

Supplementary Figure 1. Differential chromatin accessibilities in CD4 T cell and ILC subsets, related to Figure 1

(A) The hepatic cNK cells were gated as CD3⁻CD19⁻NK1.1⁺CD49a⁻CD49b⁺, and the hepatic ILC1s were gated as CD3⁻CD19⁻NK1.1⁺CD49a⁺CD49b⁻.

(B) The ILC2s were gated as Lin⁻CD127⁺KLRG1⁺, and the LTi cells were gated as Lin⁻CD127⁺KLRG1⁻ CCR6⁺NKp46⁻ from the small intestine.

(C) cNK-, ILC1-, cNK/ILC1-, ILC2- and LTi-specific DHSs as well as DHSs shared by all these cell types were analyzed in the innate lymphocyte counterpart.

(D) Naïve CD4 T cell-, Th1-, Th2- and Th17-specific DHSs as well as DHSs shared by all these cell types were analyzed in CD4 T cell counterpart.

(E) Chromatin accessibility at the *Gata3* locus in CD4 T cell and ILC subsets was viewed by Wash U genome browser.

(F) Chromatin accessibility at the *Rorc* locus in Th17 and LTi cells was viewed by Wash U genome browser. The truncated transcript of *Rorc*, which encodes RORyt, was shown.

(G) T-bet binding sites in Th1 and cNK cells were analyzed.

Supplementary Figure 2. A critical role of *Tbx21-CNS-3* for T-bet induction in cNK cells, related to Figure 2

(A) T-bet protein amounts in splenic and pulmonic cNK cells from $Tbx21^{+/+}$ (n=4) and $Tbx21^{\triangle CNS-3}$ (n=6) mice were measured, and T-bet MFI was calculated. Mean \pm SD.

(B) Progression of cNK cell maturation using cell surface proteins CD11b and CD27.

(C) Maturation of hepatic cNK cells from $Tbx21^{+/+}$ (n=8) and $Tbx21^{-/-}$ (n=4) mice was assessed. The percentage of CD11b⁺CD27⁻ mature cNK cells was calculated. Mean \pm SD.

(D) Maturation of hepatic cNK cells from $Tbx21^{+/+}$ (n=4) and $Tbx21^{+/-}$ (n=4) mice was assessed. The percentage of CD11b⁺CD27⁻ mature cNK cells was calculated. Mean ± SD.

(E and F) Maturation of splenic cNK cells (E) and pulmonic cNK cells (F) from $Tbx21^{+/+}$ (n=4) and $Tbx21^{\triangle CNS-3}$ (n=6) mice was assessed. The percentage and the cell number of CD11b⁺CD27⁻ mature cNK cells were calculated. Mean \pm SD.

(G) BM cells were stained with a lineage cocktail (CD11b, CD3, CD4, CD8, B220, TER119 and Ly6G/6C) together with antibodies to several surface markers for identifying NK cells. The percentage and total cell number of mature (CD27⁻) and immature (CD27⁺) NK cells within the NK cell (Lin⁺NK1.1⁺CD127⁻) population from $Tbx21^{+/+}$ (n=4) and $Tbx21^{\triangle CNS-3}$ (n=4) BM were calculated.

(H) LMPPs (Lin⁻CD117⁺Sca1⁺Flt3⁺CD127⁻) from the bone marrow of $Tbx21^{+/+}$ (n=3) and $Tbx21^{\triangle CNS-3}$ (n=3) mice were cultured 2.5 days before retroviral infection with GFP-T-bet or GFP-Vector control. On day 6, infected cells were further co-cultured with OP9 cell line for additional 8 days. The expression of CD11b and CD27 was assessed on CD19⁻NK1.1⁺GFP⁺ populations.

(I-K) CD45.1 *Tbx21*^{+/+} BM cells were co-transferred with either CD45.2 *Tbx21*^{+/+} BM cells or CD45.2 *Tbx21*^{Δ CNS-3} BM cells at 1:1 ratio into sub-lethally irradiated *Rag2*^{$-/-}\gamma c$ ^{-/-} recipient mice to create CD45.1 *Tbx21*^{+/+}/CD45.2 *Tbx21*^{+/+} (n=4) and CD45.1 *Tbx21*^{+/+}/CD45.2 *Tbx21*^{Δ CNS-3} (n=5) mixed chimeras. T-bet protein amounts were measured, and T-bet MFI was calculated (I); The ratio of total CD45.2 and CD45.1 cNK cells in the same chimeras was calculated (J); The ratio of CD45.2 and CD45.1 cD11b⁻CD27⁺,</sup>

CD11b⁺CD27⁺ and CD11b⁺CD27⁻ cells in the same chimeras was calculated (K).

