrum of $DarA_{pk(43-53)}$ -3.

MS/MS data assignment of the key tryptic fragments of dehydrated $DarA_{pk(43-53)}$ -3.

Ion	Saguaraa	Obs.	Cala (unmod)	Error	Shift	Note
1011	Sequence		Calc.(unmou.)	(ppm)	(D a)	INOLE
M+2H	IPEITAWNWSK	671.8405 (z =	671.8431 (z =2)	-3.9	2.021	-2×[H]
		2)				
b2	IP	211.1433	211.1441	-3.8	-	
b3	IPE	340.1853	340.1867	-4.1	-	
b4	IPEI	453.2701	453.2708	-1.5	-	
b5	IPEIT	554.3207	554.3184	+4.1	-	

b6	IPEITA	625.3535	625.3556	-3.5	-	
b7	IPEITAW	811.4297	811.4349	-6.4	-	
b8	IPEITAWN	925.4811	925.4778	+3.6	-	
b9	IPEITAWNW	1109.5392	1109.5415	-2.1	2.0179	-2×[H]
b10	IPEITAWNWS	598.7852(z=2)	598.7904	-8.7	2.026	-2×[H]
			(z=2)			
y1	K	147.1124	147.1128	-2.7	-	
y2	SK	234.1441	234.1448	-3.0	-	
y3	WSK	418.2072	418.2085	-3.1	2.0169	-2×[H]
y4	NWSK	532.2518	532.2514	+0.7	2.0153	-2×[H]
y5	WNWSK	718.3264	718.3307	-6.0	2.02	-2×[H]
y6	AWNWSK	789.3607	789.3678	-9.0	2.0228	-2×[H]
у7	TAWNWSK	890.4153	890.4155	-0.2	2.0159	-2×[H]
y8	ITAWNWSK	1003.4944	1003.4996	-5.2	2.0208	-2×[H]
y9	EITAWNWSK	1132.5339	1132.5422	-7.3	2.0239	-2×[H]
y10	PEITAWNWSK	615.3007 (z=2)	615.3011 (z=2)	-0.6	2.0164	-2×[H]

Supplementary Figure 11. HR-MS/MS analysis of the ¹⁸O-incorporated DarA_{pk(43-53)}-2, showing (A) the shorthand representation and (B) MS/MS spectrum of the ¹⁸O-incorporated DarA_{pk(43-53)}-2.

A

DarA_{pk(43-53)}:

MS/MS data assignment of the key tryptic fragments of the ¹⁸O-incorporated DarA_{pk(43-53)}-2.

Ion	Saguaraa	Obs Cale (upmed)		Error	Shift	Note
1011	Sequence	Obs.	Calc.(unnou.)	(ppm)	(ΔD a)	Note
M+2H	IPEITA <mark>WNW</mark> SK	680.8412 (z =	680.8427 (z =2)	-1.2	15.9804	[O] ¹⁸ –2×[H]
		2)				
b2	IP	211.1425	211.1441	-7.5	-	
b3	IPE	340.1841	340.1867	-7.6	-	
b4	IPEI	453.2672	453.2708	-7.9	-	
b6	IPEITA	625.3513	625.3556	-6.7	-	
y1	K	147.1118	147.1128	-6.8	-	
y2	SK	234.1432	234.1448	-6.8	-	
y5	WNWSK	736.3279	736.3299	-2.7	15.9715	[O] ¹⁸ –2×[H]
y6	AWNWSK	807.3747	807.3670	-9.5	15.9912	[O] ¹⁸ –2×[H]

y7	TA <mark>WNW</mark> SK	908.4080	908.4147	-7.4	15.9768	[O] ¹⁸ –2×[H]
y8	ITA <mark>WNW</mark> SK	1021.4906	1021.4988	-8.0	15.9836	[O] ¹⁸ –2×[H]
y9	EITA <mark>WNW</mark> SK	1150.5369	1150.5413	-3.8	15.9791	[O] ¹⁸ –2×[H]
y10	PEITA <mark>WNW</mark> SK	624.3012 (z=2)	624.3007 (z=2)	+0.8	15.9846	[O] ¹⁸ –2×[H]

Supplementary Figure 12. Detailed comparison of the zoomed-in MSMS spectra for the ¹⁸O-labeled vs unlabeled tryptic fragments $DarA_{pk(43-53)}$ -2 generated in ~80% $H_2^{18}O$ or in H_2O . The indentical ions (i.e. y1, y2) are shown in blue whereas the ions containing the incorprated O atom (i.e. y5-y8) are shown in red.

