

Supplementary Information for

- **Spin-triplet superconductivity from excitonic effect in doped insulators**
- **Valentin Crépel and Liang Fu**
- **E-mail: vcrepel@mit.edu, liangfu@mit.edu**
- **This PDF file includes:**
- Supplementary text
- Figs. S1 to S2 (not allowed for Brief Reports)
- SI References

¹⁰ **Supporting Information Text**

¹¹ **1. Effective model in the atomic limit**

¹² **A. General framework.** In this appendix, we derive the effective Hamiltonian used in the main text by treating the tunneling ¹³ terms

 $\mathcal{H}_t = t_0$ ⟨*r,r*′⟩*,σ* $\mathcal{H}_t = t_0 \sum (c_{r,\sigma}^{\dagger} c_{r',\sigma} + hc),$ [1]

15 as a perturbation to the 'classical' part $\mathcal{H}_0 = \mathcal{H} - \mathcal{H}_t$ [\(1\)](#page-10-1), which is justified by the large gap $\Delta \gg t_0$. To that purpose, we ¹⁶ apply the unitary transformation $\mathcal{H}' = e^{iS}\mathcal{H}e^{-iS}$, with *S* Hermitian and satisfying [\(2\)](#page-10-2)

$$
[\mathcal{H}_0, iS] = \mathcal{H}_t. \tag{2}
$$

¹⁸ It leads to the following approximation of the Hamiltonian

$$
\mathcal{H}' = \mathcal{H}_0 + \frac{1}{2} \left[iS, \mathcal{H}_t \right] + \mathcal{O}(\mathcal{H}_t S^2), \tag{3}
$$

²⁰ obtained with the Baker-Campbell-Haussdorf formula. To find an explicit representation of *S*, we decompose the tunneling ²¹ Hamiltonian as

$$
\mathcal{H}_t = \sum_{d=\pm 1} \sum_{v=-5}^{5} \sum_{u=-1}^{1} T_{d,v,u}, \tag{4}
$$

23 where $T_{d,v,u}$ gathers all tunneling events that change the number of occupied A sites by d , the number of nearest neighbor ²⁴ pairs by *v* and the number of doubly occupied *B*-sites by *u*. In terms of these operators, we find

$$
S = -i \sum_{d,v,u} \frac{T_{d,v,u}}{d(\Delta_0 - U_A) + vV_0 + uU_B}.
$$
 [5]

 26 Plugging this expression in Eq. [3,](#page-1-0) we obtain

$$
\mathcal{H}' = \mathcal{H}_0 + \frac{1}{2} \sum_{\substack{d,v,u\\d',v',u'}} \frac{[T_{d',v',u'}, T_{d,v,u}]}{d'(\Delta_0 - U_A) + v'V_0 + u'U_B},\tag{6}
$$

28 which is valid up to $\mathcal{O}\left(t_0^3/\Delta^2\right)$ corrections.

B. Projection. The ground state of \mathcal{H}_0 for two electrons per unit cell has a singlet on all A-sites and B-sites completely empty. 30 Due to Pauli exclusion principle, the $x = n - 2$ doped electrons above this insulating state are placed at the *B*-sites. They have 31 an energy per particle $E_f = \Delta + 3V_0$. This low energy manifold, named f-band, hybridizes with local excitation having a hole 32 on a *A*-site due to the tunneling part \mathcal{H}_t . Such local excitation are separated from the low-energy band by an energy of at ³³ least ∆. They are only virtually occupied due to the small ratio *t*⁰ ≪ ∆, and their effects on the *f*-electrons' dynamics can be ³⁴ obtained with Eq. [6.](#page-1-1)

Projecting H' onto the *f*-band requires to have $d' = -d$ and $v' = -v$ in Eq. [6.](#page-1-1) Furthermore, the first operator acting on the 36 *f*-band should move an electron from an *A* to a *B* site, *i.e.* the rightmost $T_{d,v,u}$ must have $d = 1$ and $v, u \ge 0$. This gives

$$
\mathcal{H}' \simeq \mathcal{H}_0 - \frac{1}{2} \sum_{v, u, u' \ge 0} T_{-1, -u', -v} T_{1, u, v} \left[\frac{1}{\Delta_0 - U_A + vV_0 + uU_B} + \frac{1}{\Delta_0 - U_A + vV_0 + u'U_B} \right].
$$
\n⁽⁷⁾

³⁸ This Hamiltonian can be recast as a tight binding Hamiltonian for the *f*-electrons on the triangular lattice, with density-assisted ³⁹ hopping and local interactions:

40
$$
\mathcal{H}' = U_B \sum_{i \in B} \frac{n_i(n_i - 1)}{2} + \sum_{ijk \in \Delta} \left[\tilde{V}_{ij,k} + \circlearrowleft_{ijk} \right] + \sum_{ijk \in \Delta, \sigma} \left[f_{j,\sigma}^\dagger \tilde{T}_{ij,k} f_{i,\sigma} + P_{ijk} \right],
$$

where sums run over upper triangles with vertices *ijk*, while \circlearrowleft_{ijk} and P_{ijk} respectively denote cyclic and all permutations of ⁴² *ijk*. The density dependent interaction and tunneling operators read

43
$$
\tilde{V}_{ij,k} = -\frac{t_0^2(2-n_k)}{\Delta + (2-n_\Delta)V_0 + n_kU_B}, \quad \tilde{T}_{ij,k} = \frac{t_{\Delta,i} + t_{\Delta,j}}{2}, \quad t_{\Delta,\ell} = \frac{t_0^2}{\Delta + (1-n_\Delta)V_0 + n_\ell U_B},
$$

44 with $n_{\triangle} = n_i + n_j + n_k$, which are symmetric under the exchange $i \leftrightarrow j$. These interaction coefficients and density-dependent

⁴⁵ tunneling amplitudes can be expressed in terms of sum and product of density operators. We now simplify their expression in

two particular cases.