(L) T-bet protein amounts in hepatic cNK cells from $Tbx21^{+/+}$ (n=5), $Tbx21^{\triangle CNS-3}$ (n=3) and $Tbx21^{\triangle CNS-3}$ $^{3\triangle CNS-8.5}$ (n=3) mice were measured, and T-bet MFI was calculated. Mean ± SD.

Data are representative of two (A, C-L) independent experiments.

Supplementary Figure 3. The responses of the $Tbx21^{\triangle CNS-3}$ mice to *T. gondii* infection and poly (I:C) treatment, related to Figure 2 and Figure 4

(A and B) $Tbx21^{+/+}$ (n=8) and $Tbx21^{\triangle CNS-3}$ (n=8) mice were infected (*i.p.*) with *T. gondii*. The relative pathogen load in liver and peritoneal cavity (A) and the IFN- γ in the serum (B) were measured after 5 days.

(C) $Tbx21^{+/+}$ (n=6), $Tbx21^{\triangle CNS-3}$ (n=12) and $Tbx21^{5M/5M}$ (n=7) mice were infected with *T. gondii*, and then monitored for their survival.

(D and E) T-bet protein amounts in hepatic cNK cells from naïve $Tbx21^{+/+}$ and *T. gondii* infected $Tbx21^{+/+}$ and $Tbx21^{\triangle CNS-3}$ mice were measured (D). Maturation of cNK cells from infected mice was assessed (E). (F) $Tbx21^{+/+}$ and $Tbx21^{\triangle CNS-3}$ mice were treated (*i.p.*) with poly (I:C) or control saline for 2.5 hours, and the hepatic lymphocytes were harvested and incubated with monensin for 3.5 hours before intracellular staining.

(G) $Tbx21^{+/+}$ and $Tbx21^{\triangle CNS-3}$ mice were treated (*i.p.*) with poly (I:C) or control saline for 6 hours, and the IFN- γ in the serum was measured by ELISA.

Data are representative of two (A-G) independent experiments.

Supplementary Figure 4. STAT4 binding in Th1 cells and the role of IL-12-STAT4 signaling during cNK cell development, related to Figure 3 and Figure 5

(A) STAT4 binding sites and T-bet binding sites in Th1 cells were analyzed. Cell samples are in biological duplicates.

(B) WT mice were pre-treated with control IgG or anti-IL-12 p40 2 days before *T. gondii* infection. After infection, the mice were further treated with these antibodies on day 1 and day 4, and then analyzed on day 7. T-bet protein amounts in CD4⁺CD44^{hi} and CD4⁺CD44^{lo} cells were measured, and T-bet MFI was calculated. Mean \pm SD, n=4.

(C and D) CD45.1 *Tbx21*^{+/+} BM cells were co-transferred with either CD45.2 *Tbx21*^{+/+} or CD45.2 *Tbx21*^{\pm /-} BM cells into sub-lethally irradiated *Rag2*^{-/-} *γc*^{-/-} recipient mice that were pre-treated with control IgG or anti-IL-12 p40 2 days before to create CD45.1 *Tbx21*^{+/+}/CD45.2 *Tbx21*^{+/+} (n=3) and CD45.1 *Tbx21*^{+/+}/CD45.2 *Tbx21*^{\pm /-} (n=3) mixed chimeras. The chimeras were further treated with control IgG or anti-IL-12 p40 every 5 days starting from day 1. T-bet protein amounts in hepatic cNK cells (C) and splenic cNK cells (D) were measured, and T-bet MFI was calculated 8 weeks after BM transplant. Mean ± SD.

Data are representative of two (B-D) independent experiments.

Supplementary Figure 5. Regulation of T-bet expression in cNK cells *in vitro*, related to Figure 5 and Figure 6

(A) T-bet protein amounts in $Tbx21^{+/+}$ and $Tbx21^{5M/5M}$ cNK cells incubated with or without IL-12 for 3 days in the presence of IL-2 were measured.

