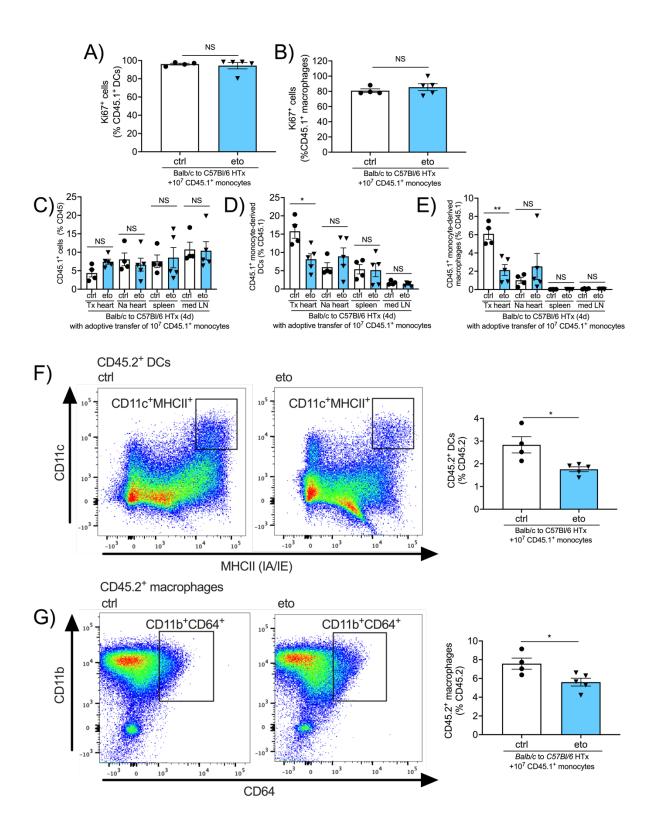
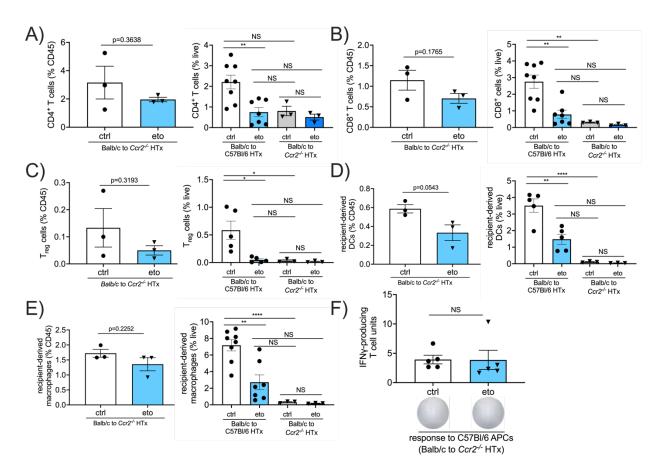
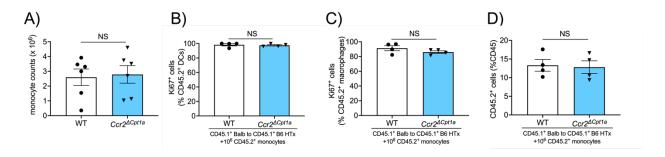

SUPPLEMENTAL FIGURES AND FIGURE LEGENDS


SUPPLEMENTAL FIGURE 1: CD4:CD8 T CELL RATIO IN HTX ALLOGRAFTS AND IMMUNE CELL PROFILE IN HTX SYNGRAFTS. A-H) Flow cytometric assessment in transplanted hearts from Balb \rightarrow B6 heart allografts at 4 days post-transplant shown as a percentage of CD45⁺ cells (left graph) or live cells (right graph). A) CD4⁺ to CD8⁺ T cell ratio from Balb \rightarrow B6 heart allografts at 4 days posttransplant treated with vehicle (ctrl) or etomoxir (eto) (ctrl, n=8; eto, n=7). B-H) Flow cytometric assessment in transplanted hearts from B6 \rightarrow B6 heart allografts at 4 days post-transplant shown as a percentage of CD45⁺ cells. B) Pan T cells assessed by CD3⁺CD90.2⁺ cells (ctrl, n=3; etc, n=3). C) Activated T cells assessed by CD69+CD3+CD90.2+ cells (ctrl, n=3; eto, n=3). D) CD4 T cells assessed by CD4+CD3+CD90.2+ cells (ctrl, n=3; eto, n=3). E) CD8 T cells assessed by CD8+CD3+CD90.2+ cells (ctrl, n=3; eto, n=3). F) T regulatory cells assessed by Foxp3+CD4+CD3+CD90.2+ cells (ctrl, n=3; eto, n=3). G) Dendritic cells (DCs) assessed by CD11c+MHCII+CD64- cells (ctrl, n=3; eto, n=3). H) Macrophages assessed bv CD11b+CD64+CD24- cells (ctrl, n=3; eto, n=3). Data are represented as mean ± SEM. NS, not statistically significant by *t*-test.


