Supplementary information

Preparation and characterization of novel polyoxometalate/CoFe₂O₄/metal– organic framework magnetic core-shell nanocomposites for rapid removal of organic dyes from water

Afsoon Jarrah and Saeed Farhadi*

Department of Chemistry, Lorestan University, Khorramabad, 68151-44316, Iran

*Corresponding author: E-mails: farhadi.s@lu.ac.ir

Equations used for thermodynamic and kinetic models in this work:

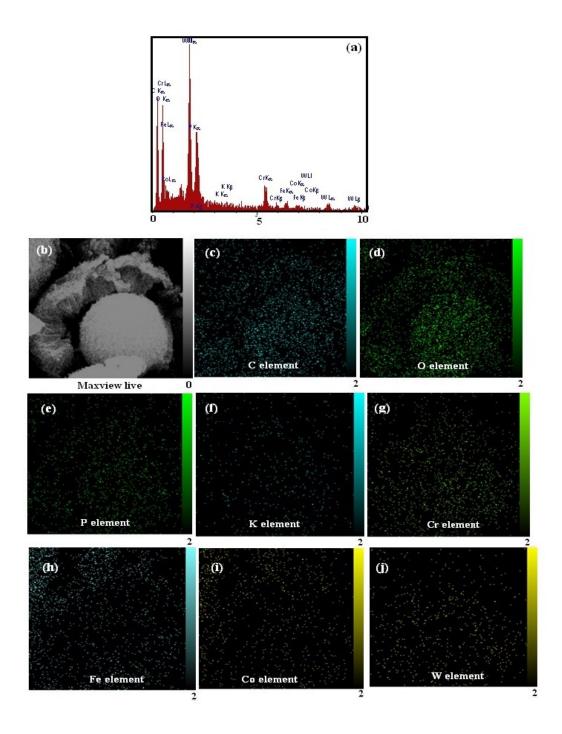
$$\frac{Ce}{qe} = \frac{Ce}{qm} + \frac{1}{qm \, kL} \tag{Eq. S1}$$

Where $K_{L,}q_{m}$, and C_{e} are the Langmuir constant (mg l⁻¹), high adsorption capacity (mg g⁻¹), and the equilibrium concentration of pollutant solution (mg l⁻¹), respectively, that q_{m} and K_{L} were calculated from the intercept and slope of isotherm plots.

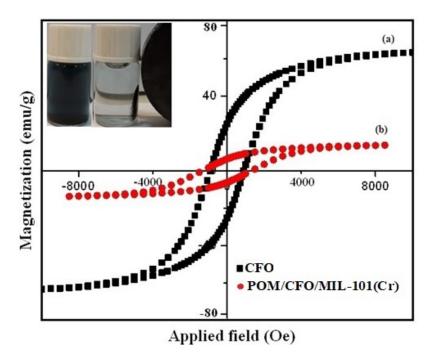
$$R_L = \frac{1}{1 + K_L C_o} \tag{Eq. S2}$$

Where C_0 is the primary dye concentration, the R_L factor offers the kind of the isotherm to be favorable (0 < R_L < 1), irreversible (R_L = 0), linear (R_L = 1), or unfavorable (R_L > 1 or R_L < 0).

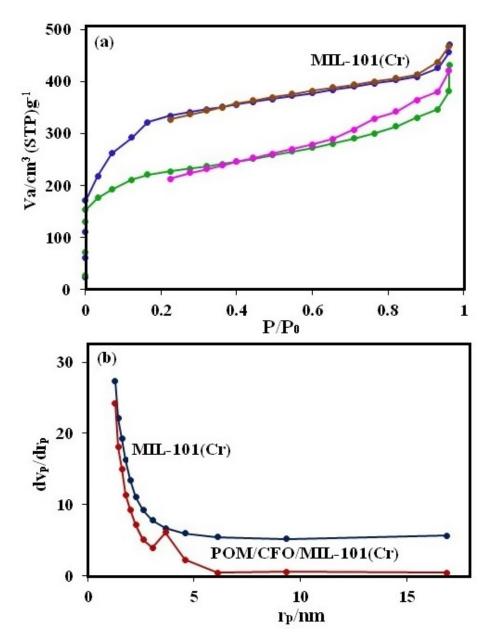
$$Logqe = Logkf + \frac{1}{n}LogCe$$
(Eq. S3)

