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APPENDIX A: MODULE ENUMERATION

As the default representation of model (6) in the main article, set K = (2! —1)(2/ — 1)
and let R and C enumerate all possible modules as follows. For k = 1,..., K, let R[:, k]
be the I-digit binary representation for £mod (2! — 1) + 1, where mod gives the modulo
(remainder) operator. For k = 1,..., K, let C[+, k| give the .J-digit binary representation for
[k/(2 —1)], where [-] gives the ceiling operator.

APPENDIX B: PROOFS
B.1. Proof of Proposition 1.

PROOF. Let {SI}E ¢ Sg be a minimizer of the objective function f(-). Assume a
violation of condition 1., wherein A\, > A\;. Consider another minimizer {g,(,k)}szl, where
S*) =0 and S*") = S*) + S and all other modules are equal. Then, using the triangle

inequality,
FUSWHLD) = FUSIHI) = MlISP [ + M [I8E] L = AelISE) + S,
> MelISE 11 4+ A ISE . = Ae(11SH1. + 1184711
> M8 1L+ A 1881 = Ae(1ISH 1) — Al [SE711)
=0,
and thus there is a solution in which module & is 0, regardless of the data X...
Now assume a violation of condition 2., wherein Ay, > > €T, A;j. Let Stk — > €T, Sy,

where 87 contains the submatrix of S(*) corresponding to R[+, j] and C[-, j] and 0 otherwise.

~

Consider another decomposition {S%)}< | where S*) = 0 and S&) = S¥) + SU for all
J € Zy. Then,
FUSEHED = FUSWYLL) = MlS L+ D MIISY L = D Ajl18Y) + 89,
JE€Ly JELy
> MlISE I+ Y MISD L = D AL = > A8l
JELy JE€L JELk
MBI - 3 A8
JELk
> MlSE = D7 A8
jEL.

>0
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2
and thus there is a solution in which module k is 0, regardless of the data X.. Ol

B.2. Proof of Proposition 4.

PROOF. We show that \;, = \/R[-,k] - M + /C[, k] - N satisfies the necessary con-
ditions of Proposition ??2. For condition 1., note that \/R[-,k] M + /C[-,k] - N >
VR j]- M+ 4/C[,j

For condltlon 2., note that

> VREG M+ /CLj > Rljl-M+ [ CLj-N

JELy JE€L JELy
=/r-R[ k] - M+ +/c-C[k]-N
> \/R[-,k]-M + +/C[-,k] - N

O

B.3. Proof of Proposition 5. Lemmas 1 and 2 below are used to establish Proposition
5.

LEMMA 1. Take two decompositions {S,(,k)}szl € Sg and {S,(,k)}szl € Sy, and assume
that both minimize the structured nuclear norm penalty:

fpen({s-(-k)}le) Jpen ({S }k 1) :”S”:” fpen({s-(-k)}szl)'
Then, for any « € [0,1],
[aS™) + (1= )8P||. = of|SP||. + (1 — @) |S¥]].
fork=1,... K.

PROOF. Because S¢ is a convex space and f., is a convex function, the set of minimizers
of fpen OVer S is also convex. Thus,

fren ({088 + (1 = @SB, ) = min frea({SLV Y ).

The result follows from the convex property of the nuclear norm operator, which implies that
for any two matrices of equal size A and A,
(1) laA + (1 - a)All, < of|[All. + (1~ a)[|A]]..

Applying (1) to each additive term in fpen gives
2 Jpen <{0‘S-(-k) +(1— Q)S-(-k)}szl) < afpen({g-(-k)}szl) + (1 - a)fpen({g-(-k)}szl)
= min fea((S03C1).

Because {ozg,(,k) +(1 - a) FIVE p—1 € Sg, the inequality in (2) must be an equality, and it
follows that the inequality (1) must be an equality for each penalized term in the decomposi-
tion. U

LEMMA 2. Take two matrices A and A. If ||A + A||. = ||A]|, + ||A||*, and UD+VT
is the SVD of A + A, then A = UDVT where D is diagonal and ||A||, = ||D
A =UDVT where D is diagonal and ||A||, = ||D||..