(B) T-bet protein amounts in $Tbx21^{+/+}$ and $Tbx21^{5M/5M}$ cNK cells freshly harvested (black) and cultured 3 days in the presence of IL-2 *in vitro* (red) were measured.

(C-G) T-bet protein amounts in *Tbx21^{5M/5M}* cNK cells incubated with IL-1β, IL-6, IL-7, IL-15, IL-21,

CXCL12, Flt3L, SCF, IFN- γ or TGF- β 1 for 3 days in the presence of IL-2 were measured.

(H and I) *Tbx21^{5M/5M}* cNK cells were cultured alone (NT) or co-cultured with OP9 or OP9-DLL1 cell line for 3 days in the presence of IL-2. T-bet and Ki-67 protein amounts were measured.

(J) The expression of IL-18R α on hepatic cNK cells and ILC1s was assessed and the percentage of IL-18R α ⁺ cells was calculated. Mean \pm SD, n=3.

(K) T-bet mRNA amounts in $Tbx21^{+/+}$ (n=3), $Tbx21^{5M/5M}$ (n=3) and $Tbx21^{\triangle CNS-3}$ (n=3) splenic cNK cells *ex vivo*, incubated with IL-18 or IL-12 for 60 hours *in vitro* were measured by using qRT-PCR and normalized to *Hprt* mRNA. Mean ± SD.

Data are representative of two (A-K) independent experiments.

Supplementary Figure 6. IL-18Rα expression is correlated with T-bet expression during NK cell development, related to Figure 6

(A) Gating strategy for detecting pre-NKPs, rNKPs, iNK-A and post-iNK-A cells in BM. The pre-NKPs were gated as Lin⁻CD27⁺CD244.2⁺CD117⁻CD122⁻, the rNKPs were gated as Lin⁻CD27⁺CD244.2⁺CD117⁻CD122⁺NK1.1⁻NKG2D⁻, the iNK-A cells were gated as Lin⁻CD27⁺CD244.2⁺CD117⁻CD122⁺NK1.1⁻NKG2D⁺, and post-iNK-A cells were gated as Lin⁻CD27⁺CD244.2⁺CD117⁻CD122⁺NK1.1⁺.

(B) The expression of IL-18R α and T-bet reporter ZsGreen in pre-NKPs and post-iNK-A cells from T-bet-ZsGreen reporter mouse was measured.

(C) The expression of RUNX3-YFP reporter in Lin⁻CD27⁺CD244.2⁺CD117⁻CD122⁺NK1.1⁻IL-18Rα^{lo} and Lin⁻CD27⁺CD244.2⁺CD117⁻CD122⁺NK1.1⁻IL-18Rα^{hi} cells from RUNX3-YFP^{-/+} reporter mice was measured. The Lin⁻CD27⁺CD244.2⁺CD117⁻CD122⁺NK1.1⁻IL-18Rα^{lo} cells from WT littermate were used as negative controls.

(D) The expression of *Tbx21* mRNA in Lin⁻CD27⁺CD244.2⁺CD117⁻CD122⁺NK1.1⁻IL-18Ra⁻, Lin⁻ CD27⁺CD244.2⁺CD117⁻CD122⁺NK1.1⁺IL-18Ra⁺ and Lin⁻CD27⁺CD244.2⁺CD117⁻CD122⁺NK1.1⁺IL-18Ra⁺ populations was assessed by using qRT-PCR and normalized to *Hprt* mRNA. Mean \pm SD, n=3.

(E) The expression of IL-21R and IL-18R α in rNKPs and iNK-A cells.

(F) The expression of *Tbx21* mRNA in Lin⁻CD27⁺CD244.2⁺CD117⁻CD122⁺NK1.1⁻ cells from *Tbx21^{+/+}* (n=3) and *Tbx21^{\triangleCNS-3}* (n=3) mice was assessed by using qRT-PCR and normalized to *Hprt* mRNA. Mean \pm SD.

