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APPENDIX A: MODULE ENUMERATION

As the default representation of model (6) in the main article, set K = (2I − 1)(2J − 1)
and let R and C enumerate all possible modules as follows. For k = 1, . . . ,K, let R[•, k]
be the I-digit binary representation for kmod (2I − 1) + 1, where mod gives the modulo

(remainder) operator. For k = 1, . . . ,K, let C[•, k] give the J -digit binary representation for

⌈k/(2I − 1)⌉, where ⌈·⌉ gives the ceiling operator.

APPENDIX B: PROOFS

B.1. Proof of Proposition 1.

PROOF. Let {Ŝ(k)
••

}Kk=1 ∈ S
X̂

be a minimizer of the objective function f(•). Assume a

violation of condition 1., wherein λk′ ≥ λk . Consider another minimizer {S̃(k)
••

}Kk=1, where

S̃
(k)
••

= 0 and S̃
(k′)
••

= Ŝ
(k)
••

+ Ŝ
(k′)
••

, and all other modules are equal. Then, using the triangle

inequality,

f({Ŝ(k)
••

}Kk=1)− f({S̃(k)
••

}Kk=1) = λk||Ŝ
(k)
••

||∗ + λk′ ||Ŝ(k′)
••

||∗ − λk||Ŝ
(k)
••

+ Ŝ
(k′)
••

||∗

≥ λk||Ŝ
(k)
••

||∗ + λk′ ||Ŝ(k′)
••

||∗ − λk(||Ŝ
(k)
••

||∗ + ||Ŝ(k′)
••

||∗)

≥ λk||Ŝ
(k)
••

||∗ + λk′ ||Ŝ(k′)
••

||∗ − λk(||Ŝ
(k)
••

||∗)− λk′ ||Ŝ(k′)
••

||∗)

= 0,

and thus there is a solution in which module k is 0, regardless of the data X••.

Now assume a violation of condition 2., wherein λk ≥
∑

j∈Ik
λj . Let Ŝ(k) =

∑
j∈Ik

Ŝ
j′
••

,

where Ŝj′
••

contains the submatrix of Ŝ(k)
••

corresponding to R[•, j] and C[•, j] and 0 otherwise.

Consider another decomposition {S̃(k)
••

}Kk=1, where S̃
(k)
••

= 0 and S̃
(j)
••

= Ŝ
(j)
••

+ Ŝ
(j)′
••

for all

j ∈ Ik. Then,

f({Ŝ(k)
••

}Kk=1)− f({S̃(k)
••

}Kk=1) = λk||Ŝ
(k)
••

||∗ +
∑

j∈Ik

λj||Ŝ
(j)
••

||∗ −
∑

j∈Ik

λj||Ŝ
(j)
••

+ Ŝ
(j)′
••

||∗

≥ λk||Ŝ
(k)
••

||∗ +
∑

j∈Ik

λj||Ŝ
(j)
••

||∗ −
∑

j∈Ik

λj||Ŝ
(j)
••

||∗ −
∑

j∈Ik

λj ||Ŝ
(j)′
••

||∗

= λk||Ŝ
(k)
••

||∗ −
∑

j∈Ik

λj||Ŝ
(j)′
••

||∗

≥ λk||Ŝ
(k)
••

||∗ −
∑

j∈Ik

λj||Ŝ
(k)
••

||∗

≥ 0,
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and thus there is a solution in which module k is 0, regardless of the data X••

B.2. Proof of Proposition 4.

PROOF. We show that λk =
√

R[•, k] ·M +
√

C[•, k] ·N satisfies the necessary con-

ditions of Proposition ??. For condition 1., note that
√

R[•, k] ·M +
√

C[•, k] ·N >√
R[•, j] ·M+

√
C[•, j] ·N.

For condition 2., note that

∑

j∈Ik

√
R[•, j] ·M+

√
C[•, j] ·N≥

√∑

j∈Ik

R[•, j] ·M+

√∑

j∈Ik

C[•, j] ·N

=
√

r ·R[•, k] ·M+
√

c ·C[•, k] ·N

>
√

R[•, k] ·M+
√

C[•, k] ·N

B.3. Proof of Proposition 5. Lemmas 1 and 2 below are used to establish Proposition

5.