2 of [11](#page-10-0) Valentin Crépel and Liang Fu

47 **C. Dilute limit.** At small doping concentration, we can discard states with more than two fermions on the same triangle, which

only appear with negligible probability. The tunneling coefficient $\tilde{T}_{ij,k}$ is thus restricted to cases where $(n_i + n_j = 0, n_k = 0)$, $(n_i + n_j = 1, n_k = 0)$ or $(n_i + n_j = 0, n_k = 1)$. Projecting on these configurations, we find the equivalent representation

$$
\tilde{T}_{ij,k} = T_{0,0} + n_k[T_{0,1} - T_{0,0}] + (n_i + n_j)[T_{1,0} - T_{0,0}].
$$
\n
$$
\tag{10}
$$

⁵¹ Summing over all possible triangle, we can rewrite

$$
\sum_{ijk \in \triangle, \sigma} \left[f_{j,\sigma}^{\dagger} \tilde{T}_{ij,k} f_{i,\sigma} + P_{ijk} \right] = \sum_{\langle i,j \rangle, \sigma} \left[f_{j,\sigma}^{\dagger} \left[t + \tilde{t} \frac{n_i + n_j}{2} \right] f_{i,\sigma} + hc \right] + \lambda \sum_{ijk \in \triangle, \sigma} \left[f_{j,\sigma}^{\dagger} n_k f_{i,\sigma} + P_{ijk} \right], \tag{11}
$$

⁵³ where we have introduced the coefficients

$$
t = \frac{t_0^2}{\Delta + V_0}, \quad \tilde{t} = \frac{t_0^2}{\Delta} + \frac{t_0^2}{\Delta + U_B} - \frac{2t_0^2}{\Delta + V_0}, \quad \lambda = \frac{t_0^2}{\Delta} - \frac{t_0^2}{\Delta + V_0}.
$$
\n
$$
\tag{12}
$$

Similarly, we can project the interaction terms on configurations having n_k , $(n_i + n_j)$, $(n_i + n_j + n_k) \leq 2$:

$$
\tilde{V}_{ij,k} = \tilde{V}_{ij,0} + n_k[\tilde{V}_{ij,1} - \tilde{V}_{ij,0}] + \frac{n_k(n_k - 1)}{2}[\tilde{V}_{0,0} - 2\tilde{V}_{0,1}]
$$
\n[13]

$$
= \tilde{V}_{0,0} + (n_i + n_j)[\tilde{V}_{1,0} - \tilde{V}_{0,0}] + \frac{n_i(n_i - 1) + n_j(n_j - 1) + 2n_i n_j}{2} [\tilde{V}_{2,0} - 2\tilde{V}_{1,0} + \tilde{V}_{0,0}] \tag{14}
$$

$$
+ n_k[\tilde{V}_{0,1} - \tilde{V}_{0,0} + (n_i + n_j)(\tilde{V}_{1,1} - \tilde{V}_{1,0} - \tilde{V}_{0,1} + \tilde{V}_{0,0})] + \frac{n_k(n_k - 1)}{2}[\tilde{V}_{0,0} - 2\tilde{V}_{0,1}].
$$

⁵⁵ Up to a global constant and a shift of chemical potential, this expansion leads to

$$
U_B \sum_{i \in B} \frac{n_i(n_i - 1)}{2} + \sum_{ijk \in \Delta} \left[\tilde{V}_{ij,k} + \mathcal{O}_{ijk} \right] = U \sum_i \frac{n_i(n_i - 1)}{2} + V \sum_{\langle i,j \rangle} n_i n_j,
$$
 [15]

⁵⁷ where the coefficients read

$$
U = U_B + 3[2\tilde{V}_{2,0} - 4\tilde{V}_{1,0} - 2\tilde{V}_{0,1} + 3\tilde{V}_{0,0}], \quad V_f = \tilde{V}_{2,0} + 2\tilde{V}_{1,1} - 4\tilde{V}_{1,0} - 2\tilde{V}_{0,1} + 3\tilde{V}_{0,0}.
$$
\n
$$
[16]
$$

59 In terms of the lattice parameters
$$
t_0
$$
, Δ , V_0 and U_B , we find them equal to

$$
V = \frac{4t_0^2 V_0 (\Delta - V_0)}{\Delta(\Delta + V_0)(\Delta + 2V_0)} - \frac{2t_0^2 V_0}{(\Delta + U_B)(\Delta + V_0 + U_B)}, \quad U = U_B - \frac{6t_0^2 (4V_0^2 + V_0 \Delta + \Delta^2)}{\Delta(\Delta + V_0)(\Delta + 2V_0)} + \frac{6t_0^2}{\Delta + V_0 + U_B}.
$$
 [17]

⁶¹ Gathering the various terms, we obtain the expression given in the main text.

62 **D. Large** *U* **limit.** Assuming $U_B \gg t_0$, we can project the effective Hamiltonian to the *f*-band with no double occupancy. 63 Restricting to $n_i \leq 1$ in the above equations yields the effective Hamiltonian

$$
\mathcal{H}' = \sum_{\langle i,j \rangle,\sigma} t \left(f_{i,\sigma}^{\dagger} f_{j,\sigma} + h c \right) + V n_i n_j + \sum_{\langle ijk \rangle \in \triangle} \lambda \left(\sum_{\sigma} f_{i,\sigma}^{\dagger} n_k f_{j,\sigma} + P_{ijk} \right) + U_3 n_i n_j n_k, \tag{18}
$$

65 where the coefficients *t*, λ and *V* have the same form as above. The three-body interaction terms read

$$
U_3 = \frac{12t_0^2 V_0^2}{\Delta(\Delta + V_0)(\Delta + 2V_0)} - \frac{6t_0^2 V_0^2}{(\Delta + U_B - V_0)(\Delta + U_B)(\Delta + V_0 + U_B)}.
$$
\n[19]

⁶⁷ **2. Two-particle lattice calculation**

⁶⁸ In this appendix, we solve the effective model obtained above for two particles – the analog of Cooper's problem on the lattice.

⁶⁹ To do so, we separate the center of mass momentum *K* from the relative motion with the introduction of the states

$$
\varphi_0(K,r)\rangle = \frac{1}{\sqrt{2(1+\delta_{r,0})N_s}} \sum_R e^{i(K\cdot R)} (f_{R,\uparrow}^{\dagger} f_{R+r,\downarrow}^{\dagger} + f_{R+r,\uparrow}^{\dagger} f_{R,\downarrow}^{\dagger}), \quad |\varphi_1(K,r)\rangle = \frac{1}{\sqrt{N_s}} \sum_R e^{i(K\cdot R)} f_{R,\uparrow}^{\dagger} f_{R+r,\uparrow}^{\dagger}, \tag{20}
$$

where the subscripts denotes the total spin *S* of the state (singlet $S = 0$ or triplet $S = 1$). The only difference between these spin configurations is their statistic under the exchange of the two particles, which translates into the sign difference $|\varphi_S(K,-r)\rangle = (-1)^S e^{i(K\cdot r)} |\varphi_S(K,r)\rangle$. The action of the Hamiltonian Eq. [18](#page-2-0) on this basis is

$$
\mathcal{H}'|\varphi_{S}(K,r)\rangle = \delta_{S,0}\delta_{r,0}U|\varphi_{S}(K,0)\rangle + t\sum_{\substack{j=1,2,3\\ \epsilon=\pm}} \delta_{r\neq 0} \delta_{r+\epsilon a_j\neq 0} \left[1+e^{i\epsilon(K\cdot a_j)}\right] |\varphi_{S}(K,r+\epsilon a_j)\rangle
$$
\n
$$
+ \frac{\tilde{t}}{2} \sum_{\substack{j=1,2,3\\ \epsilon=\pm}} \delta_{r,\epsilon a_j} \left[1+e^{-i\epsilon(K\cdot a_j)}\right] \sqrt{2} |\varphi_{S}(K,0)\rangle + \delta_{r,0} \left[1+e^{i\epsilon(K\cdot a_j)}\right] \frac{1}{\sqrt{2}} |\varphi_{S}(K,\epsilon a_j)\rangle
$$
\n
$$
+ \sum_{\substack{j=1,2,3\\ \epsilon=\pm}} \delta_{r,\epsilon a_j} \left[V|\varphi_{S}(K,\epsilon a_j)\rangle + \lambda|\varphi_{S}(K,-\epsilon a_{j-\epsilon})\rangle\right] + \lambda \sum_{\substack{j=1,2,3\\ \epsilon=\pm}} \delta_{r,\epsilon a_j} e^{i\epsilon(K\cdot a_{j-\epsilon})} |\varphi_{S}(K,-\epsilon a_{j+\epsilon})\rangle.
$$
\n
$$
(21)
$$

