Electronic Supplementary Information (ESI) for

Impact of oxygen defects on ferromagnetic CrI₃ monolayer

Batjargal Sainbileg, ^{‡ab} Erdembayalag Batsaikhan ^{‡ab} and Michitoshi Hayashi^{*ab}

^aCenter for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan.
^bCenter of Atomic Initiative for New Materials, National Taiwan University, Taipei 106, Taiwan.
[‡] These authors contributed equally.

*Corresponding author e-mail: atmyh@ntu.edu.tw

Table of Contents

Scheme S1. Illustration of calculations for binding energy per oxygen.

Scheme S2. Illustration of calculations for formation energy of O-defective Crl₃ monolayers.

Fig. S1. Ab initio Molecular dynamical (AIMD) calculations of O-defective Crl₃ monolayers.

Fig. S2. Possible magnetic configurations of CrI₃ monolayer.

Fig. S3. Schematic illustration of Cr orbitals and the corresponding magnetic exchanges.

Fig. S4. Band-gap reduction in the minority spin channel of band structure.

Fig. S5. Band-decomposed partial charge density of all investigated CrI₃ monolayers.

Fig. S6. 3D and 2D contour plots of the charge density for O-attached Crl₃.

Fig. S7. 3D and 2D contour plots of the charge density for O-doped Crl₃.

Fig. S8. Electron localization function (ELF) profile of all investigated CrI₃ monolayers.

Table. S1 Bond Length and the bond angle between other Cr-I (O) around the reference unit.

Reference

Details of binding and formation energies

In the main text, we have used the spin-polarized PBE functional including both plus +U method and van der Waals D3 corrections (PBE+U-D3), in order to predict 3d states accurately and obtain a reliable structure for investigating the magnetic and electronic properties of the present Crl₃ monolayers. The binding energy per oxygen atom and formation energies of defective monolayers are also estimated in terms of PBE+U-D3 accordingly and our results are consistent with the trend of TMDs with single atomic defects. ^{S1-S2} In particular, Dobrota et al^{S1} have shown that the binding energy of a non-metallic single dopant on the graphene is large, ranging from -7.3 eV to -15.5 eV. Moreover, Dabral et al^{S2} have reported that an oxygen atomic defect on common 2D TMDs has large binding energy (-7.5 eV to -11 eV) whose values of a single-oxygen-atomic defect are much larger than the binding energy of H₂O and O₂ molecules on those 2D TMDs.

In this ESI, in order to compare with the early literature devoting to some well-known 2D materials, we also have calculated of binding per oxygen atom and formation energies of present CrI₃ monolayers, with similar computational conditions in the literature^{S3-S4}, without the plus +U functional and vdW D3 corrections. As a result, we found that binding energy per oxygen atom and formation energies on defective CrI₃ are obviously different with and without the plus +U functional and vdW D3 corrections. The simulated values with different methods are given in Scheme 1 and Scheme 2, together with the calculation steps. Our finding is consistent with a trend in the previous literature that the binding and formation energies strongly depend on the selected functional. ^{55-S6}

Scheme S1. Illustration of calculations for the binding energy per an oxygen atom on defective Crl₃ monolayers. Note that binding energies are -9.4 eV (PBE+U-D3) and -0.14 eV (PBE) for O-attached Crl₃ while binding energies are -9.6 eV (PBE+U-D3) and -1.76 eV (PBE) for O-doped Crl₃.

Scheme S2. Illustration of calculations for the formation energy of defective CrI_3 monolayers. Formation energies are -6.4 eV (PBE+U-D3) and -0.14 eV (PBE) for O-attached CrI_3 while formation energies are -7.9 eV (PBE+U-D3) and -1.69 eV (PBE) for O-doped CrI_3 .

Fig. S1. (a) Calculated AIMD evolutions of energy for O-attached (blue) and O-doped (red) Crl₃ monolayers comparing with pristine Crl₃ (black), being thermally more favorable than pristine Crl₃ monolayer. The enlarged graphs with an adequate scale of the vertical axis of (b) O-attached and (c) O-doped Crl₃ monolayer are plotted, respectively. (d-e) Temperature (right Y-axis) and magnetic moment (left Y-axis) for the defective monolayers. Remarkably, the time-evolutions of the magnetic moment maintain constant during AIMD simulations (see green line in Fig. S1d and Fig.S1e).

Fig. S2. (a) Schematic view of possible exchange interaction paths between Cr ions in CrI_3 monolayer; J_1 , J_2 , and J_3 represent exchange interactions in the 1st-, 2nd-, and 3th- nearest-neighbors (NN) while the dashed circles illustrate the horizon of each path. (b-e) The possible magnetic configurations of CrI_3 monolayer. The red (blue) ball depicts the spin-up (spin-down).

Fig. S3. Schematic illustration^{S7} of Cr orbitals and the corresponding magnetic exchanges in (a) pristine Crl₃ and (b) O-doped Crl₃. Herein, E_{CF} , E'_{CF} , FM, and AFM stand for the crystal-field, reduced crystal-field, ferromagnetic exchange, and antiferromagnetic exchange while the dashed and solid arrow lines represent possible virtual and real hopping, respectively.

