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Supporting Information Text10

1. Effective model in the atomic limit11

A. General framework. In this appendix, we derive the effective Hamiltonian used in the main text by treating the tunneling12

terms13

Ht = t0
∑

⟨r,r′⟩,σ

(
c†

r,σcr′,σ + hc
)
, [1]14

as a perturbation to the ’classical’ part H0 = H − Ht (1), which is justified by the large gap ∆ ≫ t0. To that purpose, we15

apply the unitary transformation H′ = eiSHe−iS , with S Hermitian and satisfying (2)16

[H0, iS] = Ht. [2]17

It leads to the following approximation of the Hamiltonian18

H′ = H0 + 1
2 [iS,Ht] + O(HtS

2), [3]19

obtained with the Baker-Campbell-Haussdorf formula. To find an explicit representation of S, we decompose the tunneling20

Hamiltonian as21

Ht =
∑

d=±1

5∑
v=−5

1∑
u=−1

Td,v,u, [4]22

where Td,v,u gathers all tunneling events that change the number of occupied A sites by d, the number of nearest neighbor23

pairs by v and the number of doubly occupied B-sites by u. In terms of these operators, we find24

S = −i
∑
d,v,u

Td,v,u

d(∆0 − UA) + vV0 + uUB
. [5]25

Plugging this expression in Eq. 3, we obtain26

H′ = H0 + 1
2
∑
d,v,u

d′,v′,u′

[Td′,v′,u′ , Td,v,u]
d′(∆0 − UA) + v′V0 + u′UB

, [6]27

which is valid up to O
(
t30/∆2) corrections.28

B. Projection. The ground state of H0 for two electrons per unit cell has a singlet on all A-sites and B-sites completely empty.29

Due to Pauli exclusion principle, the x = n− 2 doped electrons above this insulating state are placed at the B-sites. They have30

an energy per particle Ef = ∆ + 3V0. This low energy manifold, named f -band, hybridizes with local excitation having a hole31

on a A-site due to the tunneling part Ht. Such local excitation are separated from the low-energy band by an energy of at32

least ∆. They are only virtually occupied due to the small ratio t0 ≪ ∆, and their effects on the f -electrons’ dynamics can be33

obtained with Eq. 6.34

Projecting H′ onto the f -band requires to have d′ = −d and v′ = −v in Eq. 6. Furthermore, the first operator acting on the35

f -band should move an electron from an A to a B site, i.e. the rightmost Td,v,u must have d = 1 and v, u ≥ 0. This gives36

H′ ≃ H0 − 1
2
∑

v,u,u′≥0

T−1,−u′,−vT1,u,v

[ 1
∆0 − UA + vV0 + uUB

+ 1
∆0 − UA + vV0 + u′UB

]
. [7]37

This Hamiltonian can be recast as a tight binding Hamiltonian for the f -electrons on the triangular lattice, with density-assisted38

hopping and local interactions:39

H′ = UB

∑
i∈B

ni(ni − 1)
2 +

∑
ijk∈△

[
Ṽij,k+ ⟲ijk

]
+

∑
ijk∈△,σ

[
f†

j,σT̃ij,kfi,σ + Pijk

]
, [8]40

where sums run over upper triangles with vertices ijk, while ⟲ijk and Pijk respectively denote cyclic and all permutations of41

ijk. The density dependent interaction and tunneling operators read42

Ṽij,k = − t20(2 − nk)
∆ + (2 − n△)V0 + nkUB

, T̃ij,k = t∆,i + t∆,j

2 , t∆,ℓ = t20
∆ + (1 − n△)V0 + nℓUB

, [9]43

with n△ = ni + nj + nk, which are symmetric under the exchange i ↔ j. These interaction coefficients and density-dependent44

tunneling amplitudes can be expressed in terms of sum and product of density operators. We now simplify their expression in45

two particular cases.46
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C. Dilute limit. At small doping concentration, we can discard states with more than two fermions on the same triangle, which47

only appear with negligible probability. The tunneling coefficient T̃ij,k is thus restricted to cases where (ni + nj = 0, nk = 0),48

(ni + nj = 1, nk = 0) or (ni + nj = 0, nk = 1). Projecting on these configurations, we find the equivalent representation49