SUPPLEMENTAL FIGURE 2: T CELL ACTIVATION IN RESPONSE TO B6 APCs, DIRECT EFFECT OF FAO INHIBITION ON T CELL ACTIVATION AND EFFECT OF FAO INHIBITION ON T CELL PROLIFERATION. A-C) ELISPOT assay performed using splenocytes procured at 4d post-transplantation from Balb \rightarrow B6 heart allografts from either vehicle (ctrl) or etomoxir (eto)-treated animals. Samples were stimulated with activated B6 APCs and assessed for the production of IFN γ (ctrl, n=6; eto, n=8) (A), TNF α (ctrl, n=4; eto, n=4) (B) or IL2 (ctrl, n=4; eto, n=4) (C). D,E) ELISPOT assay performed using splenocytes procured at 4d post-transplantation from Balb \rightarrow B6 heart allografts from ctrltreated HTx and incubated in the presence or absence of eto. D) IFN γ production in response to positive control stimulus (concanavalin A (conA)) (ctrl, n=3; eto, n=3). E) IFN γ production in response to allostimulus (Balb APCs) (ctrl, n=3; eto, n=3). F) Proliferation of T cells isolated from spleens from ctrl-treated Balb \rightarrow B6 HTx recipients in response to treatment with ctrl or eto for 24h, as assessed by [³H]thymidine incorporation (ctrl, n=6; eto, n=6). Data are represented as mean ± SEM. NS, not statistically significant by *t*-test.


SUPPLEMENTAL FIGURE 3: ASSESSMENT OF FAO INHIBITION ON PROLIFERATION AND GLYCOLYTIC FLUX FROM IN VITRO MONOCYTE DIFFERENTIATION. A-F) Data from in vitro differentiation of bone marrow-derived monocytes stimulated towards DC (GM-CSF + IL4) or macrophage (M-CSF) lineages. A,B) Flow cytometric assessment of cells after 7 days culture. A) Proliferating DCs as assessed by Ki67 as a percentage CD11c+MHCII+CD64- cells (ctrl, n=9; eto, n=9). B) Proliferating macrophages assessed by Ki67 as a percentage of CD11b+CD64+CD24- cells (ctrl, n=9; eto, n=9). C) FAO flux in monocytes treated with 5, 10, 25, 50 or 100 μ M etomoxir for 24h in basal media, as assessed by 9,10-[³H]palmitic acid radioisotope incorporation (n=6). D) Glycolytic flux in monocytes in media only, or treated for 48h with GM-CSF + IL4 or M-CSF, as assessed by [5-³H]glucose radioisotopic incorporation (ctrl, n=6; eto, n=6). E) Proliferation of monocytes in media only, or treated for 48h with GM-CSF + IL4 or M-CSF, as assessed by [³H]thymidine incorporation (ctrl, n=6; eto, n=6). Data are represented as mean of individual data points from at 3 independent experiments ± SEM. NS, not statistically significant; **p*<0.05; ****p*<0.001; *****p*<0.0001; NS, not statistically significant, by *t*-test (A,B) or ANOVA and Bonferroni post-hoc test (C-E).