Fig. S4. Band-gap reduction in the minority (\downarrow) spin channel of band structure for defective CrI₃ with respect to that of pristine monolayer.

Fig. S5. Isosurfaces for the band-decomposed partial charge density of VBM (top panel) and CBM (bottom panel) of (a) pristine, (b) O-attached, and (c) O-doped Crl_3 monolayer, respectively, where the cyan (yellow) isosurfaces represent the distribution of electrons (holes) charge density at the CBM (VBM). The black box depicts the zoomed-in view of the unit selected from the monolayer.

Fig. S6. 3D (left panel) and 2D (right panel) contour plots of the charge density for O-attached Crl₃ along the (001) crystallographic directions at z = 0.175, 0.255, 0.333, and 0.407.

Fig. S7. 3D (left panel) and 2D (right panel) contour plots of the charge density for O-doped CrI_3 along the (001) crystallographic directions at z = 0.175, 0.255, 0.295, and 0.333.

Fig. S8. The electron localization function (ELF) profile provides the change of charge density distribution. ELF maps of all investigated Crl₃ monolayers are along (a) [-2 1 2] and (b) [1 0 1] crystallographic planes. This result reveals that the ELF map along [-2 1 2] plane is nearly identical in both the pristine and O-attached monolayer whereas the ELF map is different in the O-doped monolayer. Moreover, (c-d) illustrate the ELF difference (Δ^{ELF}) of O-attached monolayer along [-2 1 2] plane and O-doped along [1 0 1] plane, where the dashed-circle represents the preferred location of atoms at the selected slice. Notably, **Fig. S8c** displays that the I_O-atom lost the noticeable amount of charges to the O-atom while the ELF on the rest of Cr- and I-atoms remain unchanged in O-attached monolayer, indicating that the O-dangling locally affects its neighboring I_O-atom, but less the CrI₃ monolayer. Meanwhile, **Fig. S8d** shows that there is weak but obvious charge accumulation between Cr-O_I-Cr atoms in O-doped monolayer.

Configuration O-attached Crl₃ O-doped Crl₃ Pristine Crl₃ Geometry 14 Cr2 Cr2 110 13 15 13 13 15 $\angle (I_1 - Cr_1 - I_2 / O)$ 90.03 89.72 103.22 $\angle (I_2/O-Cr_1-I_3)$ 90.03 89.44 92.9 $\angle (I_3 - Cr_1 - I_1)$ 90.03 89.46 85.29 (o) $\angle (I_1 - Cr_1 - I_8)$ 93.39 94.84 88.02 Bond angle $\angle (I_2/O-Cr_1-I_6)$ 93.39 91.02 102.37 $\angle (I_1 - Cr_1 - I_7)$ 175.29 175.28 166.17 $\angle (I_2/O-Cr_1-I_8)$ 175.29 174.11 173.23 $\angle (I_8 - Cr_1 - I_7)$ 90.01 91.33 86.68 $\angle (I_6 - Cr_1 - I_7)$ 90.01 90.55 92.91 $\angle (I_6 - Cr_1 - I_8)$ 90.01 92.29 86.88 (Å) $L(Cr_1-I_1)$ 2.74 2.74 2.78 Bond length 2.74 2.73 2.76 $L(Cr_1-I_3)$ 2.74 2.73 2.72 $L(Cr_1 - I_6)$ 2.74 2.74 $L(Cr_1 - I_8)$ 2.94

Table. S1 Length (L) and the corresponding angle (\angle) between other Cr-I (O) bonds surrounding the reference unit discussed in the manuscript.

References:

[S1]. A.S. Dobrota, I.A. Pašti, S. V. Mentus, and N.V. Skorondumova. *Phys.Chem.Chem.Phys.*, 2017, **19**, 8530.

[S2]. A. Dabral, A. K. A. Lu, D. Chiappe, M.Houssa, and G. Pourtois, *Phys.Chem.Chem.Phys.*, 2019, **21**, 1089.

[S3]. G. Wang, R. Pandey, and S.P. Karna. *Nanoscale*, 2015, 7, 524.

[S4]. S. KC, R. C. Longo, R. M. Wallace, and K. Cho. J. Appl. Phys., 2015, 117, 135301.

[S5]. L. Wang, T. Maxisch, and G. Ceder. *Phys. Rev. B.*, 2006, **73**, 195107.

[S6]. A. Jain, G. Hautier, S. P. Ong, C. J. Moore, C. C. Fischer, K. A. Persson, and G. Ceder. *Phys. Rev. B.*, 2011, **84**, 045115.

[S7]. Y. Zhao, L. Lin, Q. Zhou, Y. Li, S. Yuan, Q. Chen, S. Dong, and J. Wang. *Nano Lett.*, 2018, **18**, 2943–2949.