From Inverse Sandwich $Ta_2B_7^+$ and Ta_2B_8 to Spherical Trihedral $Ta_3B_{12}^-$: Prediction of The Smallest Metallo-Borospherene

Yu Zhang, Xiao-Yun Zhao, Miao Yan, and Si-Dian Li*

Supporting Information

- **Fig. S1** Low–lying isomers of $Ta_2B_7^+$ at PBEO, BP86, and CCSD(T) levels.
- Fig. S2 Low–lying isomers of Ta₂B₈ at PBE0, BP86, and CCSD(T) levels.
- **Fig. S3** Optimized structures of the lowest–lying C_{2v} Ta₃B₁₀⁺, C_s Ta₃B₁₀⁻, and C_s Ta₃B₁₁⁻ at PBE0 level.
- **Fig. S4** Low–lying isomers of $Ta_3B_{12}^-$ at PBEO, BP86, and CCSD(T) levels.
- **Fig. S5** Optimized structures of $D_{3h} V_3 B_{12}^-$ and $D_{3h} NbB_{12}^-$.
- Fig. S6 MD simulations of $Ta_2B_7^+$ (1), Ta_2B_8 (2), and $Ta_3B_{12}^-$ (3) at 1200 K, 700 K, and 1200 K.
- **Fig. S7** Delocalized σ and π -CMOs of D_{6h} Ta₂B₆ and Ta₂B₇⁺ (1)
- **Fig. S8** Ring current maps of (a) D_{7h} Ta₂B₇⁺ (1), (b) D_{8h} Ta₂B₈ (2), and (c) D_{3h} Ta₃B₁₂⁻ (3).
- Fig. S9 Simulated IR, Raman, and UV-vis spectra of (a) $Ta_2B_7^+$ (1) and (b) Ta_2B_8 (2) at PBEO.
- **Table S1** Optimized coordinates of (a) $D_{7h} Ta_2B_7^+$ (**1**), (b) $D_{8h} Ta_2B_8$ (**2**), (c) $D_{3h} Ta_3B_{12}^-$ (**3**) at PBEO.
- Table S2 Optimized structures and coordinates (in Å) of the second, third, and fourthlowest-lying isomers of $Ta_3B_{12}^-$ at PBE0//B/aug-cc-pVTZ/Ta/Stuttgart+2f1glevel.

Fig. S1 Low–lying isomers of $Ta_2B_7^+$ at PBE0, BP86 (in parentheses), and CCSD(T) (in square brackets) levels, with the relative energies indicated in eV.

 $\Delta E \quad PBE0 \; B/ \; aug-cc-pVTZ/Ta/Stuttgart(2flg) , () \; at \; BP86 \; B/aug-cc-pVTZ/Ta/Stuttgart(2flg) , [] \; at \; CCSD(T) \; \; B/aug-cc-pVTZ/Ta/Stuttgart(2flg) , (] \; at \; BP86 \; B/aug-cc-pVTZ/Ta/Stuttgart(2flg) , [] \; at \; CCSD(T) \; \; B/aug-cc-pVTZ/Ta/Stuttgart(2flg) , (] \; at \; BP86 \; B/aug-cc-pVTZ/Ta/Stuttgart(2flg) , (] \; at \; B/aug-cc-pVTZ/Ta/Stuttgart(2flg) , (] \; at \; BP86 \; B/aug-cc-pVTZ/Ta/Stuttgart(2flg) , (] \; at \; BP86 \; B/aug-cc-pVTZ/Ta/Stuttgart(2flg) , (] \; at \; BP86$

Fig. S2 Low–lying isomers of Ta_2B_8 at PBEO, BP86 (in parentheses), and CCSD(T) (in square brackets) levels, with the relative energies indicated in eV.

