```
1 Manuscript Type: Article
```

```
2
 3
      Title: Casein kinase 2 promotes the TGF-\beta-induced activation of \alpha-tubulin
 4
      acetyltransferase 1 in fibroblasts cultured on a soft matrix
 5
      Authors' names: Eunae You<sup>1§</sup>, Jangho Jeong<sup>1§</sup>, Jieun Lee<sup>1</sup>, Seula Keum<sup>1</sup>, Ye Eun
 6
 7
      Hwang<sup>1</sup>, Jee-Hye Choi<sup>1*</sup> and Sangmyung Rhee<sup>1*</sup>
 8
 9
      Affiliation: <sup>1</sup>Department of Life Science, Chung-Ang University, Seoul, 06974,
      Republic of Korea
10
11
12
      <sup>§</sup>These authors contributed equally to this work.
13
14
      Running Title: Regulation of \alpha -TAT1 activity by CK2
15
16
      Keywords: TGF-\beta, Casein kinase 2, Microtubule acetylation, \alpha-tubulin
17
      acetyltransferase 1, Extracellular matrix
18
19
      Corresponding Authors' Information:
20
      Sangmyung Rhee
21
      Tel:
                  +82-2-820-5818;
                                              Fax:
                                                          +82-2-825-5206;
                                                                                      E-mail:
22
      sangmyung.rhee@cau.ac.kr
23
24
      Jee-Hye Choi
25
      Tel: +82-2-814-3997; Fax: +82-2-825-5206; E-mail: choijh97@cau.ac.kr
26
```

1 MATERIALS AND METHODS

2 Antibodies and reagents

Primary antibodies were obtained against the following proteins: acetylated α -3 phospho-STAT3^{Y705} (#9131), 4 tubulin (#5335),and phopho-Smad2^{S465/467}/Smad3^{S423/425} (#8828; Cell signaling Technology, MA, USA); GFP (sc-5 9996), α -tubulin (#sc-12462), and CK2 α (#sc-12738; Santa Cruz Biotechnology, 6 7 CA, USA). Moreover, Flag M2 antibody (#3165) was purchased from Sigma-Aldrich 8 (MO, USA), whereas horseradish peroxidase (HRP) - conjugated goat anti-mouse 9 (115-035-006) and HRP-conjugated goat anti-rabbit (111-035-006) antibodies 10 were purchased from Jackson ImmunoResearch Laboratories (PA, USA). We also 11 purchased blebbistatin (#B592500; Toronto Research Chemicals, ON, Canada), 12TGF- β 1 (#240B; R&D systems, MN, USA), TBB (#218697; Calbiochem, CA, USA), 13 SB202190 (#S7067; Sigma-Aldrich), SP600125 (#S5567; Sigma-Aldrich), and 14PD98059 (#1213, MEK inhibitor; Tocris, Bristol, UK).

15

16 *Plasmid constructs*

17Various truncated mutants of α -TAT1 (*Mus musculus*, isoform 1) tagged with GFP or Myc were generated by polymerase chain reaction (PCR) using specific forward 18 19 and reverse primers complementary to the defined sequences, using GFP- α -TAT1 as a template. α -TAT1^{Δ C}, α -TAT1^{Δ N}, α -TAT1^{Δ C1}, α -TAT1^{Δ C1-2}, and α -TAT1^{Δ C3} were 20 21 cloned between XhoI and BamHI restriction sites and inserted into the pEGFP-C1 22 vector (Clontech, CA, USA). α -TAT1^{ΔN} was cloned between BamHI and XbaI 23 restriction sites and inserted into the pcDNA6/Myc-His A vector (Invitrogen). 24 *Csnk2a1* (CK2 α) cDNA was amplified from XE242 mouse CK2 α CS2p+ (#16730; 25 Addgene, MA, USA) via PCR and cloned into the p3xFLAG-CMV[™]-10 expression 26 vector (#E4401; Sigma-Aldrich). The primer sequences used for plasmid 27 construction are listed in Supplementary Table 1. Point mutations were introduced 28 via PCR using the *PfuUltra* High-Fidelity DNA polymerase (#600380; Agilent, CA, 29 USA). The sequences of the primers used for site-directed mutagenesis are listed 30 in Supplementary Table 2.

- 31
- 32 <u>Cell culture</u>

2/10

1 WT and α -TAT1 KO MEFs were cultured in Dulbecco's modified Eagle's medium 2 (DMEM; Gibco-BRL, Grand Island, NY, USA) supplemented with 1% GlutaMAX, 1% 3 minimum essential medium (MEM) containing non-essential amino acids, 10% 4 fetal bovine serum (FBS) (Youngin Frontier, Seoul, Korea), 100 unit/mL penicillin, 5 and 100 ug/mL streptomycin (Welgene, Seoul, Korea). The cells were maintained 6 at 37 °C and 5% carbon dioxide in a humidified incubator. HEK293T cells were 7 obtained from American Type Culture Collection (Manassas, VA, USA). HEK293T 8 cells were cultured in DMEM supplemented with 10% FBS.