Supplementary Figure 13. HR-MS/MS analysis of DarA_{yi(55-66)}-1, showing (A) the shorthand representation and (B) MS/MS spectrum of DarA_{yi(55-66)}-1.

Ion	Sequence		Obs.	Calc.(unmod.)	Error (ppm)	Shift (ΔDa)	Note
M+2H	ITA <mark>WNWSR</mark> SFA	E	740.3325 (z = 2)	734.3544 (z =2)	-2.5	11.9562	[O]-4×[H]
b2	IT		215.1384	215.1390	-3.2	-	
b2-H ₂ O	IT		197.1276	197.1285	-4.5	-	
b3	ITA		340.1860	340.1867	-2.0	-	
b3-H ₂ O	ITA		268.1644	268.1656	-4.5	-	
b8-NH ₃ -H ₂ O	ITAWNWSR		992.4373	992.4164	-21.0	11.9427	[O]-4×[H]
y1		Е	148.0602	148.0604	-1.3	-	

y2	AE	219.0967	219.0975	-3.6	-	
y3	FAE	366.1596	366.1660	-1.0	-	
y4	SFAE	453.1951	453.1980	-6.4	-	
y9	WNWSR SFAE	1194.4940	1194.4963	-1.9	11.9613	[O]-4×[H]
		597.7496 (z = 2)	597.7518 (z = 2)	-1.8	11.9592	
y9-NH ₃	WNWSR SFAE	589.2363 (z = 2)	589.2385 (z = 2)	-1.9	11.9592	[O]-4×[H]
y10	AWNWSR SFAE	1265.5317	1265.5334	-1.3	11.9619	[O]-4×[H]
		633.2670 (z = 2)	633.2703 (z = 2)	-2.6	11.9586	
y11	TAWNWSRSFAE	683.7889 (z = 2)	683.7942 (z =2)	-3.8	11.953	[O]-4×[H]

Supplementary Figure 14. ¹H NMR spectrum of DarA_{yi(55-66)}-1.

Supplementary Figure 15. ¹H-¹H COSY spectrum of DarA_{yi(55-66)}-1.

Supplementary Figure 16. HSQC spectrum of DarA_{yi(55-66)}-1.

Supplementary Figure 17. NOESY spectrum of DarA_{yi(55-66)}-1.

Supplementary Figure 18. Structural validation of DarA_{yi(55-66)}-1 by combined NMR spectroscopy and DFT GIAO calculation. (A). COSY correlations and planar structure of DarA_{yi(55-66)}-1. (B) Key NOESY correlations and vicinal scalar couplings observed within the bicyclic scaffold. (C) Model substructure of DarA_{yi(55-66)}-1 and illustrations for the planar chirality within the macrocycle. For the western *O*-indole ether-bridged cyclophane, the structure is oriented with O atom above C₇ and the view down the O-C₇ axis; for the eastern one, the structure is aligned with C α above C $_{\beta}$ and view down the C $_{\beta}$ -C $_{6}$ axis. (D) Scatter plot of 20 calculated /experimental ¹³C NMR chemical shifts for the model substructure. Diagonal dashed line: y = x. Inset corresponds to error distribution: the centre line (bold red line) indicates the median; box limits indicate upper and lower quartiles; whiskers indicate 1.5×the interquartile range; hollow square indicates the absolute mean; solid circles indicate the maximum negative (positive) error.

Supplementary Figure 19. HR-MS spectrum of $DarA_{pa}$ -1 modified by $DarE_{pa}$, which contains an ether crosslink between Trp45 and Phe47.

Supplementary Figure 20. Structural analysis of $DarA_{pa(32-49)}$ -1, showing the EIC (1177.03 ± 0.01), the HR-MS spectrum, and the HR-MS/MS spectrum.

Supplementary Figure 21. HR-MS/MS spectrum of the DarA_{pa}-derived monocyclic daropeptide obtained in in vitro proteolysis analysis.