Valentin Crépel and Liang Fu 3 of [11](#page-10-0)

⁷¹ We then solve this equation numerically for large enough system sizes to extract the ground state energy in each spin sector.

- ⁷² Our solution are shown in the main text.
- ⁷³ While our original model does not include any direct repulsion between *B* sites on the honeycomb lattice, the two-particle

⁷⁴ bound state we have established is robust against longer range interactions. To study their effect, we further add non-local

 τ ₇₅ interaction between conduction electrons to the effective Hamiltonian \mathcal{H}' and re-solve the two-particle problem. We find that

⁷⁶ bound state is destroyed only when the the non-local repulsion becomes comparable to the exciton-induced short-range pairing

 τ interaction (which is much larger than the binding energy ε_b). If we take into account the direct Coulomb repulsion between

n nearest-neighbor *B* sites *V'*, bound sate persists for $V' < 2\lambda - V$, or 0.25eV when the parameters mentioned in the main

text are used. If we include the long-range Coulomb interaction $\frac{e^2}{\epsilon r}$ *r*⁹ text are used. If we include the long-range Coulomb interaction $\frac{e^2}{\epsilon r}$ fully, bound state exists for $\epsilon a > 86.4$ Å (*a* is the lattice ϵ_0 constant), which corresponds to $e^2/\epsilon a = 16.5$ meV. Thus, in order for electron pairing to occur in the limit of vanishing doping,

⁸¹ it is helpful to have a large *ϵ* which can result from dielectric screening by a different band.

⁸² **3. Continuum Limit**

88

⁸³ As shown in the main text, the kinetic part of the effective Hamiltonian dominates over interactions. Thus, low-energy fermions \mathfrak{g}_4 live near the two degenerate minima of the single-particle dispersion relation located at the *K* and K' points in the Brillouin

⁸⁵ Zone. Our goal here is to derive an effective continuum field theory capturing the physics of the system when fermions remain

⁸⁶ close to these two valleys.

We start with the momentum representation of the effective Hamiltonian \mathcal{H}' 87

$$
\mathcal{H}_f = \sum_{k,\sigma} \varepsilon_k f_{k,\sigma}^\dagger f_{k,\sigma} + \frac{1}{2N_s} \sum_{\substack{k,q,p\\ \sigma,\sigma'}} V_{k,q} f_{k,\sigma}^\dagger f_{q+p,\sigma'}^\dagger f_{k+p,\sigma'} f_{q,\sigma}
$$
\n
$$
\tag{22}
$$

with N_s the number of unit cells in the lattice, $\varepsilon_k = 2t \sum_{j=1}^3 \cos(k \cdot a_j)$ and

$$
V_{k,q} = U + 2V \sum_{j} \cos[(k-q) \cdot a_j] + 2\lambda \sum_{j} (e^{ika_j + iqa_{j-1}} + e^{-ika_{j-1} - iqa_j}) + 2\tilde{t} \sum_{j} [\cos(k \cdot a_j) + \cos(q \cdot a_j)].
$$
 [23]

Due to the quadratic band dispersion near the *K* and *K'* points, low energy fermions acquire an effective mass $m = 2/(3ta^2)$. They also carry an additional index $\{\uparrow K, \downarrow K, \uparrow K', \downarrow K'\}$ that distinguishes both their spin and their valley degeneracy and ⁹³ enable contact interactions between fermions with the same spin, provided they have opposite valley index.

⁹⁴ Let us now focus on the scattering properties of these low energy fermions. Due to momentum conservation, two incoming ⁹⁵ low-energy fermions from the same valley can only scatter into a pair of fermions living in the same valley. The corresponding ⁹⁶ vertex interaction reads

$$
V_c = V_{K,K} = V_{K',K'} = 6(V - \lambda - \tilde{t}) + U.
$$
\n⁽²⁴⁾

When the electrons are in opposite valley K and K' , they can scatter to a pair in K and K' with the same valley preserving ⁹⁹ interaction strength V_c , or exchange valley to end up in K' and K through the vertex

 $V_x = V_{K,K'} = V_{K',K} = 3(4\lambda - 2\tilde{t} - V) + U.$ [25]

¹⁰¹ Introducing different fields for the two valleys

$$
f_{k,\sigma} = \begin{cases} \psi_{k,\sigma,K} & \text{if } k \text{ near } K \\ \psi_{k,\sigma,K'} & \text{if } k \text{ near } K' \end{cases},\tag{26}
$$

¹⁰³ and accounting for the V_c and V_x terms, we find that the following effective interacting Hamiltonian

$$
\mathcal{H}_{int} = \frac{V_c}{N_s} \sum_{\substack{k,q,p\\V=K,K'}} \psi_{k,\uparrow,V}^{\dagger} \psi_{p-k,\downarrow,V}^{\dagger} \psi_{p-q,\downarrow,V} \psi_{q,\uparrow,V} + \frac{V_c - V_x}{N_s} \sum_{\substack{k,q,p\\ \sigma=\uparrow,\downarrow}} \psi_{k,\sigma,K}^{\dagger} \psi_{p-k,\sigma,K'}^{\dagger} \psi_{p-q,K'} \psi_{q,\sigma,K} \n+ \frac{V_c}{N_s} \sum_{\substack{k,q,p\\V=K,K'}} \psi_{k,\uparrow,V}^{\dagger} \psi_{p-k,\downarrow,\bar{V}}^{\dagger} \psi_{p-q,\downarrow,\bar{V}} \psi_{q,\uparrow,V} + \frac{V_x}{N_s} \sum_{\substack{k,q,p\\V=K,K'}} \psi_{k,\uparrow,V}^{\dagger} \psi_{p-k,\downarrow,\bar{V}}^{\dagger} \psi_{p-q,\downarrow,V} \psi_{q,\uparrow,\bar{V}}.
$$
\n
$$
(27)
$$