9

10 Generation of CK2a KO cell line using CRISPR/Cas9

11 A 20-bp guide RNA (gRNA) sequence (5'-AGACATTGTAAAAGACCCTG-3') 12targeting genomic DNA within exon 3 of $CK2\alpha$ was selected from the GenBank database (Accession number NC_000068; region: 152067851 - 152123772) of 13 14predicted high-specificity protospacer adjacent motif sequences in the mouse 15 exome. gRNA was cloned into LentiCRISPR V2 (#52961; Addgene) and WT MEFs 16 were infected with lentivirus containing the gRNA sequence with polybrene (0.8 17 μ g/mL) for 48 h. Cells were selected using puromycin (2 μ g/mL) and single-cell 18 colonies were acquired. CK2a KO cell line was verified by genomic DNA sequencing 19 and western blotting.

20

21 *Transfection*

The cells (3 x 10⁵) were plated on 60-mm dishes and then transfected with 2.5 μg
of DNA after 24 h using Lipofectamine 2000 (#11668019; Thermo Fisher Scientific,
NH, USA), according to the manufacturer's instructions. Later, the cells (7 x 10⁵)
were plated in a 6-well plate and then transfected with 500 ng of DNA after 24 h
using TransFectin[™] Lipid Reagent (#1703351; Bio-Rad, CA, USA).

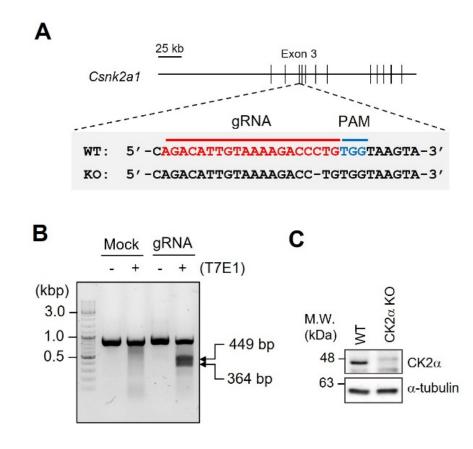
27

28 Co-IP and western blotting

For western blotting, the cells were lysed with the lysis buffer containing 1% Nonidet P-40 (NP-40), 1% sodium dodecyl sulfate, 150 mM NaCl, 6 mM Na₂HPO₄, 4 mM

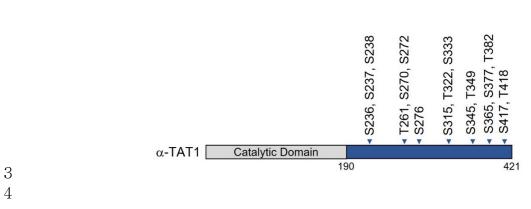
 NaH_2PO_4 , 2 mM ethylenediaminetetraacetic acid (EDTA), 50 mM NaF, 1 mM Na₃VO₄,

- 1 mM 1,4-dithiothreitol, and 1 mM phenylmethylsulfonyl fluoride (PMSF). Protein
- 33 concentrations were measured using the bicinchoninic acid assay (Thermo Fisher

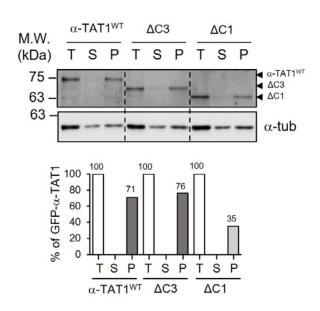

1 Scientific). For IP, the cells were lysed with IP buffer (50 mM Tris-Cl (pH 7.4), 150 2 mM NaCl, 1% NP-40, 0.5% Triton X-100, 1 mM Na₃VO₄, 50 mM NaF, 1 mM PMSF, 3 10% glycerol, and 2 mM EDTA) for 1 h on ice and centrifuged at 4 °C and 13,000 rpm 4 for 15 min to collect the supernatant. Protein concentrations were measured using 5 Bradford assay (Bio-Rad, Hercules, CA, USA). The proteins (1 mg) were incubated 6 with primary antibodies at 4 °C overnight. Following incubation, protein A/G beads 7 were incubated at 4 °C for 2 h. Finally, the beads were washed thrice with the IP buffer, boiled, and analyzed by western blotting. Signals were developed using 8 9 enhanced chemiluminescence reagents (Bio-Rad) and band density was measured 10 using the Quantity One system (Bio-Rad).

11

12 *Statistical analyses*


Statistical analyses were performed using GraphPad Prism 7 software (GraphPad Software, CA, USA). We used the Student's *t*-test to compare two groups and oneway analysis of variance (ANOVA) to compare more than two groups. Tukey's multiple comparison test was applied to all ANOVA post hoc tests. ANOVA *F* values are described in each figure legend as $F_{(DFn, Dfd)}$, where DFn is the df numerator, and Dfd is the df denominator. Statistical significance was set at $p \langle 0.05 (*p \langle 0.05, **p \langle 0.01, ***p \langle 0.005 \rangle)$. All data are presented as the mean \pm standard deviation.

