# Inhibition of SARS-CoV-2 main protease by phenolic compounds from *Manilkara hexandra* (Roxb.) Dubard assisted by *in Silico* virtual screening

Fatma M. Abd El-Mordy<sup>1</sup>, Mohamed M. El-Hamouly<sup>2</sup>, Magda T. Ibrahim<sup>3</sup>, Gehad Abd El-Rheem<sup>4</sup>, Omar M. Aly<sup>5</sup>, Adel M. Abd El-kader<sup>6,7</sup>, Khayrya A. Youssif<sup>8</sup>, Usama Ramadan Abdelmohsen<sup>6,9\*</sup>

<sup>1</sup>Department of Pharmacognosy, Faculty of Pharmacy (Girls), Al-Azhar University, 11754 Cairo, Egypt.

<sup>2</sup>Department of Pharmacognosy, Faculty of Pharmacy (Boys), Al-Azhar University, 11371 Cairo, Egypt.

<sup>3</sup>Department of Pharmacognosy, Faculty of Pharmacy, Sinai University, 41636 Kantara Branch.

<sup>4</sup>Department of Pharmacology, National Research Centre, 12622 Giza, Egypt.

<sup>5</sup>Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.

<sup>6</sup>Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 61111 Minia, Egypt

<sup>7</sup>Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt

<sup>8</sup>Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.

<sup>9</sup>Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.

\*Corresponding author: <u>Usama.ramadan@mu.edu.eg</u>

# **Table of Contents**

| Figure S1:  | UV spectra of Compound I.                                                       | 7  |
|-------------|---------------------------------------------------------------------------------|----|
| Figure S2:  | <sup>1</sup> H-NMR spectrum of compound I in (DMSO- $d_{6-}$ 400 MHz).          | 8  |
| Figure S3:  | <sup>13</sup> C-NMR spectrum of compound I in (DMSO- $d_{6-}$ 100 MHz).         | 9  |
| Figure S4:  | UV spectra of compound II.                                                      | 10 |
| Figure S5:  | Negative ESI/MS spectra of compound II.                                         | 11 |
| Figure S6:  | <sup>1</sup> H-NMR spectrum of compound <b>II</b> in (DMSO- $d_{6-}$ 400 MHz).  | 12 |
| Figure S7:  | <sup>13</sup> C-NMR spectrum of compound II in (DMSO- $d_{6-}$ 100 MHz).        | 13 |
| Figure S8:  | Partial expansion of the <sup>13</sup> C-NMR spectrum of compound II in         | 14 |
|             | (DMSO- <i>d</i> <sub>6</sub> -100 MHz).                                         |    |
| Figure S9:  | <sup>1</sup> H-NMR spectrum of compound <b>III</b> in (DMSO- $d_{6-}$ 400 MHz). | 15 |
| Figure S10: | Partial expansion of the <sup>1</sup> H-NMR spectrum of compound III in         | 16 |
|             | (DMSO- <i>d</i> <sub>6</sub> -400 MHz).                                         |    |
| Figure S11: | <sup>13</sup> C-NMR spectrum of compound III in (DMSO- $d_{6-}$ 100 MHz).       | 17 |
| Figure S12: | Partial expansion of the <sup>13</sup> C-NMR spectrum of compound III in        | 18 |
|             | (DMSO- <i>d</i> <sub>6</sub> -100 MHz).                                         |    |
| Figure S13: | DEPT-135 spectrum of compound III in (DMSO- <i>d</i> <sub>6</sub> -100 MHz).    | 19 |
| Figure S14: | <sup>1</sup> H-NMR spectrum of compound IV in (DMSO- $d_{6-}$ 400 MHz)          | 20 |
| Figure S15: | Partial expansion of the <sup>1</sup> H-NMR spectrum of compound IV in          | 21 |
|             | (DMSO- <i>d</i> <sub>6</sub> -400 MHz).                                         |    |
| Figure S16: | DEPT-135 spectrum of compound IV in (DMSO- <i>d</i> <sub>6</sub> -100 MHz)      | 22 |
| Figure S17: | Partial expansion of the DEPT-135 spectrum of compound IV in                    | 23 |
|             | (DMSO- <i>d</i> <sub>6</sub> -100 MHz).                                         |    |
| Figure S18: | Metabolomic chromatogram of different extracts of Manilkara                     | 24 |
|             | hexandra (Roxb.) Dubard.                                                        |    |
| Figure S19: | Metabolomic chromatogram of the ethyl acetate extract of Manilkara              | 25 |
|             | <i>hexandra</i> (Roxb.) Dubard bark.                                            |    |
| Figure S20: | Metabolomic chromatogram of the methanol extract of Manilkara                   | 26 |
|             | hexandra (Roxb.) Dubard leaves.                                                 |    |