¹⁰⁵ Let us rearrange these terms in terms of pair operators to make their physical meaning clearer. Valley-polarized spin-singlet ϵ_{106} electron pairs $S_V = f_{V,\downarrow} f_{V,\uparrow}$ with $V = K, K'$ only feel the valley conserving term and therefore exhibit repulsive interaction $(V_c > 0)$. When incoming electrons occupy opposite valleys, the ferromagnetic exchange leads to a total interaction strength ¹⁰⁸ $V_c + (-1)^S V_x$ depending on the total spin *S* of the pair. As a consequence, the last spin-singlet valley-triplet channel ¹⁰⁹ $S_0 = (f_{K',\downarrow}f_{K,\uparrow} - f_{K',\uparrow}f_{K,\downarrow})/\sqrt{2}$ is also repulsive $(V_c + V_x > 0)$. On the contrary, the three valley-singlet spin-triplet pair 110 states, $T_{\sigma} = f_{K',\sigma} f_{K,\sigma}$ with $\sigma = \uparrow, \downarrow$ and $T_0 = (f_{K',\downarrow} f_{K,\uparrow} + f_{K',\uparrow} f_{K,\downarrow})/\sqrt{2}$, all display a low-energy interaction strength

4 of [11](#page-10-0) Valentin Crépel and Liang Fu

 $v_c - V_x = 9(V - 2\lambda)$, which is negative for a wide range of parameter (see main text). To summarize, we can rewrite the ¹¹² different contact interaction terms as

$$
\tilde{H} = \int dx \sum_{\sigma, V} \psi_{\sigma, V}^{\dagger} \left[\frac{-\nabla^2}{2m} \right] \psi_{\sigma, V} + \int \frac{dx}{\mathcal{A}} [(V_c - V_x)(T_\downarrow^\dagger T_\downarrow + T_0^\dagger T_0 + T_\uparrow^\dagger T_\uparrow) + V_c (S_{K'}^\dagger S_{K'} + S_K^\dagger S_K) + (V_c + V_x) S_0^\dagger S_0], \quad [28]
$$

¹¹⁴ with $A = \sqrt{3}/a^2$ the Brillouin zone area. This effective field theory describes a four-component Fermi liquid with repulsive 115 interactions in the spin-singlet channel, owing to the large on-site interaction *U* which appears in both V_c and in $(V_c + V_x)$, and 116 attractive interaction between fermions with total spin one when $V_c - V_x < 0$.

117 Alternatively, we can replace pair operators by more physical quantities, such as the total density on each valley $ρ_V$ ¹¹⁸ $\psi_{\uparrow,V}^{\dagger}\psi_{\uparrow,V} + \psi_{\downarrow,V}^{\dagger}\psi_{\downarrow,V}$ and the total spin on each valley $s_V = \psi_{\alpha,V}^{\dagger}\sigma_{\alpha,\beta}\psi_{\beta,V}$. Together, they allow to represent the exchange ¹¹⁹ term as

$$
T_{\downarrow}^{\dagger}T_{\downarrow} + T_{\uparrow}^{\dagger}T_{\uparrow} + T_{0}^{\dagger}T_{0} - S_{0}^{\dagger}S_{0} = 2s_{K} \cdot s_{K'} + \frac{1}{2}\rho_{K}\rho_{K'}.
$$
\n⁽²⁹⁾

121 The valley conserving terms present in all interaction channels can be simply with the total density $\rho_{\text{tot}} = \rho_K + \rho_{K'}$

$$
T_{\downarrow}^{\dagger}T_{\downarrow} + T_{\uparrow}^{\dagger}T_{\uparrow} + T_{0}^{\dagger}T_{0} + S_{0}^{\dagger}S_{0} + S_{K}^{\dagger}S_{K} + S_{K'}^{\dagger}S_{K'} = \frac{1}{2}\rho_{\text{tot}}(\rho_{\text{tot}} - 1). \tag{30}
$$

¹²³ Together, they allow to rewrite the interaction part of the continuum Hamiltonian as

$$
\tilde{H}_i = \frac{1}{2\mathcal{A}} \int \mathrm{d}x \left[V_c \, n_{\text{tot}} (n_{\text{tot}} - 1) - V_x \left(4\mathbf{s}_K \cdot \mathbf{s}_{K'} + n_K n_{K'} \right) \right]. \tag{31}
$$

¹²⁵ This forms makes clear the ferromagnetic interactions between opposite valleys, which are responsible for the formation of 126 triplet pairs. Expanding the total density as a function of ρ_K and $\rho_{K'}$, we find the three coupling constant given in the main ¹²⁷ text

$$
g_0 = V_c/(2\mathcal{A}), \quad g_1 = (2V_c - V_x)/(2\mathcal{A}), \quad g_2 = -2V_x/\mathcal{A}.
$$

¹²⁹ **4. Mean-field theory of superconductivity**

¹³⁰ In this appendix, we carry out a mean-field treatment of the effective Hamiltonian Eq. [22](#page-3-0) to investigate its superconductis ing behavior. With the mean-field substitution $f_{q',\sigma'} f_{q,\sigma} \simeq \delta_{q+q'} \langle f_{q',\sigma'} f_{q,\sigma} \rangle$, we get the following quadratic mean-field ¹³² approximation:

$$
\mathcal{H}_{\rm mf} = \sum_{k,\sigma} \xi_q f_{q,\sigma}^{\dagger} f_{q,\sigma} + \frac{1}{2} \sum_{k,\sigma,\sigma'} \left[\tilde{\Delta}_{k,\sigma\sigma'} f_{k,\sigma}^{\dagger} f_{-k,\sigma'}^{\dagger} + hc \right], \quad \tilde{\Delta}_{k,\sigma\sigma'} = -\frac{1}{N_s} \sum_{q} V_{k,q} \langle f_{q,\sigma} f_{-q,\sigma'} \rangle, \tag{33}
$$

134 with $\xi_k = \xi_{-k} = \varepsilon_k - \mu$ and μ the chemical potential. It can be rewritten as a sum over a halved Brillouin Zone (denoted with ¹³⁵ primed sums and products below):

$$
\mathcal{H}_{\rm mf} = \sum_{k}^{\prime} \begin{bmatrix} f_k^{\dagger} & f_{-k} \end{bmatrix} \begin{bmatrix} \xi_k & \Delta_k \\ \Delta_k^{\dagger} & -\xi_k \end{bmatrix} \begin{bmatrix} f_k \\ f_{-k}^{\dagger} \end{bmatrix} . \tag{34}
$$

137 The order parameters have been gathered in a 2×2 matrix

$$
\Delta_k = \frac{\tilde{\Delta}_k - \tilde{\Delta}_{-k}^T}{2} = \frac{-1}{N_s} \sum_q \text{Re}\left(V_{k,q}\right) \langle f_{q,\sigma} f_{-q,\sigma'} \rangle,\tag{35}
$$

¹³⁹ and should be computed self-consistently.