T̃ij,k = T0,0 + nk[T0,1 − T0,0] + (ni + nj)[T1,0 − T0,0]. [10]50

Summing over all possible triangle, we can rewrite51 ∑
ijk∈△,σ

[
f†

j,σT̃ij,kfi,σ + Pijk

]
=
∑

⟨i,j⟩,σ

[
f†

j,σ

[
t+ t̃

ni + nj

2

]
fi,σ + hc

]
+ λ

∑
ijk∈△,σ

[
f†

j,σnkfi,σ + Pijk

]
, [11]52

where we have introduced the coefficients53

t = t20
∆ + V0

, t̃ = t20
∆ + t20

∆ + UB
− 2t20

∆ + V0
, λ = t20

∆ − t20
∆ + V0

. [12]54

Similarly, we can project the interaction terms on configurations having nk, (ni + nj), (ni + nj + nk) ≤ 2:

Ṽij,k = Ṽij,0 + nk[Ṽij,1 − Ṽij,0] + nk(nk − 1)
2 [Ṽ0,0 − 2Ṽ0,1] [13]

= Ṽ0,0 + (ni + nj)[Ṽ1,0 − Ṽ0,0] + ni(ni − 1) + nj(nj − 1) + 2ninj

2 [Ṽ2,0 − 2Ṽ1,0 + Ṽ0,0] [14]

+ nk[Ṽ0,1 − Ṽ0,0 + (ni + nj)(Ṽ1,1 − Ṽ1,0 − Ṽ0,1 + Ṽ0,0)] + nk(nk − 1)
2 [Ṽ0,0 − 2Ṽ0,1].

Up to a global constant and a shift of chemical potential, this expansion leads to55

UB

∑
i∈B

ni(ni − 1)
2 +

∑
ijk∈△

[
Ṽij,k+ ⟲ijk

]
= U

∑
i

ni(ni − 1)
2 + V

∑
⟨i,j⟩

ninj , [15]56

where the coefficients read57

U = UB + 3[2Ṽ2,0 − 4Ṽ1,0 − 2Ṽ0,1 + 3Ṽ0,0], Vf = Ṽ2,0 + 2Ṽ1,1 − 4Ṽ1,0 − 2Ṽ0,1 + 3Ṽ0,0. [16]58

In terms of the lattice parameters t0, ∆, V0 and UB , we find them equal to59

V = 4t20V0(∆ − V0)
∆(∆ + V0)(∆ + 2V0) − 2t20V0

(∆ + UB)(∆ + V0 + UB) , U = UB − 6t20(4V 2
0 + V0∆ + ∆2)

∆(∆ + V0)(∆ + 2V0) + 6t20
∆ + V0 + UB

. [17]60

Gathering the various terms, we obtain the expression given in the main text.61

D. Large U limit. Assuming UB ≫ t0, we can project the effective Hamiltonian to the f -band with no double occupancy.62

Restricting to ni ≤ 1 in the above equations yields the effective Hamiltonian63

H′ =
∑

⟨i,j⟩,σ

t
(
f†

i,σfj,σ + hc
)

+ V ninj +
∑

(ijk)∈△

λ

(∑
σ

f†
i,σnkfj,σ + Pijk

)
+ U3ninjnk, [18]64

where the coefficients t, λ and V have the same form as above. The three-body interaction terms read65

U3 = 12t20V 2
0

∆(∆ + V0)(∆ + 2V0) − 6t20V 2
0

(∆ + UB − V0)(∆ + UB)(∆ + V0 + UB) . [19]66

2. Two-particle lattice calculation67

In this appendix, we solve the effective model obtained above for two particles – the analog of Cooper’s problem on the lattice.68

To do so, we separate the center of mass momentum K from the relative motion with the introduction of the states69

|φ0(K, r)⟩ = 1√
2(1 + δr,0)Ns

∑
R

ei(K·R)(f†
R,↑f

†
R+r,↓ + f†

R+r,↑f
†
R,↓), |φ1(K, r)⟩ = 1√

Ns

∑
R

ei(K·R)f†
R,↑f

†
R+r,↑, [20]70

where the subscripts denotes the total spin S of the state (singlet S = 0 or triplet S = 1). The only difference between
these spin configurations is their statistic under the exchange of the two particles, which translates into the sign difference
|φS(K,−r)⟩ = (−1)Sei(K·r)|φS(K, r)⟩. The action of the Hamiltonian Eq. 18 on this basis is

H′|φS(K, r)⟩ = δS,0δr,0U |φS(K, 0)⟩ + t
∑

j=1,2,3
ϵ=±

δr ̸=0 δr+ϵaj ̸=0
[
1 + eiϵ(K·aj )] |φS(K, r + ϵaj)⟩ [21]