Supplementary Figure 22. LC-HRMS and HR-MS/MS analysis of the tryptic fragement of the DarA_{pk} W51F mutant coexpressed with DarE_{pk}. (A) The extracted ion chromatograms (EICs) at $m/z = 660.34 \pm 0.1$ corresponding to the +14 Da modification. (B) The shorthand representation structure and MS/MS spectrum of DarA_{pk}(W51F)₍₄₃₋₅₃₎ after trypsin digestion.

ion	Sequence	Obs.	Calc (unmod.)	Error (ppm)	Shift (ΔDa)	Note
M+2H	IPEITAWNFSK	660.3307 (z = 2)	660.3352 (z =2)	-6.81	13.9704	[O]-2×[H]
b2	IP	211.1429	211.1441	-5.68	-	
b3	IPE	340.1843	340.1867	-7.05	-	
b4	IPEI	453.2689	453.2708	-4.19	-	
b5	IPEIT	554.3170	554.3184	-2.53	-	
b6	IPEITA	625.3536	625.3556	-3.20	-	
y1	K	147.1118	147.1128	-6.80	-	
y2	SK	234.1432	234.1448	-6.83	-	
y5	WNFSK	695.3096	695.3148	-7.48	13.9741	[O]-2×[H]
y6	AWNFSK	766.3448	766.3519	-9.26	13.9722	[O]-2×[H]
y7	TAWNFSK	867.3920	867.3995	-8.65	13.9717	[O]-2×[H]
y8	ITA <mark>WNF</mark> SK	980.4808	980.4836	-2.86	13.9765	[O]-2×[H]
y9	EITAWNFSK	1109.5211	1109.5262	-4.60	13.9742	[O]-2×[H]
y10	PEITA WNFSK	603.7911(z=2)	596.8035(z=2)	-3.31	13.9752	[O]-2×[H]

Supplementary Figure 23. LC-HRMS and HR-MS/MS analysis of the tryptic fragement of the DarA_{pk} W49F mutant coexpressed with $DarE_{pk}$. (A) The extracted ion chromatograms (EICs) at $m/z = 661.34 \pm 0.1$ corresponding to the +16 Da modification. (B) The shorthand representation structure and MS/MS spectrum of $DarA_{pk}$ (W49F)₍₄₃₋₅₃₎ after trypsin digestion.

А

				P	C1 *6	
Ion	Sequence	Obs.	Calc (unmod.)	Error	Shift	Note
,	1		((ppm)	(ΔDa)	
M+2H	IPEITAFAWSK	661.3402 (z =	653.3455 (z =2)	-4.23	15.9894	[OH]-[H]
		2)				
b2	IP	211.1422	211.1441	-9.00	-	
b3	IPE	340.1835	340.1867	-9.41	-	
b4	IPEI	453.2706	453.2708	-0.44	-	
b8	IPEITAFN	886.4615	886.4669	-6.09	-	
yl	K	147.1117	147.1128	-7.48	-	
y2	SK	234.1442	234.1448	-2.56	-	
y3	WSK	436.2151	420.2241	-9.17	15.9910	[OH]-[H]
y4	NWSK	550.2539	534.2671	-14.72	15.9868	[OH]-[H]
y5	FNWSK	697.3289	681.3355	-2.15	15.9934	[OH]-[H]
y6	AFN <mark>W</mark> SK	768.3599	752.3726	-9.89	15.9873	[OH]-[H]
у7	TAFNWSK	869.4108	853.4203	-5.06	15.9905	[OH]-[H]
y8	ITAFNWSK	982.4942	966.5043	-5.19	15.9899	[OH]-[H]
y9	EITAFN <mark>W</mark> SK	1111.5377	1095.5469	-3.78	15.9908	[OH]-[H]
y10	PEITAFNWSK	604.7975(z=2)	596.8035(z=2)	-5.62	15.9880	[OH]-[H]

Supplementary Figure 24. LC-HRMS and HR-MS/MS analysis of the tryptic fragement of $DarA_{pk.co-}$ expression with $DarE_{yi}$. (A) The extracted ion chromatograms (EICs) at $m/z = 679.84 \pm 0.1$ corresponding to the +14 Da modification. (B) The shorthand representation structure and MS/MS spectrum of $DarA_{pk(43-53)}$ after trypsin digestion.