¹⁴⁰ **A. Pairing symmetries.** The explicit expression of *Vk,q* allows to decompose this order parameter into spin-singlet and spin-triplet ¹⁴¹ components

$$
^{142}
$$

$$
\Delta_k = \Delta'_s + \sum_{j=1}^3 \Delta_j^s \cos(k \cdot a_j) + \Delta_j^t \sin(k \cdot a_j), \tag{36}
$$

which respectively read:

$$
\Delta'_{s} = \frac{-1}{N_{s}} \sum_{q} \left[U + 2\tilde{t}(c_{1} + c_{2} + c_{3}) \right] \langle f_{q,\sigma} f_{-q,\sigma'} \rangle,
$$

\n
$$
\Delta_{j}^{s} = \frac{-2}{N_{s}} \sum_{q} \left[\lambda(c_{j-1} + c_{j+1}) + Vc_{j} + \tilde{t} \right] \langle f_{q,\sigma} f_{-q,\sigma'} \rangle,
$$

\n
$$
\Delta_{j}^{t} = \frac{2}{N_{s}} \sum_{q} \left[\lambda(s_{j-1} + s_{j+1}) - Vs_{j} \right] \langle f_{q,\sigma} f_{-q,\sigma'} \rangle,
$$
\n[37]

¹⁴³ with $c_j = \cos(q \cdot a_j)$ and $s_j = \sin(q \cdot a_j)$. We can further split these order parameters in terms of irreducible representation of ¹⁴⁴ *C*_{3*v*} that they represent on the triangular lattice. For the singlet and triplet case, there are two one-dimensional irrep, only one 145 of which can be obtained because of the particular form of $V_{k,q}$ and one two dimensional irrep. The two former measure the ¹⁴⁶ strength of s-wave and f-wave pairing

$$
\Delta'_s, \quad \Delta_{s/f} = \frac{1}{3} \left[\Delta_1^{s/t} + \Delta_2^{s/t} + \Delta_3^{s/t} \right], \tag{38}
$$

¹⁴⁸ while the two dimensional irrep are related to d-wave and p-wave pairing

$$
\Delta_{d_{x^2-y^2}/p_x} = \frac{1}{6} \left[\Delta_1^{s/t} + \Delta_2^{s/t} - 2\Delta_3^{s/t} \right], \quad \Delta_{d_{xy}/p_y} = \frac{1}{2} \left[\Delta_1^{s/t} - \Delta_2^{s/t} \right]. \tag{39}
$$

¹⁵⁰ The inverse transformations are

151 $\Delta_1 = \Delta_{s/f} + \Delta_{d_{x^2-y^2}/p_x} + \Delta_{d_{xy}/p_y}, \quad \Delta_2 = \Delta_{s/f} + \Delta_{d_{x^2-y^2}/p_x} - \Delta_{d_{xy}/p_y}, \quad \Delta_3 = \Delta_{s/f} - 2\Delta_{d_{x^2-y^2}/p_x}.$ [40]

Finally, singlet pairs cannot be of equal spin, and we can therefore express them as a scalar times the 2×2 matrix $i\sigma_y$, *e.g.* ¹⁵³ $\Delta_s = d_0(i\sigma_y)$ with δ_s a complex number. Triplet on the other hand, take the form of a Pauli vector multiplied by $i\sigma_y$, *e.g.* 154 $\Delta_f = (\boldsymbol{d}_f \cdot \boldsymbol{\sigma})(i\sigma_y).$

Our mean-field treatment relies on the self-consistent computation of four scalars related to singlet pairing in s-wave (Δ_s , Δ' _s) and d-wave $(\Delta_{d_{x^2-y^2}}, \Delta_{d_{xy}})$, and three vectors describing f-wave (Δ_f) or p-wave $(\Delta_{p_x}, \Delta_{p_y})$ pairs. The corresponding self-consistent equations become

$$
\Delta'_{s} = \frac{-1}{N_{s}} \sum_{q} \left[U + 2\tilde{t}(c_{1} + c_{2} + c_{3}) \right] \langle f_{q,\sigma} f_{-q,\sigma'} \rangle,
$$

\n
$$
\Delta_{s} = \frac{-2}{N_{s}} \sum_{q} \left[\tilde{t} + \frac{2\lambda + V}{3} (c_{1} + c_{2} + c_{3}) \right] \langle f_{q,\sigma} f_{-q,\sigma'} \rangle,
$$

\n
$$
\Delta_{p_{x}} = \frac{-2(\lambda + V)}{N_{s}} \sum_{q} \frac{s_{1} + s_{2} - 2s_{3}}{6} \langle f_{q,\sigma} f_{-q,\sigma'} \rangle,
$$

\n
$$
\Delta_{p_{y}} = \frac{-2(\lambda + V)}{N_{s}} \sum_{q} \frac{s_{1} - s_{2}}{2} \langle f_{q,\sigma} f_{-q,\sigma'} \rangle,
$$

\n
$$
\Delta_{d_{x^{2}-y^{2}}} = \frac{2(\lambda - V)}{N_{s}} \sum_{q} \frac{c_{1} + c_{2} - 2c_{3}}{6} \langle f_{q,\sigma} f_{-q,\sigma'} \rangle,
$$

\n
$$
\Delta_{d_{xy}} = \frac{2(\lambda - V)}{N_{s}} \sum_{q} \frac{c_{1} - c_{2}}{2} \langle f_{q,\sigma} f_{-q,\sigma'} \rangle,
$$

\n
$$
\Delta_{f} = \frac{2(2\lambda - V)}{N_{s}} \sum_{q} \frac{s_{1} + s_{2} + s_{3}}{3} \langle f_{q,\sigma} f_{-q,\sigma'} \rangle.
$$

\n[41]

¹⁵⁵ **B. Self-consistent conditions.** The mean field quadratic Hamiltonian can be diagonalized by a Bogoliubov transformation. ¹⁵⁶ Writing the hermitian matrix

$$
\Delta _q\Delta _q^{\dagger }=a_0+\boldsymbol{a}\cdot \boldsymbol{\sigma } \tag{42}
$$

¹⁵⁸ as a Pauli vector, the eigen-energies read

$$
E_{q,\pm} = \sqrt{\xi_q^2 + a_0 \pm |\mathbf{a}|}. \tag{43}
$$

¹⁶⁰ The corresponding eigenvectors lead to the following expression for the anomalous correlators

$$
\langle f_q f_{-q}^T \rangle = \left[g_q^+ + g_q^- \frac{\boldsymbol{a} \cdot \boldsymbol{\sigma}}{|a|} \right] \frac{\Delta_q}{2},\tag{44}
$$

¹⁶² with

$$
g_q^{\pm} = \frac{g(E_{q,+}) \pm g(E_{q,-})}{2}, \ g(E) = \frac{\tanh(\beta E/2)}{E}.
$$

 $\Delta_q \Delta_q^{\dagger}$ is simply proportional to the identity, for instance when pairing occurs for spin-singlet, $E_{q,+} = E_{q,-} = E_q$ and the 165 • previous expression simply becomes $\langle f_q f_{-q}^T \rangle = g(E_q) \Delta_q/2$.

