Supplemental material

Do T. Nga,¹ Anh D. Phan,^{2,3,*} Vu D. Lam,⁴ Lilia M. Woods,⁵ and Katsunori Wakabayashi³

¹Institute of Physics Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 10000, Vietnam[†] ²Phenikaa Institute for Advanced Study, Artificial Intelligence Laboratory, Faculty of Computer Science, Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam ³Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan ⁴Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam ⁵Department of Physics, University of South Florida, Tampa, Florida 33620, United States

PACS numbers:

 $^{{\}rm *Electronic\ address:\ anh.phanduc@phenikaa-uni.edu.vn}$

 $^{^{\}dagger} Electronic address: dtnga@iop.vast.ac.vn$

FIG. 1: (Color online) The maximum surface temperature as a function of the effective projected size, w, of floating fabrics on a solution of TiN nanoparticle with $N = 10^{18}$ nanoparticles/m³ and R = 50 nm.

Figure S1 shows the temperature gradient $\Delta T(\rho = 0, z = 0)$ with w for $N = 10^{18}$ nanoparticles/m³ concentration of TiN nanoparticles with 50-nm radius.