LEMMA 1. Take two decompositions {Ŝ(k)
••

}Kk=1 ∈ S
X̂

and {S̃(k)
••

}Kk=1 ∈ S
X̂

, and assume

that both minimize the structured nuclear norm penalty:

fpen({Ŝ
(k)
••

}Kk=1) = fpen

(
{S̃(k)

••
}Kk=1

)
= min

S
X̂

fpen({S
(k)
••

}Kk=1).

Then, for any α ∈ [0,1],

||αŜ(k)
••

+ (1− α)S̃(k)
••

||∗ = α||Ŝ(k)
••

||∗ + (1−α)||S̃(k)
••

||∗

for k = 1, . . . ,K.

PROOF. Because S
X̂

is a convex space and fpen is a convex function, the set of minimizers

of fpen over S
X̂

is also convex. Thus,

fpen

(
{αŜ(k)

••
+ (1−α)S̃(k)

••
}Kk=1

)
= min

S
X̂

fpen({S
(k)
••

}Kk=1).

The result follows from the convex property of the nuclear norm operator, which implies that

for any two matrices of equal size Â and Ã,

||αÂ+ (1− α)Ã||∗ ≤ α||Â||∗ + (1−α)||Ã||∗.(1)

Applying (1) to each additive term in fpen gives

fpen

(
{αŜ(k)

••
+ (1−α)S̃(k)

••
}Kk=1

)
≤ αfpen({Ŝ

(k)
••

}Kk=1) + (1− α)fpen({S̃
(k)
••

}Kk=1)(2)

= min
S
X̂

fpen({S
(k)
••

}Kk=1).

Because {αŜ(k)
••

+ (1 − α)S̃(k)
••

}Kk=1 ∈ S
X̂

, the inequality in (2) must be an equality, and it

follows that the inequality (1) must be an equality for each penalized term in the decomposi-

tion.

LEMMA 2. Take two matrices Â and Ã. If ||Â+ Ã||∗ = ||Â||∗ + ||Ã||∗, and UD+V
T

is the SVD of Â + Ã, then Â = ÛD̂V̂
T where D̂ is diagonal and ||Â||∗ = ||D̂||∗, and

Ã=UD̃V
T where D̃ is diagonal and ||Ã||∗ = ||D̃||∗.
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PROOF. Here we use the fact that the spectral norm is dual to the nuclear norm

(Fazel et al., 2001). That is, if σ1(Z) is the maximum singular value of Z (i.e., the spectral

norm), then

||A||∗ = sup
σ1(Z)=1

〈Z,A〉.

Thus,

sup
σ1(Z)=1

〈Z, Â+ Ã〉= sup
σ1(Z)=1

〈Z, Â〉+ sup
σ1(Z)=1

〈Z, Ã〉.(3)

By the properties of the SVD,

〈UV
T , Ã〉+ 〈UV

T , Â〉= 〈UV
T , Â+ Ã〉= sup

σ1(Z)=1

〈Z, Â+ Ã〉.(4)

By (3) and (4),

〈UV
T , Ã〉+ 〈UV

T , Â〉= sup
σ1(Z)=1

〈Z, Â〉+ sup
σ1(Z)=1

〈Z, Ã〉.(5)

Because UV
T ∈ {Z : σ1(Z) = 1} it follows that

〈UV
T , Â〉 ≤ sup

σ1(Z)=1

〈Z, Â〉 and 〈UV
T , Ã〉 ≤ sup

σ1(Z)=1

〈Z, Ã〉,

and so (5) implies

〈UV
T , Â〉= sup

σ1(Z)=1

〈Z, Â〉= ||Â||∗,

and similarly 〈UV
T , Ã〉= ||Ã||∗.