¹⁶⁶ **C. Critical temperature.** Solving the self-consistent relations of Eq. [41](#page-5-0) with the help of Eq. [44](#page-5-1) allows to determine the nature of ¹⁶⁷ the superconducting state. We now consider each pairing channel separately to check whether a superconducting phase can ¹⁶⁸ fully form.

¹⁶⁹ *C.1. s-wave.* The possibility of an s-wave SC order can be ruled out because *U* is much larger than all the other terms scaling as *t*²₀/∆. The coupled gap equations for Δ_s and Δ'_s linearized near T_c read

$$
\begin{bmatrix}\n\Delta'_{s} \\
\Delta_{s}\n\end{bmatrix} = \begin{bmatrix}\nUI_0 + 2\tilde{t}I_1 & UI_1 + 2\tilde{t}I_2 \\
2\tilde{t}I_0 + \frac{2(2\lambda + V)}{3}I_1 & 2\tilde{t}I_1 + \frac{2(2\lambda + V)}{3}I_2\n\end{bmatrix} \begin{bmatrix}\n\Delta'_{s} \\
\Delta_{s}\n\end{bmatrix},
$$
\n
$$
\tag{46}
$$

¹⁷² where $I_k = -\sum_q \tanh(\beta E_q/2)(c_1+c_2+c_3)^k/(2N_sE_q)$ and β the inverse temperature. The matrix in the previous equation ¹⁷³ must have at least one eigenvalue equal to one for the system to exhibit s-wave symmetry. However, to leading order in *U*, this ¹⁷⁴ requires to have

$$
U\left[\frac{2(2\lambda + V)}{3}(I_0I_2 - I_1^2) - I_0\right] = 0.
$$
\n^[47]

This equation has no solution because $(-I_0) > 0$ has the same sign as $I_0I_2 - I_1^2 > 0$ (we used Cauchy-Schwarz inequality for ¹⁷⁷ the last inequality). Thus, *s*-wave singlet pairing does not happen in our model. It could nevertheless appear for smaller ratios Δ/t_0 where our perturbation theory breaks down.

¹⁷⁹ *C.2. p-wave.* The possibility of p-wave pairing can be ruled out as well. Indeed, let's assume a p-wave SC order and compute 180 the critical temperature T_c of that state. Linearizing the gap equation, such that $\boldsymbol{a} \simeq \boldsymbol{0}$ and $E_{q,\pm} \simeq |\xi_q|$, we find the coupled ¹⁸¹ equations

$$
\begin{bmatrix}\n\Delta_{p_x} \\
\Delta_{p_y}\n\end{bmatrix} = -\frac{V+\lambda}{N_s} \sum_{q} \frac{\tanh(\beta E_q/2)}{E_q} \begin{bmatrix}\n(s_1+s_2-2s_3)^2/6 & (s_1+s_2-2s_3)(s_1-s_2)/6 \\
(s_1-s_2)(s_1+s_2-2s_3)/2 & (s_1-s_2)^2/2\n\end{bmatrix} \begin{bmatrix}\n\Delta_{p_x} \\
\Delta_{p_y}\n\end{bmatrix}.
$$
\n
$$
(48)
$$

183 Noting that $E_q = |\xi_q|$ is C_3 invariant, while the off-diagonal terms of the equation are not, we can rewrite the diagonal terms as:

$$
\frac{-6}{V+\lambda} = \frac{1}{N_s} \sum_{q} \frac{\tanh(\beta E_q/2)}{E_q} \sum_{j} (s_j - s_{j+1})^2,
$$
\n[49]

185 which does not have any solution since the left and right hand sides have opposite signs since $V + \lambda > 0$.

¹⁸⁶ *C.3. d- and f-wave.* We can similarly derive an implicit equation for the critical temperature in the d-wave channel

$$
\frac{6}{\lambda - V} = \frac{1}{N_s} \sum_{q} \frac{\tanh(\beta E_q/2)}{E_q} \sum_{j} (c_j - c_{j+1})^2.
$$
 [50]

 Contrary to p-wave pairing, *λ* − *V* can be positive for *U^B* not too large and *V*0*/*∆ large enough. The region where *λ > V* ¹⁸⁹ is explicitly shown in the main text. The two independent order parameters $\Delta_{d_{xy}}$ and $\Delta_{d_{x^2-y^2}}$ are shown in Fig. [S1.](#page-7-0) They exhibits nodal lines crossing the corners of the Brillouin zone, leading to a nodal superconducting order parameter at low doping when time reversal symmetry is not explicitly broken.

¹⁹² Turning to f-wave pairing, we find the effective gap equation

$$
\begin{array}{c} 193 \end{array}
$$

$$
\frac{3}{2\lambda - V} = \frac{1}{N_s} \sum_{q} (s_1 + s_2 + s_3)^2 \frac{\tanh(\beta E_q/2)}{E_q}.
$$
 [51]

194 As explained in the main text, $2\lambda > V$ for most choice of parameter, leading to a superconducting order with f-wave symmetry that we extensively study in the main text. The competition between f- and d-wave superconducting state in regions where both of them are allowed is also discussed in the main text. In our model, f-wave pairing strongly dominate, but additional terms in the Hamiltonian may work in favor of the d-wave paired state.

¹⁹⁸ **5. Weakly interacting regime**

¹⁹⁹ **A. Explicit unitary transformation.** We start by isolating the band mixing (or off-diagonal) interaction elements from the zoo others $V = V_{od} + V_d$. More explicitly, we write $V_{od} = \frac{1}{N_s} \sum_{C(1234)} V_{43}^{21} \delta_{43}^{21} c_4^{\dagger} c_3^{\dagger} c_2 c_1$, with $C(1234)$ restricting the sum to terms 201 satisfying either $b_1b_2b_3b_4 = -1$, or having $b_1 = b_2$ and $b_3 = b_4$ with $b_1 \neq b_2$.

To eliminate these band mixing interaction terms, we use a Schrieffer-Wolff transformation $\mathcal{H}' = e^S \mathcal{H} e^{-S}$, with *S* anti-203 hermitian. This unitary transformation can be carried order by order in the small parameter $|\mathcal{V}|/\Delta$, and we write $S = S_1 + S_2 + \cdots$ ²⁰⁴ with $S_n = \mathcal{O}(|\mathcal{V}|^n / \Delta^n)$. Requiring

$$
[H_0, S_1] = \mathcal{V}_{\text{od}},\tag{52}
$$

zos gets rid of the direct band-mixing terms in \mathcal{H}' :

$$
\mathcal{H}' = \mathcal{H} + [S, \mathcal{H}] + \frac{1}{2}[S, [S, \mathcal{H}]] + \mathcal{O}(S^2 \mathcal{H}) = \mathcal{H}_0 + \mathcal{V}_d + \left[S_1, \mathcal{V}_d + \frac{\mathcal{V}_{od}}{2}\right] + [S_2, H_0] + \mathcal{O}\left(\frac{|\mathcal{V}|^3}{\Delta^2}\right).
$$
 (53)

Valentin Crépel and Liang Fu 7 of [11](#page-10-0)

Fig. S1. Normalized d-wave superconducting order parameter amplitudes. The Fermi surface for *x* = 0*.*1 is indicated with a solid black line.