+ t̃

2
∑

j=1,2,3
ϵ=±

δr,ϵaj

[
1 + e−iϵ(K·aj )]√

2|φS(K, 0)⟩ + δr,0
[
1 + eiϵ(K·aj )] 1√

2
|φS(K, ϵaj)⟩

+
∑

j=1,2,3
ϵ=±

δr,ϵaj [V |φS(K, ϵaj)⟩ + λ|φS(K,−ϵaj−ϵ)⟩] + λ
∑

j=1,2,3
ϵ=±

δr,ϵaj e
iϵ(K·aj−ϵ)|φS(K,−ϵaj+ϵ)⟩.

Valentin Crépel and Liang Fu 3 of 11



We then solve this equation numerically for large enough system sizes to extract the ground state energy in each spin sector.71

Our solution are shown in the main text.72

While our original model does not include any direct repulsion between B sites on the honeycomb lattice, the two-particle73

bound state we have established is robust against longer range interactions. To study their effect, we further add non-local74

interaction between conduction electrons to the effective Hamiltonian H′ and re-solve the two-particle problem. We find that75

bound state is destroyed only when the the non-local repulsion becomes comparable to the exciton-induced short-range pairing76

interaction (which is much larger than the binding energy εb). If we take into account the direct Coulomb repulsion between77

nearest-neighbor B sites V ′, bound sate persists for V ′ < 2λ − V , or 0.25eV when the parameters mentioned in the main78

text are used. If we include the long-range Coulomb interaction e2

ϵr
fully, bound state exists for ϵa > 86.4Å (a is the lattice79

constant), which corresponds to e2/ϵa = 16.5meV. Thus, in order for electron pairing to occur in the limit of vanishing doping,80

it is helpful to have a large ϵ which can result from dielectric screening by a different band.81

3. Continuum Limit82

As shown in the main text, the kinetic part of the effective Hamiltonian dominates over interactions. Thus, low-energy fermions83

live near the two degenerate minima of the single-particle dispersion relation located at the K and K′ points in the Brillouin84

Zone. Our goal here is to derive an effective continuum field theory capturing the physics of the system when fermions remain85

close to these two valleys.86

We start with the momentum representation of the effective Hamiltonian H′
87

Hf =
∑
k,σ

εkf
†
k,σfk,σ + 1

2Ns

∑
k,q,p

σ,σ′

Vk,qf
†
k,σf

†
q+p,σ′fk+p,σ′fq,σ [22]88

with Ns the number of unit cells in the lattice, εk = 2t
∑3

j=1 cos(k · aj) and89

Vk,q = U + 2V
∑

j

cos[(k − q) · aj ] + 2λ
∑

j

(eikaj +iqaj−1 + e−ikaj−1−iqaj ) + 2t̃
∑

j

[cos(k · aj) + cos(q · aj)]. [23]90

Due to the quadratic band dispersion near the K and K′ points, low energy fermions acquire an effective mass m = 2/(3ta2).91

They also carry an additional index {↑ K, ↓ K, ↑ K′, ↓ K′} that distinguishes both their spin and their valley degeneracy and92

enable contact interactions between fermions with the same spin, provided they have opposite valley index.93

Let us now focus on the scattering properties of these low energy fermions. Due to momentum conservation, two incoming94

low-energy fermions from the same valley can only scatter into a pair of fermions living in the same valley. The corresponding95

vertex interaction reads96

Vc = VK,K = VK′,K′ = 6(V − λ− t̃) + U. [24]97

When the electrons are in opposite valley K and K′, they can scatter to a pair in K and K′ with the same valley preserving98

interaction strength Vc, or exchange valley to end up in K′ and K through the vertex99

Vx = VK,K′ = VK′,K = 3(4λ− 2t̃− V ) + U. [25]100

Introducing different fields for the two valleys101

fk,σ =
{
ψk,σ,K if k near K
ψk,σ,K′ if k near K′ , [26]102

and accounting for the Vc and Vx terms, we find that the following effective interacting Hamiltonian103

Hint = Vc

Ns

∑
k,q,p

V =K,K′

ψ†
k,↑,V ψ

†
p−k,↓,V ψp−q,↓,V ψq,↑,V + Vc − Vx

Ns

∑
k,q,p

σ=↑,↓

ψ†
k,σ,Kψ

†
p−k,σ,K′ψp−q,σ,K′ψq,σ,K

+ Vc

Ns

∑
k,q,p

V =K,K′

ψ†
k,↑,V ψ

†
p−k,↓,V̄

ψp−q,↓,V̄ ψq,↑,V + Vx

Ns

∑
k,q,p

V =K,K′

ψ†
k,↑,V ψ

†
p−k,↓,V̄

ψp−q,↓,V ψq,↑,V̄ .