 $\Delta E \quad PBE0 \; B/ \; aug-cc-pVTZ/Ta/Stuttgart(2flg) \;, () \; at \; BP86 \; B/aug-cc-pVTZ/Ta/Stuttgart(2flg) \;, [\;] \; at \; CCSD(T) \; \; B/aug-cc-pVTZ/Ta/Stuttgart(2flg) \;, () \; at \; BP86 \; B/aug-c$

Fig. S3 Optimized structures of the lowest–lying C_{2v} Ta₃B₁₀⁺, C_s Ta₃B₁₀⁻, and C_s Ta₃B₁₁⁻ at PBE0//B/aug–cc–pVTZ/Ta/Stuttgart+2f1g level.

Fig. S4 Low–lying isomers of $Ta_3B_{12}^-$ at PBE0, BP86 (in parentheses), and CCSD(T) (in square brackets) levels, with the relative energies indicated in eV.

ΔE PBE0 B/ aug-cc-pVTZ/Ta/Stuttgart(2flg), () at BP86 B/aug-cc-pVTZ/Ta/Stuttgart(2flg), [] at CCSD(T) B/aug-cc-pVTZ/Ta/Stuttgart(2flg)

Fig. S5 Optimized structures of $D_{3h} V_3 B_{12}^-$ and $D_{3h} Nb_3 B_{12}^-$.

Fig. S6 MD simulations of $Ta_2B_7^+$ (1), Ta_2B_8 (2), and $Ta_3B_{12}^-$ (3) at 1200 K, 700 K, and 1200 K, respectively, with the calculated average root-mean-square-deviations (RMSD) and maximum bond length deviations (MAXD) indicated.

Fig. S7 Delocalized σ - and π -CMOs of (a) D_{6h} Ta₂B₆ and (b) Ta₂B₇⁺ (1) at PBE0//B/aug-cc-pVTZ/Ta/Stuttgart+2f1g level.

Fig. S8 Top and side views of the ring current maps of (a) D_{7h} Ta₂B₇⁺ (**1**), (b) D_{8h} Ta₂B₈ (**2**), and (c) D_{3h} Ta₃B₁₂⁻ (**3**) with the iso–surface value of 0.05. The external magnetic field B is applied in the vertical direction parallel to the C_7 axis of Ta₂B₇⁺ (**1**), C_8 axis of Ta₂B₈ (**2**), and C_2 axis of Ta₃B₁₂⁻ (**3**), with the induced current vectors represented by red arrows on the iso–surfaces.

Fig. S9 Simulated IR, Raman, and UV–vis spectra of (a) $Ta_2B_7^+$ (1) and (b) Ta_2B_8 (2) at PBE0//B/aug–cc–pVTZ/Ta/Stuttgart+2f1g level.

Table S1 Optimized coordinates (in Å) of (a) D_{7h} Ta₂B₇⁺ (**1**), (b) D_{8h} Ta₂B₈ (**2**), and (c) D_{3h} Ta₃B₁₂⁻ (**3**) at PBE0//B/aug-cc-pVTZ/Ta/Stuttgart+2f1g level.

(a) $D_{7h} Ta_2 B_7^+$ (1)			
В	0.00000000	1.77240700	0.00000000
В	1.38572300	1.10507800	0.00000000
В	1.72796900	-0.39439800	0.00000000
В	0.76901900	-1.59688300	0.00000000
В	-0.76901900	-1.59688300	0.00000000
В	-1.72796900	-0.39439800	0.00000000
В	-1.38572300	1.10507800	0.00000000
Та	0.00000000	0.00000000	1.43155300
Та	0.00000000	0.00000000	-1.43155300
(b) <i>D</i> _{8h} Ta ₂ B ₈ (2)			
В	0.00000000	2.01204000	0.00000000
В	-1.42272700	1.42272700	0.00000000
В	1.42272700	1.42272700	0.00000000
В	-2.01204000	0.00000000	0.00000000
В	0.00000000	-2.01204000	0.00000000
В	2.01204000	0.00000000	0.00000000
В	-1.42272700	-1.42272700	0.00000000
В	1.42272700	-1.42272700	0.00000000
Та	0.00000000	0.00000000	1.26069100
Та	0.00000000	0.00000000	-1.26069100
(c) $D_{3h} Ta_3 B_{12}^{-}$ (3)			
Та	0.00000000	1.75299000	0.0000000
Та	-1.51813400	-0.87649500	0.00000000
В	-0.86896500	0.50169700	1.66873400
В	-2.04920100	1.18310700	-0.79218300
В	2.04920100	1.18310700	0.79218300
В	0.00000000	-2.36621400	-0.79218300
В	-0.86896500	0.50169700	-1.66873400
Та	1.51813400	-0.87649500	0.00000000
В	-2.04920100	1.18310700	0.79218300
В	0.86896500	0.50169700	-1.66873400
В	2.04920100	1.18310700	-0.79218300
В	0.00000000	-1.00339400	1.66873400
В	0.86896500	0.50169700	1.66873400
В	0.00000000	-1.00339400 -1.668734	
В	0.00000000	-2.36621400	0.79218300