« and
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PROOF. Here we use the fact that the spectral norm is dual to the nuclear norm
(Fazel et al., 2001). That is, if 01(Z) is the maximum singular value of Z (i.e., the spectral
norm), then

|All«=sup (Z,A).

o1 (Z)=1
Thus,
(3) sup (Z,A+A)= sup (Z,A)+ sup (Z,A).
o1 (Z)=1 01(Z)=1 o1 (Z)=1
By the properties of the SVD,
(4) (UVT A)+ (UVT A)=(UVT A+A)= ?%) 1(Z,A+A>.
By (3) and (4),
(5) (UVT A)+ (UVT A)= sup (Z,A)+ sup (Z,A).
o1(Z)=1 o1(Z)=1

Because UVT € {Z: 01(Z) = 1} it follows that
(UVT A)< sup (Z,A) and (UVT A)< sup (Z,A),
o01(Z)=1 01(Z)=1
and so (5) implies
<UVT7A> = Sup <Z7A> = HAH*;
Ul(z)zl

and similarly (UV7, A)=[|A]l..
Let UDVT give the SVD of A. Note that
(UVT, UDVT) =Tr(VUTUDVT) = Tr(VIVUTUD),
and

Tr(V'VU"UD) = ||A||. = > Dli,i]

if and only if VTVUTIj[i i] =1 where ]3[@ i] > 0. It follows that the left and right singular
vectors of A that correspond to non-zero singular values must also be singular vectors of
A+ A, By an analogous argument, the left and right singular vectors that correspond to
non-zero singular values in A must also be singular vectors of A+A. U

Proposition 5 is a direct corollary of Lemmas 1 and 2, as Lemma 1 implies ||S(k) +
S|, =S¥, + ||S¥)||. for each k, and then Lemma 2 implies the result.

B.4. Proof of Theorem 1.

PROOF. Take two decomposition {S,(,k)}f:l and {S,(,k)}f:l that satisfy properties 1., 2.,
and 3. of Theorem 1; we will show that {g,(,k)}szl = {S(k)}ff:l Foreach k=1,..., K,
write S(,k) = U,(k)]f)V,(k)T and S(,k) = U,(k)f)(k)V,(k)T as in Proposition ??. Then, it suffices
to show that D®) 1, 7] = D®)[r, ] for all k, r.

First, consider module k& = 1 with R[-,1] =[10 --- 0]7 and C[-,1] =[10 --- 0]7. By
way of contradiction, assume D™M[1,1] > 0 and D([1,1] = 0. The linear independence of
(VL] : DB 7] > 0} and {V [, 7] : DB, 7] > 0} implies that

row(X..) = span{UF[- 7] : D®) [ r] > 0} = span{{UP[-,7] : D®) 1. 7] > 0}.
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Thus, UMD, 1]] € span{{U® [ +] : D®)[r, 7] > 0}, and it follows from the orthogonality of
UW[, 1] and {UD ] 7],7 > 1} that

UMW 1] € span{{UX [« 7] : D®[r, 7] > 0 and k > 1}.

Moreover, because UZ(.I) =0 for any ¢ > 1 and {ng) [+,r] : D®)[r, 7] > 0} are linearly inde-
pendent it follows that

©  UD[ 1] espan{UP [, 7] : DF)[r,r] >0, k> 1, and R[i, k] =0 forany i > 1}.

Note that (6) implies Ugl)[-, 1] € row(Xi2 + -+ + row(X;s), however, this is contra-
dicted by the linear independence of Ugl) [+, 1] and {ng) [,7] : D®)[r,r] >0,k > 1}. Thus,
we conclude that f)(l)[l, 1] > 0 implies f)(l)[l, 1] > 0. Analogous arguments show that
D®[r,7] > 0 if and only if D®)[r,r] > 0 for any pair (r, k). It follows that {ng) [e,7] :
D®[r,r] > 00or D®[r, 7] > 0} are linearly independent for i = 1,...I, and {ng) [o,7] :
D®[r,r] > 0 or D®)[r, 7] > 0} are linearly independent for j = 1,...,.J. Thus,

K K
SuPDd® DO VET =38k _§H =X.-X.=0
k=1 k=1

implies that D®)[r, ] = D®) [, 7] for all k,r.
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