#### Methods: *Compound I*

*UV/Vis* λ<sub>max</sub> (MeOH) *nm*: 254, 302, 377; (+ NaOMe): 284 sh, 317, 416; (+ NaOAc): 265, 332, 385; (+ NaOAc/H<sub>3</sub>BO<sub>3</sub>): 232.5, 258, 300; (+ AlCl<sub>3</sub>): 269, 309 sh, 447 ;( + AlCl<sub>3</sub>/HCl): 269, 314, 428.

*Positive MS, m/z* 319 [M+H]<sup>+</sup> for a MF: C<sub>15</sub>H<sub>10</sub>O<sub>8</sub>.

<sup>1</sup>H NMR (400 MHz, DEMSO-*d*<sub>6</sub>, TMS as int. std , δ, ppm): 12.69 ( br s, 1 H , 5-OH), 10.91-9.28 ( br s , 4H, 7 , 3' , 4' , 5' - OH ) 6.89 (s, 2H, H-2' , 6' ) , 6.39 (d, 1 H , *J*=2.1 Hz, H-8), 6.21 (d, 1 H , *J*=2.1 Hz, H - 6 ), <sup>13</sup>C NMR (100 MHz, DEMSO-*d*<sub>6</sub>) 157.96 (C-2), 134.74 (C-3), 178.24 (C-4), 161.76 (C-5), 99.13 (C-6), 164.63 (C-7), 94.00 (C-8), 156.87 (C-9), 104.50 (C-10), 120.08 (C-1'), 108.38 (C-2', C-6'), 146.22 (C-3', C-5'), 136.91 (C-4').

### **Compound II**

*UV/Vis* λ<sub>max</sub> (MeOH) *nm*: 257.5, 301.5, 352.5; (+ NaOMe): 270.5 sh, 322, 391.5; (+ NaOAc): 271, 322.5, 381; (+ NaOAc/H<sub>3</sub>BO<sub>3</sub>): 265, 339, 376.5; (+ AlCl<sub>3</sub>): 273, 312 sh, 365.5, 420 ;( + AlCl<sub>3</sub>/HCl): 272.5, 302.5, 369.5, 422.5.

*Negative MS*, *m*/*z* 463.0 [M-H]<sup>-</sup> for a MF: C<sub>21</sub> H<sub>19</sub>O<sub>12</sub>, 316.04 [M- rhamnose]<sup>-</sup>. <sup>1</sup>H NMR (400 MHz, DEMSO-*d*<sub>6</sub>, TMS as int. std , δ, ppm): 12.69 ( br s, 1 H , 5-OH), 10.86-9.27 ( br s , 4H, 7 , 3 ' , 4 ' , 5 ' - OH ), 6.90 (s, 2H, H-2' , 6' ) , 6.38 (d, 1 H , *J*=2 Hz, H-8), 6.21 (d, 1 H , *J*=2 Hz, H - 6 ) , 5.21 (br *s*, 1H, H-1" of rhamnose), 3.99-3.17 (m, sugar protons ) , 0.86 (d, *J*= 6 Hz, 3H, rhamnose - CH<sub>3</sub>), <sup>13</sup>C NMR (100 MHz, DEMSO-*d*<sub>6</sub>) 157.96 (C-2), 134.74 (C-3), 178.24 (C-4), 161.77 (C-5), 99.14 (C-6), 164.63 (C-7), 94.00 (C-8), 156.87 (C-9), 104.51 (C-10), 120.09 (C-1<sup>-</sup>), 108.38 (C-2<sup>-</sup>, C-6<sup>-</sup>), 146.22 (C-3<sup>-</sup>, C-5<sup>-</sup>), 136.91 (C-4<sup>-</sup>), 102.37 (C-1<sup>-+</sup>), 70.85 (C-2<sup>-+</sup>), 71.02 (C-3<sup>-+</sup>), 71.73 (C-4<sup>++</sup>), 70.48 (C-5<sup>++</sup>), 17.99 (C-6<sup>++</sup>).