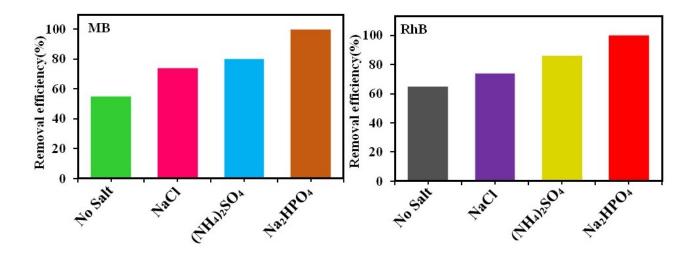

Where n and $K_f(mg/g)$ indicate heterogeneity factor and Freundlich constant connecting to the adsorption intensity and capacity, respectively.

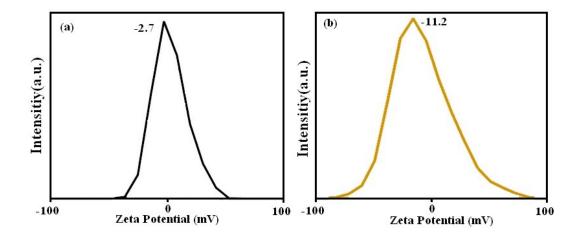
$$\ln(q_e - q_t) = \ln q_e - k_1 t \tag{Eq. S4}$$


$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t \tag{Eq. S5}$$

$$q_t = k_p t^{\frac{1}{2}} + I \tag{Eq.S6}$$


Where q_t and $q_e(mg/g)$ are the concentrations of dye adsorbed at any time t and equilibrium time (min), respectively. $k_1(min^{-1})$ and $k_2(g mg^{-1}min^{-1})$ are the rates constants of adsorption for the pseudo-first-order and the pseudo-second-order models respectively, and $k_p (mg/g^{-1}min^{-1})$ and I are the intraparticle dissemination rate constant and intercept for the first linear phase.


Fig. S1. EDX spectrum (a) and a representative SEM image of the POM/CFO/MIL-101(Cr) (b) with corresponding EDX elemental mappings (c)-(j).


Fig. S2. Magnetization curves of CFO (a) and POM/CFO/MIL-101(Cr) (b). The inset shows the use of an outer magnetic field to separate the POM/CFO/MIL-101(Cr) sample.

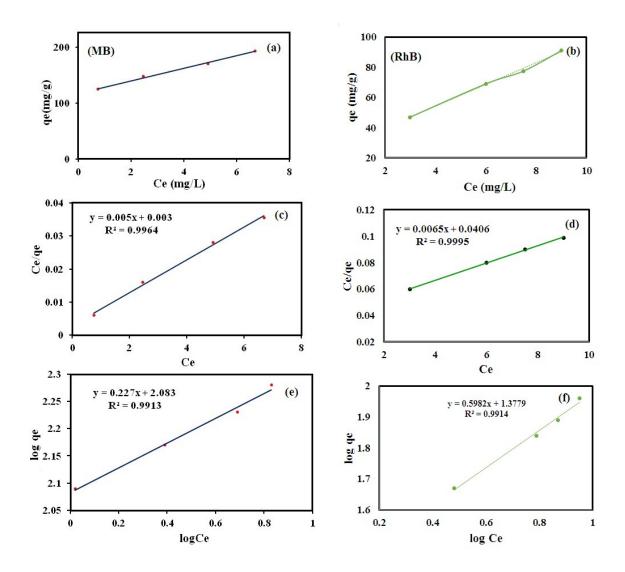

Fig. S3. BET isotherms (b) and pore size distributions of MIL-101(Cr) and POM/CFO/MIL-101(Cr) samples.