Table S2 Optimized structures and coordinates (in Å) of the second (a), third (b), and fourth (c) lowest-lying isomers of $Ta_3B_{12}^-$ at PBEO//B/aug-cc-pVTZ/Ta/Stuttgart+2f1g level.

(a) $C_{2v} Ta_3 \& B_{12}^{-} ({}^{1}A_1)$

Та	0.00000000	-0.00000000	-1.18138959
Та	1.61200407	-0.00000000	0.79548931
В	-0.87388535	2.05490675	-0.24101743
В	0.87388535	2.05490675	-0.24101743
В	2.04989728	1.41510588	-1.05430960
В	-2.04989728	1.41510588	-1.05430960
В	-0.87388535	-2.05490675	-0.24101743
В	2.04989728	-1.41510588	-1.05430960
В	2.52818198	-0.00000000	-1.42127888
Та	-1.61200407	-0.00000000	0.79548931
В	0.00000000	1.50686895	1.02193303
В	0.87388535	-2.05490675	-0.24101743
В	-2.04989728	-1.41510588	-1.05430960
В	0.00000000	-1.50686895	1.02193303
В	-2.52818198	-0.00000000	-1.42127888

В	-1.97828846	0.00902592	-0.87616371
В	1.47502860	-1.16386702	-1.62116014
В	-1.24711597	1.20470515	0.00000000
В	0.07624476	-1.39914596	-2.37875132
В	-1.97828846	0.00902592	0.87616371
В	-1.36473271	-0.90129011	-2.05961627
В	2.08867015	-1.23110912	0.00000000
В	1.92055198	0.23141641	-0.83424377
В	1.47502860	-1.16386702	1.62116014
В	1.92055198	0.23141641	0.83424377
В	0.07624476	-1.39914596	2.37875132
В	-1.36473271	-0.90129011	2.05961627
Та	0.05413926	0.80620507	-1.76350194
Та	0.05413926	0.80620507	1.76350194
Та	-0.18356362	-1.16897688	0.00000000

(c) $C_{\rm s} \, {\rm Ta}_3 \& {\rm B}_{12}^- \, ({}^1{\rm A}')$

В	-0.90132581	0.74945409	-1.77220111
В	-0.77430741	-0.90645969	-1.56299986
В	0.51482107	-0.08179237	-2.16804413
В	2.01447036	0.06524607	-1.90556231
В	3.00927217	0.18263596	-0.75456444
В	3.00927217	0.18263596	0.75456444
В	2.01447036	0.06524607	1.90556231
В	0.51482107	-0.08179237	2.16804413
В	-0.77430741	-0.90645969	1.56299986
В	-0.90132581	0.74945409	1.77220111
В	-1.45299833	1.84115969	0.77559177
В	-1.45299833	1.84115969	-0.77559177
Та	0.78855315	1.21481144	0.0000000
Та	0.89842378	-1.24995120	0.0000000
Та	-2.01710461	-0.21831828	0.0000000