SUPPLEMENTAL FIGURE 4: ASSESSMENT OF CD45.1⁺ MONOCYTES AND MONOCYTE, DC AND MACROPHAGE PROLIFERATION IN ADOPTIVE TRANSFER EXPERIMENTS. A-J) Flow cytometric assessment of transplanted hearts at 4 days post-HTx from Balb \rightarrow B6 HTx adoptively transferred with CD45.1⁺ monocytes. A,B) Assessment of proliferation by percentage Ki67 incorporation. A) In CD11c⁺MHCII⁺CD64⁻ dendritic cells (DCs) as a percentage of CD45.1⁺ cells (ctrl, n=4; eto, n=5). B) In CD11b⁺CD64⁺CD24⁻ macrophages as a percentage of CD45.1⁺ (ctrl, n=4; eto, n=5). C) CD45.1⁺ cells as a percentage of CD45⁺ cells in the transplanted heart (Tx heart), native heart (Na heart), spleen and mediastinal lymph node (med LN) (ctrl, n=4; eto, n=5). D) CD11c⁺MHCII⁺CD64⁻ dendritic cells (DCs) as a percentage of CD45.1⁺ cells in the Tx heart, Na heart, spleen and med LN (ctrl, n=4; eto, n=5). E) CD11b⁺CD64⁺CD24⁻ macrophages as a percentage of CD45.1⁺ cells in the Tx heart, Na heart, spleen and med LN (ctrl, n=4; eto, n=5). F) CD45.2⁺ DCs assessed by CD11c⁺MHCII⁺CD64⁻ cells (ctrl, n=4; eto, n=5). G) CD45.2⁺ macrophages assessed by CD11b⁺CD64⁺CD24⁻ cells (ctrl, n=4; eto, n=5). G) CD45.2⁺ macrophages assessed by CD11b⁺CD64⁺CD24⁻ cells (ctrl, n=4; eto, n=5). G) CD45.2⁺ macrophages assessed by CD11b⁺CD64⁺CD24⁻ cells (ctrl, n=4; eto, n=5). G) CD45.2⁺ macrophages assessed by CD11b⁺CD64⁺CD24⁻ cells (ctrl, n=4; eto, n=5). G) CD45.2⁺ macrophages assessed by CD11b⁺CD64⁺CD24⁻ cells (ctrl, n=4; eto, n=5). G) CD45.2⁺ macrophages assessed by CD11b⁺CD64⁺CD24⁻ cells (ctrl, n=4; eto, n=5). G) CD45.2⁺ macrophages assessed by CD11b⁺CD64⁺CD24⁻ cells (ctrl, n=4; eto, n=5). G) CD45.2⁺ macrophages assessed by CD11b⁺CD64⁺CD24⁻ cells (ctrl, n=4; eto, n=5). G) CD45.2⁺ macrophages assessed by CD11b⁺CD64⁺CD24⁻ cells (ctrl, n=4; eto, n=5). G) CD45.2⁺ macrophages assessed by CD11b⁺CD64⁺CD24⁻ cells (ctrl, n=4; eto, n=5). G) CD45.2⁺ macrophages assessed by CD11b⁺CD6

SUPPLEMENTAL FIGURE 5: FLOW CYTOMETRY FOR T CELLS IN CCR2+ HTx. A-E) Flow cytometric assessment in transplanted hearts from Balb $\rightarrow Ccr2^{-/}$ heart allografts at 4 days post-transplant shown as a percentage of CD45⁺ cells (left graph) or live cells (right graph; data for live cells from Balb \rightarrow B6 HTx is re-plotted from Figs. 1 and 2). A) CD4 T cells assessed by CD4+CD3+CD90.2+ cells (ctrl, n=8; eto=7 for Balb \rightarrow B6 HTx; ctrl, n=3; eto, n=3 for Balb \rightarrow B6 Ccr2^{-/-} HTx). B) CD8 T cells assessed by CD8+CD3+CD90.2+ cells (ctrl, n=8; eto=7 for Balb \rightarrow B6 HTx; ctrl, n=3; eto, n=3 for Balb \rightarrow B6 Ccr2^{-/.} HTx). C) T regulatory cells assessed by Foxp3+CD4+CD3+CD90.2+ cells (ctrl, n=8; eto=7 for Balb \rightarrow B6 HTx; ctrl, n=3; eto, n=3 for Balb \rightarrow B6 Ccr2^{-/-} HTx). **D)** Recipientderived dendritic cells assessed by IA-b+CD11c+MHCII+CD64- cells (ctrl, n=5; eto=5 for Balb → B6 HTx; ctrl, n=3; eto, n=3 for Balb \rightarrow B6 Ccr2^{-/-} HTx). E) Recipient-derived macrophages assessed by IA-b+CD11b+CD64+CD24⁻ cells (ctrl, n=8; eto=7 for Balb \rightarrow B6 HTx; ctrl, n=3; eto, n=3 for Balb \rightarrow B6 Ccr2^{-/-} HTx). F) ELISPOT assay performed using splenocytes procured at 4d post-transplantation from Balb $\rightarrow Ccr2^{-/-}$ heart allografts from either vehicle (ctrl) or etomoxir (eto)treated recipients. Samples were stimulated with activated B6 APCs and assessed for the production of IFNy (ctrl, n=4; eto, n=4). Data are represented as mean ± SEM. NS, not statistically significant; **p<0.01; ***p<0.001; ****p<0.0001 by t-test (A-E left panels; F) or ANOVA and Bonferroni post-hoc test (A-E right panels).