(G) T-bet-ZsGreen-*Tbx21^{-/-}* mice were crossed with *Tbx21^{+/+}* or *Tbx21^{\DeltaCNS-3}* mice to obtain the T-bet-ZsGreen-*Tbx21^{-/+}* (one allele is *Tbx21* KO and the other allele is *Tbx21* WT) and T-bet-ZsGreen-*Tbx21^{-/\DeltaCNS-3}* (one allele is *Tbx21* KO and the other allele is *Tbx21-CNS-3* KO) mice. The expression of *Tbx21* mRNA in Lin⁻CD27⁺CD244.2⁺CD117⁻CD122⁺NK1.1⁻ZsGreen^{hi} cells from T-bet-ZsGreen-*Tbx21^{-/+}* (n=3) and T-bet-ZsGreen-*Tbx21^{-/\DeltaCNS-3}* (n=3) mice was assessed by using qRT-PCR and normalized to *Hprt* mRNA. The assay detected the *Tbx21* transcripts from the WT and *Tbx21-CNS-3* KO alleles. Mean ± SD. (H and I) The expression of T-bet in post-iNK-A cells (H), and hepatic CD11b⁻CD27⁺, CD11b⁺CD27⁺ and CD11b⁺CD27⁻ cells (I) from *Tbx21^{+/+}* (n=3) and *Tbx21^{\DeltaCNS-3}* (n=3) mice was measured.

(J) The expression of T-bet in the bulk of rNKPs and iNK-A cells from $ll18r1^{+/+}$ (n=3) and $ll18r1^{-/-}$ (n=3) BM was measured by intracellular staining. The percentage of T-bet⁺ cells in the bulk population was calculated. Mean \pm SD.

Data are representative of two (B-J) independent experiments.

Supplementary Figure 7. Roles of RUNX3 and T-bet for T-bet induction in Th1 and cNK cells, related to Figure 7

(A) T-bet binding motifs (red) and RUNX binding motifs (blue) at *Tbx21-CNS-3* were identified by using the MEME Suite and were highlighted. Two core sequences of RUNX binding (blue) near the T-bet binding motifs were also highlighted. The conservation between human *TBX21-CNS-2.5* and mouse *Tbx21-CNS-3* was shown.

(B) $Tbx21^{5M/5M}$ cNK cells were manipulated as Figure 7D without IL-18 incubation. The transcripts of Tbx21 were assessed by qRT-PCR. Mean \pm SD, n=3.

(C) $Tbx21^{5M/5M}$ cNK cells were manipulated as Figure 7D except that the cells were incubated with IL-18 for 3 days. T-bet protein amounts were measured, and T-bet MFI was calculated. Mean \pm SD, n=3.

(D) Naïve CD4 T cells from the $Tbx21^{+/+}$ (n=3) and $Tbx21^{5M/5M}$ (n=3) mice were cultured with anti-CD3/CD28, IL-2 and anti-IL-4 in the presence of IL-12 or IL-18 alone or in combination for 3 days and then in the resting conditions for 1 day. T-bet protein amounts were measured, and T-bet MFI was calculated. Mean \pm SD.

(E) Naïve CD4 T cells from the *Tbx21^{5M/5M}* mice were cultured under Th1-skewing conditions and infected with NGFR-RUNX3 retrovirus for 4 days. In the presence of monensin, cells were stimulated with PMA and ionomycin for 4 hours. The percentage of IFN- γ -producing cells in NGFR⁻ and NGFR⁺ population was calculated. Mean \pm SD, n = 3.

(F and G) Naïve CD4 T cells from *Tbx21*^{+/+} and *Tbx21*^{5M/5M} (F) or *Stat4*^{-/-}*Ifngr1*^{-/-} mice (G) were cultured under Th1-skewing conditions and infected with NGFR-RUNX3 retrovirus for 4 days. T-bet protein amounts were measured.

(H) The expression of T-bet-ZsGreen reporter in post-iNK-A cells from T-bet-ZsGreen-*Tbx21*^{+/+} (n=4) and T-bet-ZsGreen-*Tbx21*^{-/-} (n=4) mice was measured, and ZsGreen MFI was calculated. Mean \pm SD.

(I) The expression of T-bet-ZsGreen reporter in hepatic cNK cells from T-bet-ZsGreen-*Tbx21*^{+/+} (n=8) and T-bet-ZsGreen-*Tbx21*^{-/-} (n=4) mice was measured, and ZsGreen MFI was calculated. Mean \pm SD. Data are representative of two (B-I) independent experiments.