[27]104

Let us rearrange these terms in terms of pair operators to make their physical meaning clearer. Valley-polarized spin-singlet105

electron pairs SV = fV,↓fV,↑ with V = K,K′ only feel the valley conserving term and therefore exhibit repulsive interaction106

(Vc > 0). When incoming electrons occupy opposite valleys, the ferromagnetic exchange leads to a total interaction strength107

Vc + (−1)SVx depending on the total spin S of the pair. As a consequence, the last spin-singlet valley-triplet channel108

S0 = (fK′,↓fK,↑ − fK′,↑fK,↓)/
√

2 is also repulsive (Vc + Vx > 0). On the contrary, the three valley-singlet spin-triplet pair109

states, Tσ = fK′,σfK,σ with σ =↑, ↓ and T0 = (fK′,↓fK,↑ + fK′,↑fK,↓)/
√

2, all display a low-energy interaction strength110

4 of 11 Valentin Crépel and Liang Fu



Vc − Vx = 9(V − 2λ), which is negative for a wide range of parameter (see main text). To summarize, we can rewrite the111

different contact interaction terms as112

H̃ =
∫

dx
∑
σ,V

ψ†
σ,V

[
−∇2

2m

]
ψσ,V +

∫
dx
A [(Vc − Vx)(T †

↓T↓ + T †
0T0 + T †

↑T↑) + Vc(S†
K′SK′ + S†

KSK) + (Vc + Vx)S†
0S0], [28]113

with A =
√

3/a2 the Brillouin zone area. This effective field theory describes a four-component Fermi liquid with repulsive114

interactions in the spin-singlet channel, owing to the large on-site interaction U which appears in both Vc and in (Vc + Vx), and115

attractive interaction between fermions with total spin one when Vc − Vx < 0.116

Alternatively, we can replace pair operators by more physical quantities, such as the total density on each valley ρV =117

ψ†
↑,V ψ↑,V + ψ†

↓,V ψ↓,V and the total spin on each valley sV = ψ†
α,V σα,βψβ,V . Together, they allow to represent the exchange118

term as119

T †
↓T↓ + T †

↑T↑ + T †
0T0 − S†

0S0 = 2sK · sK′ + 1
2ρKρK′ . [29]120

The valley conserving terms present in all interaction channels can be simply with the total density ρtot = ρK + ρK′121

T †
↓T↓ + T †

↑T↑ + T †
0T0 + S†

0S0 + S†
KSK + S†

K′SK′ = 1
2ρtot(ρtot − 1). [30]122

Together, they allow to rewrite the interaction part of the continuum Hamiltonian as123

H̃i = 1
2A

∫
dx [Vc ntot(ntot − 1) − Vx (4sK · sK′ + nKnK′ )] . [31]124

This forms makes clear the ferromagnetic interactions between opposite valleys, which are responsible for the formation of125

triplet pairs. Expanding the total density as a function of ρK and ρK′ , we find the three coupling constant given in the main126

text127

g0 = Vc/(2A), g1 = (2Vc − Vx)/(2A), g2 = −2Vx/A. [32]128

4. Mean-field theory of superconductivity129

In this appendix, we carry out a mean-field treatment of the effective Hamiltonian Eq. 22 to investigate its superconduct-130

ing behavior. With the mean-field substitution fq′,σ′fq,σ ≃ δq+q′ ⟨fq′,σ′fq,σ⟩, we get the following quadratic mean-field131

approximation:132

Hmf =
∑
k,σ

ξqf
†
q,σfq,σ + 1

2
∑

k,σ,σ′

[
∆̃k,σσ′f†

k,σf
†
−k,σ′ + hc

]
, ∆̃k,σσ′ = − 1

Ns

∑
q

Vk,q⟨fq,σf−q,σ′ ⟩, [33]133

with ξk = ξ−k = εk − µ and µ the chemical potential. It can be rewritten as a sum over a halved Brillouin Zone (denoted with134