T	S	Obs. Calc.(unmod.)	Error	Shift	N	
1011	Sequence		(ppm)	(ΔDa)	Note	
M+2H	IPEITA <mark>WNW</mark> SK	679.8363 (z =	672.8510 (z =2)	-6.33	13.9706	[O]-2×[H]
		2)				
b2	IP	211.1426	211.1441	-7.10	-	
b3	IPE	340.1840	340.1867	-7.94	-	
b4	IPEI	453.2693	453.2708	-3.31	-	
b5	IPEIT	554.3174	554.3184	-1.80	-	
b6	IPEITA	625.3540	625.3556	-2.59	-	
b9	IPEITAWNW	1125.5243	1111.5571	-10.75	13.9672	[O]-2×[H]
y1	K	147.1118	147.1128	-6.80	-	
y2	SK	234.1432	234.1448	-6.83	-	
y5	WNWSK	734.3184	720.3464	-9.94	13.9720	[O]-2×[H]
y6	AWNWSK	805.3531	791.3835	-12.04	13.9696	[O]-2×[H]
у7	TAWNWSK	906.4017	892.4312	-9.6	13.9705	[O]-2×[H]
y8	ITA <mark>WNW</mark> SK	1019.4847	1005.5152	-9.61	13.9695	[O]-2×[H]
у9	EITA <mark>WNW</mark> SK	1148.5283	1134.5578	-7.66	13.9705	[O]-2×[H]
y10	PEITA <mark>WNW</mark> SK	1245.5870	1231.6106	-2.32	13.9764	[O]-2×[H]

Supplementary Figure 25. LC-HRMS and HR-MS/MS analysis of the tryptic fragement of $DarA_{pk.co-}$ expression with $DarE_{pa}$. (A) The extracted ion chromatograms (EICs) at $m/z = 679.84 \pm 0.1$ corresponding to the +14 Da modification. (B) The shorthand representation structure and MS/MS spectrum of $DarA_{pk(43-53)}$ after trypsin digestion.

Ion	Sequence	Obs.	Calc.(unmod.)	Error (ppm)	Shift (ΔDa)	Note
M+2H	IPEITA <mark>WNW</mark> SK	679.8359 (z = 2)	672.8510 (z =2)	-6.33	13.9706	[O]-2×[H]
b2	IP	211.1424	211.1441	-8.05	-	
b3	IPE	340.1838	340.1867	-8.52	-	
b4	IPEI	453.2693	453.2708	-3.31	-	
b5	IPEIT	554.3173	554.3184	-1.98	-	
b6	IPEITA	625.3491	625.3556	-10.39	-	
b9	IPEITA <mark>WNW</mark>	1125.5154	1111.5571	-18.66	13.9583	[O]-2×[H]
yl	K	147.1119	147.1128	-6.12	-	
y2	SK	234.1433	234.1448	-6.41	-	
y5	WNWSK	734.3291	720.3464	4.63	13.9827	[O]-2×[H]
y6	AWNWSK	805.3567	791.3835	-7.57	13.9732	[O]-2×[H]
у7	TAWNWSK	906.4014	892.4312	-9.93	13.9702	[O]-2×[H]
y8	ITA <mark>WNW</mark> SK	1019.4862	1005.5152	-8.14	13.9710	[O]-2×[H]
у9	EITA <mark>WNW</mark> SK	1148.5225	1134.5578	-1.27	13.9647	[O]-2×[H]
y10	PEITA <mark>WNW</mark> SK	623.2938	623.2986 (z=2)	-7.70	13.9698	[O]-2×[H]