### **Compound III**

*UV/Vis* λ<sub>max</sub> (MeOH) *nm*: 265, 298sh, 338sh; (+ NaOMe): 271, 328sh, 372; (+ NaOAc): 272, 340sh; (+ NaOAc/H<sub>3</sub>BO<sub>3</sub>): 265, 305, 340sh; (+ AlCl<sub>3</sub>): 274, 302, 340, 392sh; (+ AlCl<sub>3</sub>/HCl): 274, 302, 340, 392sh.

*Positive MS*, m/z 479.0 [M<sub>+</sub> H]<sup>+</sup> for a MF: C<sub>22</sub>H<sub>22</sub>O<sub>12</sub>, 333 [aglycon + H]<sup>+</sup>. <sup>1</sup>H NMR (400 MHz, DEMSO- $d_6$ , TMS as int. std ,  $\delta$ , ppm) 12.58 ( br s, 1 H , 5-OH), 10.95-9.47 ( br s , 3H, 7 , 3 ' , 5 ' - OH ) 6.82 (s, 2H, H-2' , 6 ' ) , 6.39 (d, 1 H , *J*=2.1 Hz, H-8), 6.22 (d, 1 H , *J*=2.1 Hz, H - 6 ) , 5.16 (br s, 1H, H-1" of rhnmnose), 3.75 ( s , 3H, 4'-OCH<sub>3</sub>), 3.99-3.15 (m, sugar protons ) , 0.83 (d, *J*=6 Hz, 3H, rhamnose - CH<sub>3</sub>), <sup>13</sup>C NMR (100 MHz, DEMSO-*d*<sub>6</sub>) 157.91 (C-2), 135.17 (C-3), 178.04 (C-4), 161.36 (C-5), 99.30 (C-6), 164.44 (C-7), 94.33 (C-8), 156.94 (C-9), 104.67 (C-10), 125.034 (C-1`), 108.83 (C-2`, C-6`), 150.73 (C-3`, C-5`), 138.20 (C-4`), 102.28 (C-1``), 70.33 (C-2``), 70.96 (C-3``), 71.40 (C-4``), 70.52 (C-5``), 17.42 (C-6``), 60.45 (C4'-O-CH<sub>3</sub>). *Compound IV*

*Positive MS, m/z*, 641  $[M_+H]^+$  for a MF: C<sub>28</sub>H<sub>32</sub>O<sub>17</sub>.

<sup>1</sup>H NMR (400 MHz, DEMSO-*d*<sub>6</sub>, TMS as int. std, δ, ppm): 12.58 ( br s, 1 H , 5-OH), 10.89-9.47 ( br s , 3H, 7 , 3 ' , 5 ' - OH ) 6.82 (s, 2H, H-2' , 6 ' ) , 6.38 (d, 1 H , *J*=2 Hz, H-8), 6.22 (d, 1 H , *J*=2 Hz, H - 6 ) , 5.16 (br s, 1H, H-1"' of rhnmose), 4.95 (d, 1H, *J*= 6.6 Hz, H-1" of glucose), 3.75 ( s , 3H, 4'-OCH<sub>3</sub>), 4.15-3.15 (m, sugar protons ) , 0.82 (d, *J*=5.8 Hz, 3H, rhamnose - CH<sub>3</sub>). <sup>13</sup>C NMR (100 MHz, DEMSO-*d*<sub>6</sub>) (**Table 2**) 157.91 (C-2), 135.17 (C-3), 178.04 (C-4), 161.36 (C-5), 99.25 (C-6), 164.44 (C-7), 94.12 (C-8), 156.94 (C-9), 104.67 (C-10), 129.12 (C-1`), 109.09 (C-2`, C-6`), 150.73 (C-3`, C-5`), 138.20 (C-4`), 102.63 (C-1``), 73.64 (C-2``), 77.13 (C-3``), 70.51 (C-4``), 77.50 (C-5``), 67.87 (C-6``), 101.23 (C-1``), 70.80 (C-2``), 71.01 (C-3```), 71.62 (C-4```), 69.87 (C-5```), 17.93 (C-6```), 60.24 (C4'-O-CH<sub>3</sub>).