primed sums and products below):135

Hmf =
′∑
k

[
f†

k f−k

] [ ξk ∆k

∆†
k −ξk

][
fk

f†
−k

]
. [34]136

The order parameters have been gathered in a 2 × 2 matrix137

∆k =
∆̃k − ∆̃T

−k

2 = −1
Ns

∑
q

Re (Vk,q)⟨fq,σf−q,σ′ ⟩, [35]138

and should be computed self-consistently.139

A. Pairing symmetries. The explicit expression of Vk,q allows to decompose this order parameter into spin-singlet and spin-triplet140

components141

∆k = ∆′
s +

3∑
j=1

∆s
j cos(k · aj) + ∆t

j sin(k · aj), [36]142

which respectively read:

∆′
s = −1

Ns

∑
q

[
U + 2t̃(c1 + c2 + c3)

]
⟨fq,σf−q,σ′ ⟩,

∆s
j = −2

Ns

∑
q

[
λ(cj−1 + cj+1) + V cj + t̃

]
⟨fq,σf−q,σ′ ⟩,

∆t
j = 2

Ns

∑
q

[λ(sj−1 + sj+1) − V sj ] ⟨fq,σf−q,σ′ ⟩, [37]
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with cj = cos(q · aj) and sj = sin(q · aj). We can further split these order parameters in terms of irreducible representation of143

C3v that they represent on the triangular lattice. For the singlet and triplet case, there are two one-dimensional irrep, only one144

of which can be obtained because of the particular form of Vk,q and one two dimensional irrep. The two former measure the145

strength of s-wave and f-wave pairing146

∆′
s, ∆s/f = 1

3

[
∆s/t

1 + ∆s/t
2 + ∆s/t

3

]
, [38]147

while the two dimensional irrep are related to d-wave and p-wave pairing148

∆d
x2−y2 /px = 1

6

[
∆s/t

1 + ∆s/t
2 − 2∆s/t

3

]
, ∆dxy/py = 1

2

[
∆s/t

1 − ∆s/t
2

]
. [39]149

The inverse transformations are150

∆1 = ∆s/f + ∆d
x2−y2 /px + ∆dxy/py , ∆2 = ∆s/f + ∆d

x2−y2 /px − ∆dxy/py , ∆3 = ∆s/f − 2∆d
x2−y2 /px . [40]151

Finally, singlet pairs cannot be of equal spin, and we can therefore express them as a scalar times the 2 × 2 matrix iσy, e.g.152

∆s = d0(iσy) with δs a complex number. Triplet on the other hand, take the form of a Pauli vector multiplied by iσy, e.g.153

∆f = (df · σ)(iσy).154

Our mean-field treatment relies on the self-consistent computation of four scalars related to singlet pairing in s-wave (∆s,
∆′

s) and d-wave (∆d
x2−y2 , ∆dxy ), and three vectors describing f-wave (∆f ) or p-wave (∆px , ∆py ) pairs. The corresponding

self-consistent equations become

∆′
s = −1

Ns

∑
q

[
U + 2t̃(c1 + c2 + c3)

]
⟨fq,σf−q,σ′ ⟩,

∆s = −2
Ns

∑
q

[
t̃+ 2λ+ V

3 (c1 + c2 + c3)
]

⟨fq,σf−q,σ′ ⟩,

∆px = −2(λ+ V )
Ns

∑
q

s1 + s2 − 2s3

6 ⟨fq,σf−q,σ′ ⟩,

∆py = −2(λ+ V )
Ns

∑
q

s1 − s2

2 ⟨fq,σf−q,σ′ ⟩,

∆d
x2−y2 = 2(λ− V )

Ns

∑
q

c1 + c2 − 2c3

6 ⟨fq,σf−q,σ′ ⟩,

∆dxy = 2(λ− V )
Ns

∑
q

c1 − c2

2 ⟨fq,σf−q,σ′ ⟩,

∆f = 2(2λ− V )
Ns

∑
q

s1 + s2 + s3

3 ⟨fq,σf−q,σ′ ⟩. [41]

B. Self-consistent conditions. The mean field quadratic Hamiltonian can be diagonalized by a Bogoliubov transformation.155

Writing the hermitian matrix156

∆q∆†
q = a0 + a · σ [42]157

as a Pauli vector, the eigen-energies read158

Eq,± =
√
ξ2

q + a0 ± |a|. [43]159

The corresponding eigenvectors lead to the following expression for the anomalous correlators160