D - 1	Position	$DarA_{yi(55-66)}$ -1 (in DMSO- d_6)		darobactin (in H ₂ O: D ₂ O 9:1) ⁸		
Kesidue		$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ _C	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ _C	
Ile-1	NH ₂	8.11 (2H, d, 7.4)				
	α	3.84 (1H, overlap)	55.8			
	β	1.83, (1H, overlap)	36.0			
	γ	1.53 (2H, m)	23.7			
	δ	0.87 (3H, t, 7.4)	10.9			
	γ-Me	0.92 (3H, d, 6.8)	14.2			
Thr-2	NH	8.42 (1H, d, 8.0)				
	α	4.36 (1H, dd, 8.0, 5.0)	57.9			
	β	4.02 (1H, qd, 6.2, 5.0)	66.6			
	γ	1.14 (3H, d, 6.2)	19.1			
Ala-3	NH	8.11 (1H, d, 4.9)				
	C=O		172.2			
	α	4.38 (1H, dq, 7.5, 6.5)	47.8			
	β	1.24 (3H, overlap)	17.9			
Trp-4	NH	8.13 (1H, d, 6.5)				
	α	4.13 (1H, br s)	56.3	4.04 (1H, dd, 11.2, 7.7)	57.6	
	ß	α 2.90 (1H, overlap)	27.4	3.30 (1H, dd)	29.2	
	٢	β 3.10 (overlap)	_,	3.55 (1H, dd, 14.1,7.6)		
	1	11.05 (1H, s)		10.63 (1H, br s)		
	2	7.29 (1H, s)	123.4	7.35 (1H, br s)	127.6	
	3				111	
	3a				131.8	
	4	6.88 (1H, d, 7.8)	111.8	7.22 (1H, d, 7.7)	116.5	
	5	6.95 (1H, t, 7.8)	118.7	7.18 (1H, t, 7.7)	123	
	6	7.03 (1H, d, 7.8)	105.5	7.24 (1H, d, 7.7)	111.6	
	7				147.9	
	7a				131.8	
Asn-5	NH	5.58 (1H, br d, 5.2)		6.92 (1H, d, 8.1)		
	α	2.78 (1H, br s)	48.8	3.33 (1H, m)	53.7	
	β	1.81 (1H, overlap)	38.1	2.13 (1H, dd, 13.9, 7.2)	41.9	
		2.02 (1H, br d, 13.8)		2.19 (1H, dd, 13.9, 7.2)		
	NH ₂	6.78 (1H, overlap)		6.64 (1H, br s)		
		7.16 (1h, overlap)		7.31 (1H, br s)		
Trp-6	NH	6.75 (1H, d, 9.8)		7.83 (1H, d, 9.8)		
	α	4.45 (1H, dd, 9.8, 8.5)	62.7	4.69 (1H, dd, 10.2, 9.1)	66.1	
	β	5.99 (1H, d, 8.5)	75.2	6.18 (1H, d, 9.1)	79.5	
	1	11.12 (1H, s)		10.44 (1H, br s)		
	2	7.88 (1H, s)	123.8	7.85 (1H, br s)		
	3			7.45 (1H, d)	114.5	

Supplementary Table 1. Complete NMR assignments for $DarA_{yi(55-66)}$ -1 and darobactin.

	3a				127.8
	4	7.26 (1H, d, 8.0)	116.4	7.45 (1H, d)	120
	5	6.82 (1H, d, 8.0)	125.0	6.96 (1H, d)	127.7
	6				135.7
	7	7.23 (1H, br s)	110.2	7.48 (1H, br s)	113.3
	7a				139.9
Ser-7	NH	5.71 (1H, br d, 7.5)		6.95 (1H, d)	
	α	3.85 (1H, overlap)	53.5	3.95 (1H, m)	56.9
	0	2.94 (1H, m)	62.1	3.14 (1H, dd)	64.9
	р	2.96 (1H, m)	02.1	3.22 (1H, dd)	04.8
Arg-8	NH	7.49 (1H, d, 10.6)		7.88 (1H, d, 10.7)	
	α	4.22 (1H, dd, 10.6, 9.2)	59.9	4.25 (1H, t, 10.9)	63
	β	2.84 (1H, overlap)	46.6	3.03 (1H, m)	51
		2.08 (1H, overlap)	27.4	2.08(111 m)	28.5
	γ	2.18 (1H, overlap)	27.4	2.08 (111, 111)	28.3
	8	3.16 (1H, overlap)	30.7	2.00(1H m)	42.4
	0	3.20 (1H, overlap)	57.1	2.55 (111, 11)	72.7
Ser-9	NH	8.25 (1H, d, 7.2)		8.62 (1H, d, 7.3)	
	α	4.29 (1H, m)	55.0	4.46 (1H, m)	58.5
	β	3.55 (2H, m)	61.5	3.8 (1H, d, 5.5)	64
Phe-10	NH	8.09, (1H, d, 8.2)		8.14 (1H, d, 7.4)	
	α	4.55 (1H, td, 8.2, 4.2)	53.7	4.64 (1H, dt, 7.7, 5.9)	57.9
	ß	2.84 (1H, overlap)	36.8	3.11 (1H, dd)	39.8
	þ	3.08 (1H, overlap)		3.22 (1H, dd)	57.0
	1				139.6
	2/4	7.27 (2H, overlap)	128.3	7.32 (1H, d)	132.3
	3/5	7.28 (2H, overlap)	128.9	7.42 (1H, t, 7.49)	131.5
	6	7.20 (1H, t, 7.1)	126.3	7.37 (1H, t, 7.08)	129.9
Ala-11	NH	8.2 (1H, d, 7.5)			
	C=O		172.2		
	α	4.32 (1H, dq, 7.5, 6.5)	47.9		
	β	1.24 (3H, overlap)	17.9		
Glu-12	NH	8.15 (1H, d, 8.1)			
	α	4.23 (1H, td, 8.1, 5.5)	50.9		
	ß	1.79 (1H, overlap)	26.1		
	Ч	1.99 (1H, m)	_0.1		
	γ	2.29 (1H, m)	29.8		

Supplementary Table 2. The encoding sequence of the recombinant plasmids in this study.