#### **Results and discussion:**

**Compound I** was obtained as a yellow amorphous powder (35mg), melting point 357-359 °C. It exhibited a yellow fluorescence spot under long UV light turned to yellowish orange with Naturstoff and gave a faint blue color with FeCl<sub>3</sub>. UV spectrum of compound I (Supplementary Materials, Figure S1) indicates a flavonol nucleus with free OH at 4' position, the free hydroxyl group at C-3, C-5, C-7, and orthodihydroxy group at 3' and 4' position. The <sup>1</sup>H-NMR spectrum (Supplementary Materials, Figure S2) exhibited a characteristic meta-coupled proton signal at  $\delta$  6.21 (1H, d, J = 1.4 Hz) and 6.38 (1H, d, J = 1.4 Hz) corresponding to H-6 and H-8 of flavonoid A ring. The other AX coupling system at  $\delta$  6.89 (2H, br s) was assigned to H-2' and H-6' of B ring. The <sup>13</sup>C-NMR spectrum of I (Supplementary Materials, Figure S3) revealed the presence of 15 carbon signals from which two signals were representing two equivalent carbons  $\delta$  146.03 at (C-3', 5') and  $\delta$  108.38 (C-2', 6') pairs of equivalent carbons. Eight carbon resonances are aromatic oxygenated at  $\delta$  164.63 (C-7), 161.76 (C-5), 156.87 (C-9), 157.96 (C-2), 134.79 (C-4'), 134.74(C-3), six aromatic non-oxygenated carbons at  $\delta$  120.08 (C-1'), 108.38(C-2'/6'), 104.50 (C-

10), 99.13 (C-6), 94.00 (C-8) and one carbonyl signal at 178.24(C-4). By comparing the NMR spectral data with those reported in the literature, the structure of compound I was determined as 3, 5, 7, 3', 4', 5'- hexahydroxy – flavone (Myricetin)<sup>29</sup>.

**Compound II** was obtained as a yellow amorphous powder (578 mg). A deep purple fluorescence spot appeared under long UV light turned to yellowish-orange color with Naturstoff and faint blue color with FeCl<sub>3</sub>. UV spectrum of compound II (Supplementary Materials, Figure S4) is similar to that of compound I. Its molecular formula was established as  $C_{21}H_{20}O_{12}$  based on an ion peak [M-H]<sup>-</sup> at m/z 463 in -ve ESI/MS (Supplementary Materials, Figure S5). The spectroscopic data of II were similar to I (Supplementary Materials, Figure S6, S7, S8) except for the appearance of an  $\alpha$ -Lrhamnopyranosyl moiety. So, the <sup>1</sup>H-NMR spectrum of II (Supplementary Materials, Figure S6)showed the presence of an anomeric proton signal at  $\delta$  5.21 (1H, br s), a methyl signal at  $\delta$  0.86 (3H, d, J = 6 Hz) and of six additional carbon signals at  $\delta$  102.37 (C-1"), 70.85 (C-2"), 71.02 (C3"), 71.73 (C-4"), 70.48 (C-5"), and 17.99 (C-6"). From these data together with <sup>13</sup>C-NMR spectral data(Supplementary Materials, Figure S7, S8) indicating compound II was identified as Myricetin 3-O- $\alpha$ -L-<sup>1</sup>C<sub>4</sub> rhamnopyranoside (Myricitrin)<sup>30</sup>

**Compound III** was obtained as yellow needles (19 mg), on PC. It showed a purple spot under UV and UV/NH<sub>3</sub>. Its spectroscopic data were similar to compound **II** (Supplementary Materials, Figure S9-S13). The <sup>1</sup>H-NMR spectrum of **III** showed myricetin skeleton in addition to the presence of an anomeric proton signal of rhamnose at  $\delta$  5.16 (1H, br s), a methyl signal at  $\delta$  0.83 (3H, d, J = 6 Hz) and an additional singlet signal at  $\delta$  3.75 (s,3H) indicating 4'-OCH<sub>3</sub> (Supplementary Materials, Figure S9, S10). <sup>13</sup>C-NMR spectrum of compound III showed carbon resonances which are characteristic for myricetin aglycone in addition to six carbon signals of rhamnose moiety at  $\delta$  102.28 (C-1"), 70.33 (C-2"), 70.96 (C3"), 71.40 (C-4"), 70.52 (C-5"), and 17.42 (C-6") and an additional signal at  $\delta$  60.45 indicating 4'-OCH<sub>3</sub> (Supplementary Materials, Figure S11, S12, S13). From the previous data, compound **III** was identified as Myricetin-4'-*O*-methyl ether-3-*O*- $\alpha$ -L-rhamnopyranoside (**Mearnsitrin**)<sup>19</sup>.