Fig. S2. Bare dispersion $\varepsilon_{\mathbf{k},+}$ and its leading correction $\delta \varepsilon_{\mathbf{k},+}$ (multiplied 40 times for visibility) in the weakly interacting limit, shown for $\Delta_0 = t = 2U_A = 2U_B = 10V_0$.

²⁰⁸ A possible *S*¹ satisfying this condition is

$$
S_1 = \sum_{C(1234)} \frac{V_{43}^{21} \delta_{43}^{21}}{\varepsilon_4 + \varepsilon_3 - \varepsilon_2 - \varepsilon_1} c_4^{\dagger} c_3^{\dagger} c_2 c_1. \tag{54}
$$

210 We can then choose $[S_2, H_0]$ to remove the band mixing terms of $[S_1, V_d + V_{od}/2]$, and so on. Note that, because V_d contains 211 no band mixing terms, such that $[S_1, V_d]$ is purely off diagonal and therefore completely eliminated by $[S_2, H_0]$. The second order corrections read $[S_1, \mathcal{V}_{od}]/2$, which as promised are of order $|\mathcal{V}|^2/\Delta$.

Finally, the effective Hamiltonian for doped charge is obtained by projecting \mathcal{H}' to the subspace where the lower band is fully filled, which amounts to pairing up lower band indices as $c_a^{\dagger}c_b \rightarrow \tilde{\delta}_{a,b}$.

²¹⁵ **B. Leading corrections.** To make analytical progress, we need the explicit form of the dispersion and scattering vertex. The ²¹⁶ single particle energy dispersion reads

$$
\frac{1}{2}
$$

$$
\varepsilon_{\mathbf{k},\pm,\sigma} = \varepsilon_{\mathbf{k},\pm} = \pm \sqrt{(\Delta_0/2)^2 + |t_0 f(\mathbf{k})|^2},\tag{55}
$$

²¹⁸ with $f(\mathbf{k}) = \sum_{j=1}^{3} e^{i(\mathbf{k} \cdot \mathbf{u}_j)}$, and $\mathbf{u}_{j=1,2,3}$ the vectors connecting *B* sites to their three nearest neighbors. The corresponding ²¹⁹ Bloch eigenvectors are

$$
\Psi_{\mathbf{k},\pm} = \frac{1}{\sqrt{2\varepsilon_{\mathbf{k},+}(\varepsilon_{\mathbf{k},+} \pm \Delta_0/2)}} \begin{bmatrix} \mp t_0 f(\mathbf{k}) \\ \varepsilon_{\mathbf{k},+} \pm \Delta_0/2 \end{bmatrix},\tag{56}
$$

²²¹ They allow us to write the interaction vertex in the band basis as

$$
V_{43}^{21} = V_0 f(\mathbf{k}_4 - \mathbf{k}_1) \left[\Psi_{\mathbf{k}_4, b_4}^A \Psi_{\mathbf{k}_3, b_3}^B \right]^* \Psi_{\mathbf{k}_2, b_2}^B \Psi_{\mathbf{k}_1, b_1}^A + \sum_{\tau = A/B} \frac{U_\tau}{2} \delta_{(\sigma_4 = \sigma_1) \neq (\sigma_3 = \sigma_2)} \left[\Psi_{\mathbf{k}_4, b_4}^\tau \Psi_{\mathbf{k}_3, b_3}^\tau \right]^* \Psi_{\mathbf{k}_2, b_2}^\tau \Psi_{\mathbf{k}_1, b_1}^T. \tag{57}
$$

223 The leading corrections to the band dispersion come from V_d and are in the main text. The Hartree-like part takes the ²²⁴ explicit form

$$
\delta \varepsilon_{\mathbf{k},+}^{\mathrm{H}} = (6V_0C_- + U_A C_+) \frac{\varepsilon_{\mathbf{k},+} - \Delta_0/2}{2\varepsilon_{\mathbf{k},+}} + (6V_0C_+ + U_B C_-) \frac{\varepsilon_{\mathbf{k},+} + \Delta_0/2}{2\varepsilon_{\mathbf{k},+}},
$$
\n[58]

²²⁶ with $C_{\pm} = (2N_s)^{-1} \sum_{\mathbf{q}} (\varepsilon_{\mathbf{q},+} \pm \Delta_0/2) / \varepsilon_{\mathbf{q},+}.$ The Fock-like term reads

$$
\delta \varepsilon_{\mathbf{k},+}^{\mathrm{F}} = \frac{t_0^2 V_0}{2N_s} \mathrm{Re} \left[\frac{f^*(\mathbf{k})}{\varepsilon_{\mathbf{k},+}} \sum_{\mathbf{q}} f(\mathbf{k} - \mathbf{q}) \frac{f(\mathbf{q})}{\varepsilon_{\mathbf{q},+}} \right]. \tag{59}
$$

228 These corrections are plotted together with the bare band dispersion for $\Delta_0 = t = 2U_A = 2U_B = 10V_0$ in Fig. [S2,](#page-8-0) where we α observe that they both admit degenerate minima at the K and K' points.

230 When *t*₀ ≪ ∆₀, we can approximate $ε$ **k**_{*i*} ← Δ ₀/2 + |*t*₀*f*(**k**)|²/∆₀ and expand these corrections in powers of *t*₀/*V*₀. Without ²³¹ too much difficulty, we end up with

$$
\delta \varepsilon_{\mathbf{k},+}^{\mathrm{H}} = \frac{|t_0 f(\mathbf{k})|^2}{\Delta_0^2} (U_A - 6V_0), \quad \delta \varepsilon_{\mathbf{k},+}^{\mathrm{F}} = \frac{2t_0^2 V_0}{\Delta_0^2 N_s} \mathrm{Re} \left[f^*(\mathbf{k}) \sum_{\mathbf{q}} f(\mathbf{k} - \mathbf{q}) f(\mathbf{q}) \right], \tag{60}
$$

as up to an overall global constant. These expressions allow to obtain the effective mass by expanding around the K or K' point. For that purpose, we recall $f(K + \mathbf{k}) \simeq \sqrt{3(k_x + ik_y)}a/2$ and furthermore find that

$$
F_{\mathbf{q}} = \sum_{\mathbf{q}} f(K + \mathbf{k} - \mathbf{q}) f(\mathbf{q}) = \sum_{\mathbf{q}} f(\mathbf{k} - \mathbf{q}) f(\mathbf{q} + K) \simeq \sum_{\mathbf{q}} f(-\mathbf{q}) f(\mathbf{q} + K) + \mathbf{k} \cdot \sum_{\mathbf{q}} (\nabla f)(-\mathbf{q}) f(\mathbf{q} + K) = 0 + \sqrt{3} (k_x + ik_y) a/2, \quad [61]
$$