His ₆ -DarA _{pk}	MGSSHHHHHHSQDPMHNTLNETVKTQEALNSLAASFKETELSITDKALN ELSNKPKIPEITAWNWSKSFQEI*
His ₆ -DarE _{pk}	MGSSHHHHHHSQDPMDTIIPIKYLDSDESSILKKSSKINYRQLACRIIGEIS AEKILDDDELALYNKEISIHFSPEIINANKLVVVVKATRLCNLRATYCHS WAEGKGNTLTFFNLMRSIHRFLSLPNIKRFEFVWHGGEVTLLNVNYFKK LIWLQEQFKKPDQVITNSVQTNAVNIPEDWLVFLKGIGMGVGISVDGIPE IHDSRRLDYRGRPTSHKVAASMKKLRSYGIPYGALIVVDRDVYESNIEK MLSYFYEIGLTDIEFLNIVPDNRCQPGDDPGGSYITYHNYINFLSKVFRV WWNGYQGKINIRLFDGFIDSIKSSQKKMSDCYWAGNCSQEIITLEPNGTV SACDKYVGAEGNNYGSIIDNDLGNLLSKSNTNKDHLKEEMESYEKMHQ CKWFHLCNGGCPHDRVTNRKHNPNYDGSCCGTGGLLETIKQTIAA*
Chemically synthesized DarA _{pk}	HNTLNETVKTQEALNSLAASFKETELSITDKALNELSNKPKIPEITAWNW SKSFQEI
DarB _{pk}	MGNAINISESMKRFNILVSILSVSIAILAIYLLSTAFYSDARVDNYYQDNG NIYRVETTFNLPNGEKVRSAKSPLPLIDELEKDKRINRADYFFKLNTTIEL QGKKITKVPVFAVSHQFLNTLSPFKKIDNILGANEIYITKEFNNRYLGLEN PKGKSIVLDNETYIIKDIVEKRHDSSLNMNAIISFKPTLIKNYNKEIFNWY DTHAYIFIKLSDEKSISNRDALLNHIIATKAPNLPGAPFTASEFIHLSLKKS KDIHYQDGLPDEISIGLSKEIIYSSYIAFAFILFSTLTNYYNLTSADSAEKRD IYQLKKALGASTFNIICDSLPAMLIKIILSTLIFLLLIITIFNVSLYINNIFTLLE ADSLIYLGIFSVVIAFIFISSIHFSFSLRFYIYQRNRKMDMRYESTLASWFR KSSLAIQLLVSGISIYLVTGLTNQYIHLVDLHTPYDNAKTISIAINNDNNK KSTIDELSYEFIRKYNTSKITLSNWRPFDMSRENITINYSGQQNRNNYISS NVITADENFTDVWRMKILAGGDKRVYQSDNADVVHALVTKEFLKQNGI LKYDDIFNNYYWYTMEDKKIQIRFIQIIDDFNLGAVDEPFRPIVVFIKKDH GKYASLNLNNMKNLSPVLNELSKQGFDNNEIDLTSHLFNSYYDNYLKVI KLSSAVAIFSVLLLVIACFTTSMTDFNAMKRELSIMESIGGSIYTNLIHFLS KSVIPIIASIFVAYISGRTILVYLLDEYSVIYTDSFVYSAIALSATMIFTVIIM MTTYLVNYRKLSATKFL*
DarC _{pk}	MDIEIRKKGIHNREKLLILIFFIAFISFVVFIIYYVVSAKDAFVNENEVTQFQ VSSKVDSDILKTRAVVVPDKSVSISTEIGGIVTDIMKKPSQDVLKNEEIVK LSNFNFTLNNSSMLADVTDKLNNLINIRINLQSDYRDINNRFLEAAKELK EVEDKLKRYHDLVHKNYISKETMSDLRIKRDYWHDVYLFYKKLKNDK DRDISKQLKEIDEFVEKQRKLSDIIENGFEQLSIKSPIAGNISSLDLILGQRL