Fig S4.the effect of salt on the dye adsorption by the POM/CFO/MIL-101(Cr). Conditions: $C_{0(MB)} = 100 \text{ mg/L}$, $C_{0(RhB)} = 50 \text{ mg/L}$, adsorbent dose = 30 mg, pH = 6 and temp. = 25 °C. The contact adsorption times for MB and RhB dyes were 20 and 25 min, respectively.

Fig. S5. Zeta potential curves of (a) pure MIL-101 and (b) $P_2Mo_{18}/MIL-101$ (Cr) in aqueous solutions at natural pH of about 6.5.

Fig. S6. Adsorption isotherm curves of (a) MB and (b) RhB, onto POM/CFO/MIL-101(Cr), (c, b) Langmuir, and (e, f) Freundlich isotherms.

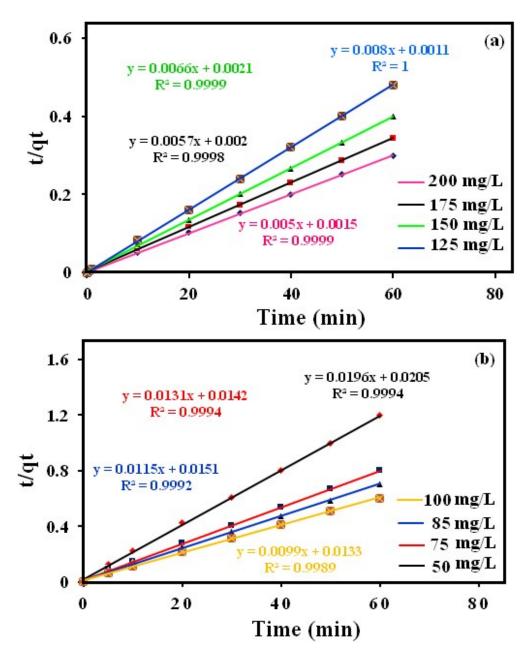


Fig. S7. Pseudo-second order kinetics for MB (a) and RhB (b) adsorptions.

Adsorbent	Adsorption capacity (mg/g)	C _{MB} (mg L ⁻¹)	Time	Ref.
$H_6P_2W_{18}O_{62}/MOF-5$	51.81	10	10 min	[48]
MOF/GO	183.4	36	30 min	[49]
Mesoporous MIL-101	22.5	30	2 h	[50]
MOF-235	187	300	12 h	[51]
H ₃ PW ₁₂ O ₄₀ @Mn ^{III} porphyrin	10.5	10	24 h	[52]
MOF-Cu-BTC	15.28	3.19	6 h	[53]
$H_6P_2W_{18}O_{62}@Cu_3(BTC)_3$	18.51	40	1 h	[54]
Carbon nanotubes	35.4	35	50 min	[55]
Activated carbon	135	60	10 min	[56]
Exfoliated grapheme oxide	17.3	30	80 min	[57]
Nano-ZIF - 8	126	60	30 min	[58]
H ₃ PW ₁₂ O ₄₀ / ZIF-8	298	60	30min	[58]
H ₃ PW ₁₂ O ₄₀ /MIL-101(Fe)	473.7	100	5 min	[59]
H ₄ PW ₁₁ V/MIL-101(Cr)	371	100	30 min	[60]
PV_2Mo_{10} -M(membrane)	82	20	-	[61]
Graphene oxide	397	34.8	25 min	[62]
Zn-DDQ	135	500	70 min	[63]
MIL-100(Fe)	736	30	90 min	[64]
ErCu-POM(Er-3)	391	20	-	[65]
POM/CFO/MIL-101(Cr)	200	100	23 min	This work

Table S1. Comparison of adsorption performance of various adsorbents for MB.