²³⁶ where the last equality is easy to check numerically. We end up with

$$
(\varepsilon + \delta \varepsilon^{\mathrm{H}} + \delta \varepsilon^{\mathrm{F}})_{K + \mathbf{k}, +} \simeq \frac{3t_0^2 a^2 |\mathbf{k}|^2}{4\Delta_0^2} (\Delta_0 + U_A - 4V_0), \tag{62}
$$

²³⁸ yielding the effective mass given in the main text.

239 We now turn to the corrections to the two-body scattering vertex, which are contained in the second order term $X =$ \mathcal{E}_{240} $[S_1, \mathcal{V}_{\text{od}}]/2$. Direct evaluation of the commutator using the explicit expression of S_1 (Eq. [54\)](#page-9-0) gives

$$
X = \frac{1}{N_s} \sum_{123456} \Gamma_{654}^{321} \delta_{654}^{321} c_6^{\dagger} c_5^{\dagger} (2c_4^{\dagger} c_3 - \delta_{3,4}) c_2 c_1, \tag{63}
$$

10 of [11](#page-10-0) Valentin Crépel and Liang Fu

²⁴² where the indices 653 and 421 originates from the same interaction elements and thus satisfy the conditions given above for the ²⁴³ elements of V_{od} and S_1 . The three-body tensor Γ takes the form

$$
\Gamma_{654}^{321} = \frac{1}{N_s} \sum_{0} \delta_{65}^{30} \delta_{40}^{21} (V_{65}^{03} - V_{65}^{30}) (V_{04}^{21} - V_{40}^{21}) \left[\frac{1}{\varepsilon_6 + \varepsilon_5 - \varepsilon_3 - \varepsilon_0} + \frac{1}{\varepsilon_2 + \varepsilon_1 - \varepsilon_4 - \varepsilon_0} \right].
$$

For later use, we also define $\tilde{\Gamma}$ and $\hat{\Gamma}$, which have the same explicit representation except that the sum over 0 is restricted to 246 states in lower band $b_0 = -$ and the upper band $b_0 = +$, respectively. To find the two-body corrections from *X*, we can select ²⁴⁷ the terms where two of the indices belong to the lower band and contract them. Considering all possible pairs compatible with ²⁴⁸ the constraints on 653 and 421, we end up with

$$
\delta V_{43}^{21} = 2 \sum_{i,b_i=-} \Gamma_{43i}^{i21} + \hat{\Gamma}_{i43}^{21i} + \hat{\Gamma}_{i43}^{21i} + \hat{\Gamma}_{4i3}^{21i} + \hat{\Gamma}_{4i3}^{21i} + 2 \sum_{i,b_i=-} \tilde{\Gamma}_{i43}^{i21} + \tilde{\Gamma}_{43i}^{211} + \tilde{\Gamma}_{43i}^{21i} + \tilde{\Gamma}_{43i}^{21i} - \sum_{i} \tilde{\Gamma}_{43i}^{i21}.
$$
 [65]

This expression greatly simplifies when we assume that the four momenta $\mathbf{k}_{1,2,3,4}$ are equal to *K* or *K'*, as we do to determine the effective interaction strength in the spin-triplet valley singlet channel U_0 (see main text). Because $\Psi^A_{K/K',+} = 0$, any term ²⁵² of the form Γ_{654}^{321} with $6 = (K/K', +)$ or $1 = (K/K', +)$ appearing in U_0 vanishes (see Eq. [64\)](#page-10-3). This completely removes any contribution from on-site interactions on *A* sites U_A . Let us first focus on the V_0^2 contributions and set $U_B = 0$ for a moment. 254 This largely simplifies the expression of U_0 , which now reads

$$
U_0^{(1)} = 2\sum_q \hat{\Gamma}_{(q-)(K+)(K'+)}^{(K'+)(K+)(q-)} + \hat{\Gamma}_{(q-)(K'+)(K+)}^{(K'+)(K'+)(q-)} - \hat{\Gamma}_{(q-)(K+)(K'+)}^{(K'+)(q-)} - \hat{\Gamma}_{(q-)(K'+)(K+)}^{(K'+)(q-)}.
$$
 [66]

 $_{256}$ The two first terms of the sum involve interaction coefficients with momentum transfer K and K' , respectively, which makes them vanish as $f(K) = f(K') = 0$ (see Eq. [57\)](#page-9-1). The other terms contribute equally, and we finally obtain

$$
U_0^{(1)} = -\frac{36t_0^2V_0^2}{N_s} \sum_{\mathbf{q}} \frac{|f(\mathbf{q})|^2}{(2\varepsilon_{\mathbf{q},+})^3}.\tag{67}
$$

²⁵⁹ It is not difficult to check that the contribution proportional to U_B^2 vanishes, and we now turn to the crossed V_0U_B corrections. 260 The calculation proceeds in a similar way, except that one of the interaction element $3V_0$ is replaced by U_B and the signs needs ²⁶¹ to be flipped, such that the exchange part gives

$$
U_0^{(2)} = \frac{12t_0^2 V_0 U_B}{N_s} \sum_{\mathbf{q}} \frac{|f(\mathbf{q})|^2}{(2\varepsilon_{\mathbf{q},+})^3}.
$$
 [68]

For $t_0 \ll \Delta_0$, we use $\sum_{\mathbf{q}} |f(\mathbf{q})|^2 = 3N_s$ to find the simpler form

$$
U_0 = \frac{36t_0^2 V_0 (U_B - 3V_0)}{\Delta_0^3},\tag{69}
$$

²⁶⁵ which – remarkably – exactly match the result of the kinetic expansion in the weakly interacting regime

$$
U_0^{\text{KE}} = V_c - V_x \stackrel{(U_A, U_B, V_0 \ll \Delta_0)}{\simeq} \frac{36t_0^2 V_0 (U_B - 3V_0)}{\Delta_0^3}.
$$
\n^[70]

²⁶⁷ **References**

²⁶⁸ 1. K Slagle, L Fu, Charge transfer excitations, pair density waves, and superconductivity in moiré materials. *Phys. Rev. B* ²⁶⁹ **102**, 235423 (2020).

²⁷⁰ 2. JR Schrieffer, PA Wolff, Relation between the anderson and kondo hamiltonians. *Phys. Rev*. **149**, 491 (1966).