	KPGDKIAIVDDLSNFYFESEINEYYLNKITYHSSASLIYNNGKIPLLVKLIS
	${\tt SEVNNGTFKVRFELEDKKTINFKRGQSVDVMIKLDEDRKIFSVPSSMVFS}$
	IDNKNYVFVYHPDKKIARRIQVSTGQDNGSDIEIKSGVTEGQTLVSFGKN
	KLVNNDTVRIE*
	MISMMNICKSYKTKFIQTNVLNDINLNIDKGEFISIMGASGSGKSTLLNVI
	GMFETIDSGQLTLNNSNILTMKYSEKISFRREFIGYIFQSFNLLPNLTVFEN
DarDnk	IELPLKYRGFPKKQRKSKVFDAINSFGLENRENHKPIQLSGGQQQRVAIA
Durph	RAMIANPTILLADEPTGNLDSVNGQNILSSLKELNENGTTIVMVTHSVEA
	AAFSDRILTMRDGHLLV*
	MGSSHHHHHHHSQDPMNISKQSDDKRTKHSHLMALKGKLQSLEESFKNN
His ₆ -DarA _{yi}	ALYINDNEIEKIKNNTLRSKITAWNWSRSFAE*
	MRDIIPIVNIDSVNIRDINIRKLEELTSHEYKALSAYLIGKIPASQLLDGDEL
	TLFNKELTHHMEVKAINADKLVIVLKATRLCNLRCTYCHSWAEGPNQSI
	SFDILIRAIHKILSIPNVNRFEFVWHGGEVTLLKPLFFKKLIWLQQQFKRPE
	QYITNTMQSNIVNLSEEWLTFIKGIGMNVGISLDGVPAVNDKRRVDYRG
DarE _{yi}	KGTSERVAMGIKKLQHYNILYGALIVVDREVYQTDMREMLDYFISIDLT
	GIEFLNIVPDNRLAAGEYIGDNFISYAEFIKFLSDLFIIWIKDYREKIHITIFE
	DFIKALKYPDEKLSACYWSGNCSQEIITLEPNGDISPCDKYRGDANSIYGS
	ILNIELADLLANSSHNQQAVIEEIEATKKMHHCKWFSICHGGCPHDRVIN
	RRHTKGYNDTCCGTGKLLATIEDYLATTG*
	MGSSHHHHHHSQDPMNVSTKNHDAKLFPQGDNSKNRDNRETNNNRDK
His ₆ -DarA _{pa}	SEYENYPELSQWTFRF*
	MSEKIEVINIDENSDMSTNYTKKRPKIPQELYAYEDIKKIPIQDILSDEEIEI
	YENEMQKKIEVKPLGSNKLVVVTKATRLCNLRCSYCHSWAEGKNNTMS
	FSSLVAMTKRILDIPDLIRIEFVWHGGEVTRLRPEFFMKFIWLQQHIKRDN
	QFVTNAIQTNAVNISEKWIELIKRLNISVGISLDGHPEINDSRRVDLKGIGT
DarE _{pa}	SKRIEKTIQTFRNNNIKYGGLVVVDRLILESNKRELLDYFARIHLHDLVFL
	DIVPDNRLLPGESPGDSYINYFEYMDFLSELFLIWWKEYKDTINIPLFNSF
	VGVLKGASNVLMSCYWSEKCHQEVVTIEPNATVSACDKYVGSENFYYG
	SLLDNDLKTLLENSIHYEKSEKEEIDNNNNMKNCQWFNLCHGGCPQTRI
	SNRKHNKMYSDTLACCGTDKLLNTISGVL*

Supplementary Table 3. Plasmids used in this study.

