Electronic Supplementary material (ESI)

Bifunctional acid-base mesoporous silica@aqueous miscible organic-layered double hydroxides

Hongri Suo, Haohong Duan, Chunping Chen, Jean-Charles Buffet and Dermot O'Hare

Chemistry Research Laboratory, Department of Chemistry, University of Oxford,

12 Mansfield Road, Oxford, OX1 3TA, UK.

E-mail: Dermot.ohare@chem.ox.ac.uk

Fig. S1. TGA of (a) MCM-41, (b) MCM-41@AMO-Mg₃Al-CO₃-LDH and (c) AMO-Mg₃Al-CO₃-LDH (in the range of 30–800 °C).

Fig. S2. Low angle XRD patterns for different MSN nanoparticles as the core materials: (a) MCM-48@AMO-Mg_3Al-CO_3-LDH, (b) MCM-41@AMO-Mg_3Al-CO_3-LDH, (c) SBA-15@AMO-Mg_3Al-CO_3-LDH and (d) P-SBA-15@AMO-Mg_3Al-CO_3-LDH.

Fig. S3. High angle XRD patterns for different MSN nanoparticles as the core materials: (a) MCM-48@AMO-Mg₃Al-CO₃-LDH, (b) MCM-41@AMO-Mg₃Al-CO₃-LDH, (c) SBA-15@AMO-Mg₃Al-CO₃-LDH and (d) P-SBA-15@AMO-Mg₃Al-CO₃-LDH (* is the signal of sample holder).

Fig. S4. TEM image of MSN@AMO-MgAl-CO₃-LDH with different diameter core and different Mg/Al (a) 150 nm-MCM-41@AMO-Mg₃Al-CO₃-LDH (70% AMO-LDH), (b) 600 nm-MCM-41@AMO-Mg₂Al-CO₃-LDH (54% AMO-LDH) and (c) 600 nm-MCM-41@AMO-Mg₃Al-CO₃-LDH (63% AMO-LDH). The weight percentage of AMO-LDH was calculated from TGA data.

Fig. S5. (I) N₂ adsorption-desorption isotherm and (II) BJH pore size distribution of MSN@AMO-Mg₃Al-CO₃-LDH by using different MSN nanoparticles as the core materials: (a) MCM-48@AMO-Mg₃Al-CO₃-LDH, (b) MCM-41@AMO-Mg₃Al-CO₃-LDH, (c) SBA-15@AMO-Mg₃Al-CO₃-LDH and (d) P-SBA-15@AMO-Mg₃Al-CO₃-LDH. The insert picture is the pore size distributions of SBA-15-PVA@AMO-Mg₃Al-LDH obtained by NLDFT method and the * is the tensile strength effect.

MCM-41	δ (ppm)	Assignment	Percentage
			(%)
1	-101	Q3 (SiO)3SiOH	68
2	-110	Q4 (SiO)4Si	32
MCM41@	δ (ppm)	Assignment	Percentage
AMO-Mg ₃ Al-CO ₃ -LDH			(%)
1	-77.5	Q2 (SiO)2Si(OH)2,	11.8
2	-85	Q3(SiO)2(AlO)SiOH,	6.2
3	-91	Q4Si(3Al), Q4Si(2Al), Q4Si(1Al)	6.5
4	-100	Q3 (SiO)3SiOH	32
5	-108	Q4 (SiO)4Si	23
6	-113.8	Cristobalite	18.5
7	-117.8	Cristobalite	1.3

Table S1. Silicon environment in MCM-41 and MCM-41@AMO-Mg₃Al-CO₃-LDH determined by ²⁹Si solid state NMR spectroscopy.

Fig S6. NH₃ TPD of (a) MCM-41, (b) MCM-41@AMO-Mg₃Al-CO₃-LDH and (c) CO₂ TPD of MCM-41@AMO-Mg₃Al-CO₃-LDH (in the range of 100 - 400 °C).

Table S2. Acidity / basicity quantitative evaluation of MCM-41, AMO-Mg₃Al-CO₃-LDH and composite MCM-41@AMO-Mg₃Al-CO₃-LDH by CO₂/NH₃-Temperature programmed desorption (TPD) measurement.

Acidity	Acid site	Amount (mmol/g)
MCM-41	weak	0.0184
AMO-Mg ₃ Al-CO ₃ -LDH (Mg/Al=3:1)	-	0.00 (after calibration)
MCM-41@AMO-Mg ₃ Al-CO ₃ -LDH	weak+moderate	0.3380 (after calibration)
Alkalinity	Basic site	Amount (mmol/g)
Alkalinity MCM-41	Basic site	Amount (mmol/g) 0.006(after calibration)
Alkalinity MCM-41 AMO-Mg ₃ Al-CO ₃ -LDH (Mg/Al=3:1)	Basic site - weak+moderate	Amount (mmol/g) 0.006(after calibration) 0.4993 (after calibration)