**Compound IV** was obtained as a dark yellow amorphous powder (16.6 mg), on PC. it showed a purple spot under UV and UV/NH<sub>3</sub>. *UV/Vis*  $\lambda_{max}$  data is similar to that of compound III. Compound IV gives the typical signals of myricetin aglycon in <sup>1</sup>H-

NMR and <sup>13</sup>C- NMR (Supplementary Materials, Figure S14-S17), in addition to a single signal in <sup>1</sup>H-NMR at 3.75 representing 3H indicating the presence of methoxy group, the OCH3 position is confirmed by <sup>13</sup>C- NMR which shows a downfield shift of C-4' to  $\delta$  138.20 and a signal at  $\delta$  60.24 ppm indicating C-4'-OCH3 (similar to compound **III**). In addition to the presence of the two anomeric protons in the <sup>1</sup>H-NMR spectrum (Supplementary Materials, Figure S14-S15) at  $\delta$  5.16 (1H, br **s**) and  $\delta$  4.95 (**1H,d**, J= 6.6 Hz) together with a signal at 0.82 (**d**, J=5.8 Hz), and two anomeric carbons in the <sup>13</sup>C-NMR spectrum(Supplementary Materials, Figure S16-S17) at  $\delta$  101.23 and  $\delta$  102.63 ppm indicating rhamnose and glucose sugar moiety respectively, the downfield shift of C-6" of glucose to  $\delta$  67.87 indicating rutinoside structure. From these data, compound IV was identified as Mearnsetin-3-*O*-β-D-rutinoside <sup>19</sup>.



Figure S1: UV spectra of Compound I



Figure S2: <sup>1</sup>H-NMR spectrum of compound I in (DMSO-*d*<sub>6</sub>. 400 MHz)



Figure S3: <sup>13</sup>C-NMR spectrum of compound I in (DMSO-d<sub>6</sub>. 100 MHz)



Figure S4: UV spectra of Compound II



Figure S5: Negative ESI/MS spectra of compound II.



Figure S6: <sup>1</sup>H-NMR spectrum of compound II in (DMSO-*d*<sub>6</sub>. 400 MHz)



e S7: <sup>13</sup>C-NMR spectrum of compound II in (DMSO-*d*<sub>6</sub>-100 MHz)



Figure S8: Partial expansion of the <sup>13</sup>C-NMR spectrum of compound II in (DMSO-*d*<sub>6</sub>-100 MHz)



**Figure S9:** <sup>1</sup>H-NMR spectrum of compound **III** in (DMSO-*d*<sub>6</sub>. 400 MHz)



**Figure S10:** Partial expansion of the <sup>1</sup>H-NMR spectrum of compound **III** in (DMSO-*d*<sub>6</sub>. 400 MHz)



Figure S11: <sup>13</sup>C-NMR spectrum of compound III in (DMSO-*d*<sub>6</sub>. 100 MHz)



**Figure S12:** Partial expansion of the <sup>13</sup>C-NMR spectrum of compound **III** in (DMSO-*d*<sub>6</sub> 100 MHz)



**Figure S13:** DEPT-135 spectrum of compound **III** in (DMSO-*d*<sub>6</sub>. 100 MHz)



**Figure S14:** <sup>1</sup>H-NMR spectrum of compound **IV** in (DMSO-*d*<sub>6</sub>. 400 MHz)



Figure S15: Partial expansion of the <sup>1</sup>H-NMR spectrum of compound IV in (DMSO-*d*<sub>6</sub>. 400 MHz)



**Figure S16:** DEPT-135 spectrum of compound **IV** in (DMSO-*d*<sub>6</sub>-100 MHz)



Figure S17: Partial expansion of the DEPT-135 spectrum of compound IV in (DMSO-*d*<sub>6</sub>-100 MHz)



Figure S18: Total Ion chromatogram of different extracts of *Manilkara hexandra* (Roxb.) Dubard.



Figure S19: Total ion chromatogram of the ethyl acetate extract of *Manilkara hexandra* (Roxb.) Dubard bark



Figure S20: Total ion chromatogram of the methanol extract of *Manilkara hexandra* (Roxb.) Dubard leaves.