⟨fqf
T
−q⟩ =

[
g+

q + g−
q

a · σ

|a|

]
∆q

2 , [44]161

with162

g±
q = g(Eq,+) ± g(Eq,−)

2 , g(E) = tanh(βE/2)
E

. [45]163

When ∆q∆†
q is simply proportional to the identity, for instance when pairing occurs for spin-singlet, Eq,+ = Eq,− = Eq and the164

previous expression simply becomes ⟨fqf
T
−q⟩ = g(Eq)∆q/2.165

C. Critical temperature. Solving the self-consistent relations of Eq. 41 with the help of Eq. 44 allows to determine the nature of166

the superconducting state. We now consider each pairing channel separately to check whether a superconducting phase can167

fully form.168

6 of 11 Valentin Crépel and Liang Fu



C.1. s-wave. The possibility of an s-wave SC order can be ruled out because U is much larger than all the other terms scaling as169

t20/∆. The coupled gap equations for ∆s and ∆′
s linearized near Tc read170 [

∆′
s

∆s

]
=
[

UI0 + 2t̃I1 UI1 + 2t̃I2

2t̃I0 + 2(2λ+V )
3 I1 2t̃I1 + 2(2λ+V )

3 I2

][
∆′

s

∆s

]
, [46]171

where Ik = −
∑

q
tanh(βEq/2)(c1 + c2 + c3)k/(2NsEq) and β the inverse temperature. The matrix in the previous equation172

must have at least one eigenvalue equal to one for the system to exhibit s-wave symmetry. However, to leading order in U , this173

requires to have174

U

[
2(2λ+ V )

3 (I0I2 − I2
1 ) − I0

]
= 0. [47]175

This equation has no solution because (−I0) > 0 has the same sign as I0I2 − I2
1 > 0 (we used Cauchy-Schwarz inequality for176

the last inequality). Thus, s-wave singlet pairing does not happen in our model. It could nevertheless appear for smaller ratios177

∆/t0 where our perturbation theory breaks down.178

C.2. p-wave. The possibility of p-wave pairing can be ruled out as well. Indeed, let’s assume a p-wave SC order and compute179

the critical temperature Tc of that state. Linearizing the gap equation, such that a ≃ 0 and Eq,± ≃ |ξq|, we find the coupled180

equations181 [
∆px

∆py

]
= −V + λ

Ns

∑
q

tanh(βEq/2)
Eq

[
(s1 + s2 − 2s3)2/6 (s1 + s2 − 2s3)(s1 − s2)/6

(s1 − s2)(s1 + s2 − 2s3)/2 (s1 − s2)2/2

][
∆px

∆py

]
. [48]182

Noting that Eq = |ξq| is C3 invariant, while the off-diagonal terms of the equation are not, we can rewrite the diagonal terms as:183

−6
V + λ

= 1
Ns

∑
q

tanh(βEq/2)
Eq

∑
j

(sj − sj+1)2, [49]184

which does not have any solution since the left and right hand sides have opposite signs since V + λ > 0.185

C.3. d- and f-wave. We can similarly derive an implicit equation for the critical temperature in the d-wave channel186

6
λ− V

= 1
Ns

∑
q

tanh(βEq/2)
Eq

∑
j

(cj − cj+1)2. [50]187

Contrary to p-wave pairing, λ − V can be positive for UB not too large and V0/∆ large enough. The region where λ > V188

is explicitly shown in the main text. The two independent order parameters ∆dxy and ∆d
x2−y2 are shown in Fig. S1. They189

exhibits nodal lines crossing the corners of the Brillouin zone, leading to a nodal superconducting order parameter at low190

doping when time reversal symmetry is not explicitly broken.191

Turning to f-wave pairing, we find the effective gap equation192

3
2λ− V

= 1
Ns

∑
q

(s1 + s2 + s3)2 tanh(βEq/2)
Eq

. [51]193

As explained in the main text, 2λ > V for most choice of parameter, leading to a superconducting order with f-wave symmetry194

that we extensively study in the main text. The competition between f- and d-wave superconducting state in regions where195

both of them are allowed is also discussed in the main text. In our model, f-wave pairing strongly dominate, but additional196

terms in the Hamiltonian may work in favor of the d-wave paired state.197

5. Weakly interacting regime198

A. Explicit unitary transformation. We start by isolating the band mixing (or off-diagonal) interaction elements from the199