Let ŨD̃Ṽ
T give the SVD of Ã. Note that

〈UV
T , ŨD̃Ṽ

T 〉= Tr(VU
T
ŨD̃Ṽ

T ) = Tr(VT
ṼU

T
ŨD̃),

and

Tr(VT
ṼU

T
ŨD̃) = ||Ã||∗ =

∑

i

D̃[i, i]

if and only if VT
ṼU

T
Ũ[i, i] = 1 where D̃[i, i]> 0. It follows that the left and right singular

vectors of Ã that correspond to non-zero singular values must also be singular vectors of

Â + Ã. By an analogous argument, the left and right singular vectors that correspond to

non-zero singular values in Â must also be singular vectors of Â+ Ã.

Proposition 5 is a direct corollary of Lemmas 1 and 2, as Lemma 1 implies ||Ŝ(k)
••

+

S̃
(k)
••

||∗ = ||Ŝ(k)
••

||∗ + ||S̃(k)
••

||∗ for each k, and then Lemma 2 implies the result.

B.4. Proof of Theorem 1.

PROOF. Take two decomposition {Ŝ(k)
••

}Kk=1 and {S̃(k)
••

}Kk=1 that satisfy properties 1., 2.,

and 3. of Theorem 1; we will show that {Ŝ(k)
••

}Kk=1 = {S̃(k)
••

}Kk=1. For each k = 1, . . . ,K,

write Ŝ
(k)
••

=U
(k)
•

D̂V
(k)T
•

and Ŝ
(k)
••

=U
(k)
•

D̃
(k)

V
(k)T
•

as in Proposition ??. Then, it suffices

to show that D̂(k)[r, r] = D̃
(k)[r, r] for all k, r.

First, consider module k = 1 with R[•,1] = [1 0 · · · 0]T and C[•,1] = [1 0 · · · 0]T . By

way of contradiction, assume D̂
(1)[1,1] > 0 and D̃

(1)[1,1] = 0. The linear independence of

{V
(k)
j [•, r] : D̂(k)[r, r]> 0} and {V

(k)
j [•, r] : D̃(k)[r, r]> 0} implies that

row(X••) = span{U(k)
•

[•, r] : D̂(k)[r, r]> 0}= span{{U(k)
•

[•, r] : D̃(k)[r, r]> 0}.
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Thus, U(1)[•,1]] ∈ span{{U(k)
•

[•, r] : D̃(k)[r, r]> 0}, and it follows from the orthogonality of

U
(1)[•,1] and {U(1)[•, r], r > 1} that

U
(1)
•

[•,1] ∈ span{{U(k)
•

[•, r] : D̃(k)[r, r]> 0 and k > 1}.

Moreover, because U
(1)
i = 0 for any i > 1 and {U

(k)
i [•, r] : D̃(k)[r, r]> 0} are linearly inde-

pendent it follows that

U
(1)
•

[•,1] ∈ span{U(k)
•

[•, r] : D̃(k)[r, r]> 0, k > 1, and R[i, k] = 0 for any i > 1}.(6)

Note that (6) implies U
(1)
1 [•,1] ∈ row(X12 + · · · + row(X1J ), however, this is contra-

dicted by the linear independence of U
(1)
1 [•,1] and {U

(k)
i [•, r] : D̂(k)[r, r]> 0, k > 1}. Thus,

we conclude that D̃
(1)[1,1] > 0 implies D̃

(1)[1,1] > 0. Analogous arguments show that

D̃
(k)[r, r] > 0 if and only if D̃

(k)[r, r] > 0 for any pair (r, k). It follows that {U
(k)
i [•, r] :

D̂
(k)[r, r] > 0 or D̃(k)[r, r] > 0} are linearly independent for i = 1, . . . I , and {V

(k)
j [•, r] :

D̂
(k)[r, r]> 0 or D̃(k)[r, r]> 0} are linearly independent for j = 1, . . . , J . Thus,

K∑

k=1

U
(k)
•

(D̂(k) − D̃
(k))V(k)T

•
=

K∑

k=1

Ŝ
(k)
••

− S̃
(k)
••

=X•• −X•• = 0

implies that D̂(k)[r, r] = D̃
(k)[r, r] for all k, r.
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