SUPPLEMENTAL FIGURE 6: GENETIC DELETION OF CPT1A ON PROLIFERATION OF MONOCYTE-DERIVED MACROPHAGES AND MONOCYTE-DERIVED DCs IN HEART ALLOGRAFTS. A) Cell counts after monocyte isolation from the bone marrow of *Cre-negative;Cpt1a^{fl/fl}* (WT; n=6) or *Ccr2.Cre^{ER};Cpt1a^{fl/fl}* (*Ccr2^{ΔCpt1a}*; n=6) mice. B-C) Assessment of proliferation by percentage Ki67 incorporation in CD45.2⁺ fraction from transplanted hearts in Balb to B6 CD45.1⁺ HTx recipients adoptively transferred with WT or *Ccr2^{ΔCpt1a}* monocytes. B) In CD11c⁺MHCII⁺CD64⁻ dendritic cells (DCs) as a percentage of CD45.2⁺ cells (WT, n=4; *Ccr2^{ΔCpt1a}*, n=4). C) In CD11b⁺CD64⁺CD24⁻ macrophages as a percentage of CD45.2⁺ (WT, n=4; *Ccr2^{ΔCpt1a}*, n=4). D) In CD45.2⁺ cells as a percentage of CD45⁺ cells (WT, n=4; *Ccr2^{ΔCpt1a}*, n=4). D) In CD45.2⁺ cells as a **p*<0.05; NS, not statistically significant, by *t*-test.

SUPPLEMENTAL TABLE

antibody	clone	company
CD11b	M1/70	eBioscience (San Diego, CA)
CD3 <i>ε</i>	17A2	eBioscience
CD4	GK1.5	eBioscience
CD45R (B220)	RA3-6B2	eBioscience
CD64	X54-5/7.1	eBioscience
CD90.2 (Thy-1.2)	30-12	eBioscience
Ki-67	SolA15	eBioscience
Ly-6G	1A8	eBioscience
MHC class II (I-A/I-E)	114.15.2	eBioscience
NK1.1	PK136	eBioscience
CD11b	M1/70	BD Biosciences (San Jose, CA)
CD11c	N418	BD Biosciences
CD11c	HL3	BD Biosciences
CD115	T38-320	BD Biosciences
CD24	M1/69	BD Biosciences
CD3 <i>ε</i>	145-2C11	BD Biosciences
CD45	30-F11	BD Biosciences
CD45.1	A20	BD Biosciences
CD45.2	104	BD Biosciences
CD64	X54-5/7.1	BD Biosciences
CD69	H1.2F3	BD Biosciences
CD8a	53-6.7	BD Biosciences
Foxp3	M23	BD Biosciences
I-A[b]	AF-1201	BD Biosciences
Ly-6G	1A8	BD Biosciences
MHC class II (I-A/I-E)	M5/114.15.2	BD Biosciences
NK1.1	PK136	BD Biosciences
CD11c	N418	Biolegend (San Diego, CA)
Foxp3	FJK-16s	Thermo Scientific (Waltham, MA)

SUPPLEMENTAL TABLE 1. LIST OF ANTIBODIES USED FOR FLOW CYTOMETRY