others V = Vod + Vd. More explicitly, we write Vod = 1
Ns

∑
C(1234) V

21
43 δ

21
43c

†
4c

†
3c2c1, with C(1234) restricting the sum to terms200

satisfying either b1b2b3b4 = −1, or having b1 = b2 and b3 = b4 with b1 ̸= b2.201

To eliminate these band mixing interaction terms, we use a Schrieffer-Wolff transformation H′ = eSHe−S , with S anti-202

hermitian. This unitary transformation can be carried order by order in the small parameter |V|/∆, and we write S = S1+S2+· · ·203

with Sn = O(|V|n/∆n). Requiring204

[H0, S1] = Vod, [52]205

gets rid of the direct band-mixing terms in H′:206

H′ = H + [S,H] + 1
2 [S, [S,H]] + O(S2H) = H0 + Vd +

[
S1,Vd + Vod

2

]
+ [S2, H0] + O

(
|V|3

∆2

)
. [53]207
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Fig. S1. Normalized d-wave superconducting order parameter amplitudes. The Fermi surface for x = 0.1 is indicated with a solid black line.
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Fig. S2. Bare dispersion εk,+ and its leading correction δεk,+ (multiplied 40 times for visibility) in the weakly interacting limit, shown for ∆0 = t = 2UA = 2UB = 10V0.
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A possible S1 satisfying this condition is208

S1 =
∑

C(1234)

V 21
43 δ

21
43

ε4 + ε3 − ε2 − ε1
c†

4c
†
3c2c1. [54]209

We can then choose [S2, H0] to remove the band mixing terms of [S1,Vd + Vod/2], and so on. Note that, because Vd contains210

no band mixing terms, such that [S1,Vd] is purely off diagonal and therefore completely eliminated by [S2, H0]. The second211

order corrections read [S1,Vod]/2, which as promised are of order |V|2/∆.212

Finally, the effective Hamiltonian for doped charge is obtained by projecting H′ to the subspace where the lower band is213

fully filled, which amounts to pairing up lower band indices as c†
acb → δ̃a,b.214

B. Leading corrections. To make analytical progress, we need the explicit form of the dispersion and scattering vertex. The215

single particle energy dispersion reads216

εk,±,σ = εk,± = ±
√

(∆0/2)2 + |t0f(k)|2, [55]217

with f(k) =
∑3

j=1 e
i(k·uj ), and uj=1,2,3 the vectors connecting B sites to their three nearest neighbors. The corresponding218

Bloch eigenvectors are219

Ψk,± = 1√
2εk,+(εk,+ ± ∆0/2)

[
∓t0f(k)

εk,+ ± ∆0/2

]
, [56]220

They allow us to write the interaction vertex in the band basis as221

V 21
43 = V0f(k4 − k1)

[
ΨA

k4,b4 ΨB
k3,b3

]∗ ΨB
k2,b2 ΨA

k1,b1 +
∑

τ=A/B

Uτ

2 δ(σ4=σ1 )̸=(σ3=σ2)
[
Ψτ

k4,b4 Ψτ
k3,b3

]∗ Ψτ
k2,b2 Ψτ

k1,b1 . [57]222

The leading corrections to the band dispersion come from Vd and are in the main text. The Hartree-like part takes the223

explicit form224

δεH
k,+ = (6V0C− + UAC+)εk,+ − ∆0/2

2εk,+
+ (6V0C+ + UBC−)εk,+ + ∆0/2

2εk,+
, [58]225

with C± = (2Ns)−1∑
q(εq,+ ± ∆0/2)/εq,+. The Fock-like term reads226

δεF
k,+ = t20V0

2Ns
Re

[
f∗(k)
εk,+

∑
q

f(k − q)f(q)
εq,+

]
. [59]227

These corrections are plotted together with the bare band dispersion for ∆0 = t = 2UA = 2UB = 10V0 in Fig. S2, where we228

observe that they both admit degenerate minima at the K and K′ points.229

When t0 ≪ ∆0, we can approximate εk,+ ≃ ∆0/2 + |t0f(k)|2/∆0 and expand these corrections in powers of t0/V0. Without230

too much difficulty, we end up with231

δεH
k,+ = |t0f(k)|2

∆2
0

(UA − 6V0), δεF
k,+ = 2t20V0

∆2
0Ns

Re

[
f∗(k)

∑
q

f(k − q)f(q)