Plasmid	Purpose	Source
E. coli DH5a	Host strain for cloning	TAKARA
E. coli BL21(DE3)	Host strain for expression	TAKARA
E. coli BL21star (DE3)	Host strain for expression	TAKARA
pET-28a(+)	Kan ^R , Expression vector	Novagen
pRSFDuet	Kan ^R , Expression vector	Novagen
pETDuet	Kan ^R , Expression vector	Novagen
$pRSFDuet$ -dar $A_{pk}E_{pk}$	Kan ^R , Co-expression of DarA _{pk} E _{pk}	This study
$pETDuet$ -dar BCD_{pk}	Amp ^R , Co-expression of DarBCD _{pk}	This study
$pRSFDuet$ - $darA_{pk}E_{pk(C83A)}$	Kan ^R , Co-expression of DarA _{pk} /DarE _{pk} -C83A	This study
$pRSFDuet$ - $darA_{pk(K53A)}E_{pk}$	Kan ^R , Co-expression of DarA _{pk} -K53A /DarE _{pk}	This study
$pRSFDuet$ - $darA_{pk(W51F)}E_{pk}$	Kan ^R , Co-expression of DarA _{pk} -W51F /DarE _{pk}	This study
$pRSFDuet$ - $darA_{pk(W49F)}E_{pk}$	Kan ^R , Co-expression of DarA _{pk} -W49F /DarE _{pk}	This study
$pET28a$ -dar A_{pk}	Kan ^R , Expression of DarA _{pk}	This study
$pRSFDuet$ -dar EA_{pk}	Kan ^R , Expression of DarE _{pk}	This study
$pRSFDuet$ -dar AE_{yi}	Kan^{R} , Co-expression of DarAE _{yi}	This study
$pRSFDuet$ -dar AE_{pa}	Kan^{R} , Co-expression of $DarAE_{pa}$	This study
$pRSFDuet$ - $darA_{pk}E_{yi}$	Kan^{R} , Co-expression of $DarA_{pk}E_{yi}$	This study
$pRSFDuet$ -dar $A_{pk}E_{pa}$	Kan ^R , Co-expression of DarA _{pk} E _{pa}	This study

Supplementary Table 4. Primers used in this study.

Primer	Oligonucleotide sequence (5' to 3')
DarA _{pk} _For	GGTCGCGGATCCGAATTCATGCACAACACCCTGAAC
DarA _{pk} _Rev	GAGTGCGGCCGCAAGCTTTTAAATCTCTTGGAAGCTCTTGC
DarEA _{pk} -BamHI_For	CGCGGATCCGATGGACACCATCATTCCGATCAAG
DarEA _{pk} -HindIII_Rev	CCCAAGCTTTTACGCCGCAATGGTTTGTTTGATG
DarEA _{pk} -NdeI_For	CAGCAGCGGTTTCTTTACCAGACTCGAGTTAAATCTCTTGGAAGCTCTTG
DarEA _{pk} -XhoI_Rev	CTTCCAAGGAGGTGGCAGCCAGGATCCGATGCACAACACCCTGAACGAGACCG
$DarAE_{pk}$ -C83A_For	AACCTGCGTGCCACCTGCCACAGCTGGGCGGAGGG
DarAE _{pk} -C83A_Rev	CAATAGGTAGCACGAAGGTTGCATAATCGTGTGGCCTTC

Supplementary References

- Gerlt JA, Bouvier JT, Davidson DB, Imker HJ, Sadkhin B, Slater DR, et al. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): A web tool for generating protein sequence similarity networks. *Biochim Biophys Acta* 2015, 1854(8): 1019-1037.
- Zallot R, Oberg N, Gerlt JA. The EFI Web Resource for Genomic Enzymology Tools: Leveraging Protein, Genome, and Metagenome Databases to Discover Novel Enzymes and Metabolic Pathways. *Biochemistry* 2019, 58(41): 4169-4182.
- Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2007, 2(10): 2366-2382.
- Ma S, Chen H, Li H, Ji X, Deng Z, Ding W, et al. Post-Translational Formation of Aminomalonate by a Promiscuous Peptide-Modifying Radical SAM Enzyme. Angew Chem Int Ed 2021, 60 (36): 19957-19964.
- Lanz ND, Grove TL, Gogonea CB, Lee KH, Krebs C, Booker SJ. RlmN and AtsB as models for the overproduction and characterization of radical SAM proteins. *Methods Enzymol* 2012, 516: 125-152.
- 6. Lodewyk MW, Siebert MR, Tantillo DJ. Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. *Chem Rev* 2012, **112**(3): 1839-1862.
- 7. Kutateladze AG, Reddy DS. High-Throughput in Silico Structure Validation and Revision of Halogenated Natural Products Is Enabled by Parametric Corrections to DFT-Computed (13)C NMR Chemical Shifts and Spin-Spin Coupling Constants. J Org Chem 2017, 82(7): 3368-3381.
- Imai Y, Meyer KJ, Iinishi A, Favre-Godal Q, Green R, Manuse S, et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 2019, 576(7787): 459-464.