2



3 4

5 Supplementary Fig. 1. CK2 α knockout (KO) cells were generated using the clustered regularly interspaced palindromic repeat-caspase 9 (CRISPR-Cas9) system. (A) 6 Single guide RNA (gRNA) targeting exon 3 of Csnk2a1 was selected by the 7 8 GeneScript software. CK2 α KO MEFs were verified via DNA sequencing (single nucleotide deletion) (B) T7 endonuclease 1 assay was performed to determine the 9 10 efficiency of gRNA. (C) Protein extracts obtained from the wild-type (WT) and CK2a KO MEFs were subjected to western blotting to assess the protein expression levels 11 12 of CK2 α .

Supplementary Fig. 2. Putative phosphorylation sites in the C-terminal domain of α -tubulin acetyltransferase 1 (α -TAT1). Schematic representation of α -TAT1 of *Mus musculus*. Putative serine/threonine phosphorylation sites in the C-terminal domain are indicated. These sites were obtained from PhosphoSitePlus and Netphos 3.1.

3

4

5 Supplementary Fig. 3. Deletion of the Cluster 3 domain of α -TAT1 maintained the 6 binding affinity to polymerized microtubules. α -TAT1 KO MEFs were transfected

binding anning to polymenzed microtubules. a TATT to micro were transfected

7 with the indicated plasmids, and a microtubule sedimentation assay was conducted.

8 Each fraction was assessed via western blotting to detect the levels of α -TAT1

9 constructs (WT, ${\it {\bigtriangleup}}$ C3, and ${\it {\bigtriangleup}}$ C1), supernatant (S) (depolymerized tubulin), and

10 pellet (P) (polymerized tubulin).

	Cluster 3
3	Human AVDPTPAAPARKLPPKRAEGDIKPYSSSDREFLKVAVEPPWPLNRAPRRA
4 5	Supplementary Fig. 4. Amino acid sequence alignment of Cluster 3 in α -TAT1
6	between mice (<i>M. musculus</i>) and humans (<i>Homo sapiens</i>). Cluster 3 domain in α -
7 0	TAT1 was highly conserved in both mice and humans.

	Direction	
Plasmid	(Restriction	Sequence
	enzyme)	
GFP-α-TAT1 ^{⊿C1}	F (Xhol)	CCGCTCGAGGAATGGAGTTCCCGTTCGAT
	R (BamHI)	CGGGATCCGCCTCCAGGGTCAGTGGC
GFP-α-TAT1 ^{⊿C1,2}	F (Xhol)	CCGCTCGAGGAATGGAGTTCCCGTTCGAT
	R (BamHI)	CGGGATCCGGCACGCCGAGGGGCCCTGTT
GFP-α-TAT1 ^{⊿C}	F (Xhol)	CCGCTCGAGGAATGGAGTTCCCGTTCGAT
	R (BamHI)	CGGGATCCCACAGCAGCACGAGAGTG
GFP-α-TAT1 [⊿] N	F (Xhol)	CCGCTCGAGGAATGGCCGATCCCATACCTGCTGCT
	R (BamHI)	CGGGATCCTTACCAAGGCCTGGTGCTGCG
α-TAT1 ^{⊿ℕ} -Myc	F (BamHI)	CGGGATCCATGGCCGATCCCATACCTGCTGCT
	R (Xbal)	GCTCTAGACCAAGGCCTGGTGCTGCG
GFP-α-TAT1 ^{⊿C3}	1-F (Xhol)	CCGCTCGAGGAATGGAGTTCCCGTTCGAT
	2-R	GTGGGCTGGAGGTGTCACAGCAGCACGAGA
	3-F	TCTCGTGCTGCTGTGACACCTCCAGCCCAC
	4-R (BamHI)	CGGGATCCTTACCAAGGCCTGGTGCTGCG
Flag-CK2α	F (Notl)	AAGGAAAAAAGCGGCCGCGATGTCGGGACCCGTGCCAAG
	R (Kpnl)	CGGGGTACCTTACTGCTGAGCGCCAGC

1 Supplementary Table 1. Primers used for plasmid construction

Plasmid	Direction	Sequence
GFP-α-TAT1	F	GGAGACATTAAGCCATACGCTTCCAGTGACAGAGAATTC
(S236A)	R	GAATTCTCTGTCACTGGAAGCGTATGGCTTAATGTCTCC
GFP- α -TAT1	F	GACATTAAGCCATACTCTGCCAGTGACAGAGAATTCCTGAAG
(S237A)	R	CTTCAGGAATTCTCTGTCACTGGCAGAGTATGGCTTAATGTC
GFP- α -TAT1	F	GACATTAAGCCATACTCTTCCGCTGACAGAGAATTCCTGAAG
(S238A)	R	CTTCAGGAATTCTCTGTCAGCGGAAGAGTATGGCTTAATGTC
GFP-α-TAT1	F	GACATTAAGCCATACTCTGCCGCTGACAGAGAATTCCTGAAG
(S237/238A)	R	CTTCAGGAATTCTCTGTCAGCGGCAGAGTATGGCTTAATGTC

1 Supplementary Table 2. Primers used for site-directed mutagenesis of α -TAT1

2

3