]
, [60]232

up to an overall global constant. These expressions allow to obtain the effective mass by expanding around the K or K′ point.233

For that purpose, we recall f(K + k) ≃
√

3(kx + iky)a/2 and furthermore find that234 ∑
q

f(K+k −q)f(q) =
∑

q

f(k −q)f(q +K) ≃
∑

q

f(−q)f(q +K)+k ·
∑

q

(∇f)(−q)f(q +K) = 0+
√

3(kx + iky)a/2, [61]235

where the last equality is easy to check numerically. We end up with236

(ε+ δεH + δεF)K+k,+ ≃ 3t20a2|k|2

4∆2
0

(∆0 + UA − 4V0), [62]237

yielding the effective mass given in the main text.238

We now turn to the corrections to the two-body scattering vertex, which are contained in the second order term X =239

[S1,Vod]/2. Direct evaluation of the commutator using the explicit expression of S1 (Eq. 54) gives240

X = 1
Ns

∑
123456

Γ321
654δ

321
654c

†
6c

†
5(2c†

4c3 − δ3,4)c2c1, [63]241
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where the indices 653 and 421 originates from the same interaction elements and thus satisfy the conditions given above for the242

elements of Vod and S1. The three-body tensor Γ takes the form243

Γ321
654 = 1

Ns

∑
0

δ30
65δ

21
40(V 03

65 − V 30
65 )(V 21

04 − V 21
40 )
[ 1
ε6 + ε5 − ε3 − ε0

+ 1
ε2 + ε1 − ε4 − ε0

]
. [64]244

For later use, we also define Γ̃ and Γ̂, which have the same explicit representation except that the sum over 0 is restricted to245

states in lower band b0 = − and the upper band b0 = +, respectively. To find the two-body corrections from X, we can select246

the terms where two of the indices belong to the lower band and contract them. Considering all possible pairs compatible with247

the constraints on 653 and 421, we end up with248

δV 21
43 = 2

∑
i,bi=−

Γi21
43i + Γ̂2i1

i43 + Γ̂21i
i43 + Γ̂2i1

4i3 + Γ̂21i
4i3 + 2

∑
i,bi=−

Γ̃i21
i43 + Γ̃i21

4i3 + Γ̃2i1
43i + Γ̃21i

43i −
∑

i

Γ̃i21
43i. [65]249

This expression greatly simplifies when we assume that the four momenta k1,2,3,4 are equal to K or K′, as we do to determine250

the effective interaction strength in the spin-triplet valley singlet channel U0 (see main text). Because ΨA
K/K′,+ = 0, any term251

of the form Γ321
654 with 6 = (K/K′,+) or 1 = (K/K′,+) appearing in U0 vanishes (see Eq. 64). This completely removes any252

contribution from on-site interactions on A sites UA. Let us first focus on the V 2
0 contributions and set UB = 0 for a moment.253

This largely simplifies the expression of U0, which now reads254

U
(1)
0 = 2

∑
q

Γ̂(K′+)(K+)(q−)
(q−)(K+)(K′+) + Γ̂(K+)(K′+)(q−)

(q−)(K′+)(K+) − Γ̂(K+)(K′+)(q−)
(q−)(K+)(K′+) − Γ̂(K′+)(K+)(q−)

(q−)(K′+)(K+). [66]255

The two first terms of the sum involve interaction coefficients with momentum transfer K and K′, respectively, which makes256

them vanish as f(K) = f(K′) = 0 (see Eq. 57). The other terms contribute equally, and we finally obtain257

U
(1)
0 = −36t20V 2

0
Ns

∑
q

|f(q)|2

(2εq,+)3 . [67]258

It is not difficult to check that the contribution proportional to U2
B vanishes, and we now turn to the crossed V0UB corrections.259

The calculation proceeds in a similar way, except that one of the interaction element 3V0 is replaced by UB and the signs needs260

to be flipped, such that the exchange part gives261

U
(2)
0 = 12t20V0UB

Ns

∑
q

|f(q)|2

(2εq,+)3 . [68]262

For t0 ≪ ∆0, we use
∑

q |f(q)|2 = 3Ns to find the simpler form263

U0 = 36t20V0(UB − 3V0)
∆3

0
, [69]264

which – remarkably – exactly match the result of the kinetic expansion in the weakly interacting regime265

UKE
0 = Vc − Vx

(UA,UB ,V0≪∆0)
≃ 36t20V0(UB − 3V0)

∆3
0

. [70]266
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