Supplementary Materials for

Intranasal administration of a single dose of a candidate live attenuated vaccine derived from an NSP16-deficient SARS-CoV-2 confers sterilizing immunity in animals

Zi-Wei Ye^{1†}, Chon Phin Ong^{2†}, Kaiming Tang^{1†}, Yilan Fan^{1†}, Cuiting Luo¹, Runhong Zhou¹, Peng Luo¹, Yun Cheng², Victor Sebastien Gray², Pui Wang^{1,3}, Hin Chu^{1,3}, Jasper Fuk-Woo Chan^{1,3}, Kelvin Kai-Wang To^{1,3}, Honglin Chen^{1,3}, Zhiwei Chen^{1,3}, Kwok-Yung Yuen^{1,3}, Guang Sheng Ling²*, Shuofeng Yuan^{1,3}*, Dong-Yan Jin²*

The PDF file includes:

Figs. S1 to S7

Table S1

Fig. S1. Genetic stability of SARS-CoV-2 d16. A Detection of d16 gene during viral passage in VeroE6 cells. RNAs were extracted from the d16-infected cells of P0 to P10 passages. RT-PCR was performed with a primer pair flanking the d16 mutation. The 297-bp PCR products were resolved by agarose gel electrophoresis (arrowhead). The passage numbers were denoted at the top of each lane. B Sanger sequencing.

Fig. S2. Gene set enrichment analysis (GSEA) comparing SARS-CoV-2 d16 mutant to WT. Virus infection was performed on A549-ACE2-TMPRSS2 cells, followed by RNA-seq and GSEA analysis. GSEA enrichment plots of two target classes are shown, including mucosal immune response and viral transcription (P < 0.05).

Fig. S3. Antibody response in hamsters infected with SARS-CoV-2 WT and d16 on day 7, 14, 28, 56 and 84, respectively. Serum IgG levels were measured using ELISA for anti-SARS-CoV-2 RBD. Data points presented in geomean \pm SEM (n = 5).

Fig. S4. Antibody response in hamsters infected with SARS-CoV-2 WT and d16 on day 28 against different SARS-CoV-2 variants of concern. Serially diluted hamster sera were tested against WT and various SARS-CoV-2 variants (α , β , θ , and κ) to evaluate their antibodies for neutralizing abilities.

Fig. S5. Related to Fig. 4; T cell immunity elicited by vaccination of K18-hACE2 transgenic mice with d16. K18-hACE2 mice were intranasally vaccinated with 1000 PFU of d16 or PBS (n = 5 mice/group) and challenged with 10000 PFU of clinical isolate HK-13 of SARS-CoV-2 at day 29. Lung-origin T cells were subjected to flow cytometric analysis 4 days post infection. Lung-origin lymphocytes were stimulated with 1 µg/ml of peptide pool of SARS-CoV-2 N protein for 4 h in the presence of brefeldin. Percentages of CD107a⁺ and cytokine producing CD8⁺ (A) and CD4⁺ (B) T cells were also assessed. Results are shown as mean \pm SEM. Statistical analyses via Student's t test (*: P < 0.05; **: P < 0.01; ns: not significant).

Fig. S6. SARS-CoV-2 d16 elicits robust T cell response in spleen following challenge with HK-13 virus. K18-hACE2 mice were intranasally inoculated with 1000 PFU of SARS-CoV-2 d16 or PBS (n = 4 or 5 mice/group) and challenged with 10000 PFU of SARS-CoV-2 HK-13 strain at day 29 dpi. T cells from spleen were subjected to flow cytometric analysis 4 days later. A Representative flow cytometric plots showing percentages of $S_{538-546}$ -specific CD8⁺ T cells. B Proportions of short-lived effectors (KLRG1⁺IL-7R⁻) among total CD8⁺ T cells. Splenocytes were stimulated with 1 µg/ml of $S_{538-546}$ peptide for 4 h in the presence of brefeldin A. Percentages of cytokine-producing CD8⁺ (C) and CD4⁺ (D) T cells. Results are shown as mean \pm SEM. Difference between the indicated groups was statistically significant as judged by Student's t test (*: P < 0.05; **: P < 0.01; ns: not significant).

Α

d16-P10	Amino acid	Nucleotide/amino acid change (compared to d16-P0)
NSP6	119	GCT → GTT / Ala → Val
NSP12	284	ACT \rightarrow ACC / silent
NSP15	191	$GAA \rightarrow GAC / Glu \rightarrow Asp$
S	95	ACT \rightarrow ATT / Thr \rightarrow lle
	245	$CAT \rightarrow CGT / His \rightarrow Arg$
E	32	$GCC \rightarrow GCT / silent$

В

Fig. S7. Further characterization of passage 10 of d16 virus (d16-P10). A A summary of the point mutations found in d16-P10 after passaging in Vero cells by nanopore sequencing [14]. B Plaque phenotype. VeroE6-TMPRSS2 cells were infected with the indicated recombinant viruses. After 60 h of incubation at 37°C, cells were fixed and stained with 1% crystal violet. C The survival rates of WT- or d16-P10-infected K18-hACE2 transgenic mice (n = 5/group). K18-hACE2 mice were intranasally inoculated with 1000 PFU of recombinant WT or d16-P10 and the survival rate were observed for 14 days. D Viral loads by RT-qPCR of lung tissues of SARS-CoV-2-infected mice vaccinated with d16-P10 or PBS at 4 dpi (n = 4/group). Statistical analyses via Student's t test (***: P < 0.001). After intranasal vaccination with 1000 PFU of recombinant d16 or PBS, each vaccinated mouse was challenged with 10000 PFU of clinical isolate HK-13 of SARS-CoV-2 at day 29. At day 33, lung tissues were collected for quantification of viral loads using RT-qPCR. E Effect of vaccination on the histopathological changes in lungs of SARS-CoV-2-infected vaccinated mice. Representative sections of lung tissue from mice harvested at 4 dpi were stained with H&E.

Mutants constructed	Sequences (5' – 3')		
NSP16 galK forward	TTGGTGATTGTGCAACTGTACATACAGCTAATAAATGG		
	GATCTCATTATT <u>CCTGTTGACAATTAATCATCGGCA</u>		
NSP16 galK reverse	CCCTCTTTAGAGTCATTTTCTTTTGTAACATTTTTAGTC		
	TTAGGGTCGTA <u>TCAGCACTGTCCTGCTCCTT</u>		
NSP16 D130A forward	TTGGTGATTGTGCAACTGTACATACAGCTAATAAATGG		
	GATCTCATTATTAGTGcTATGTACGACCCTAAGACTAA		
	AAATGTTACAAAAAGAAAATGACTCTAAAGAGGG		
NSP16 D130A reverse	CCCTCTTTAGAGTCATTTTCTTTTGTAACATTTTTAGTC		
	TTAGGGTCGTACATAgCACTAATAATGAGATCCCATTT		
	ATTAGCTGTATGTACAGTTGCACAATCACCAA		
*The galK-complementary sequences are underlined.			
**Point mutations are shown	in lowercase.		
	Sanger sequencing		
NSP16 forward	CTACGGGTACGCTGCTTGTC		
NSP16 reverse	ATGCGAAGTGTCCCATGAGC		
qPCR			
SARS-CoV-2			
RdRp forward	CGCATACAGTCTTRCAGGCT		
RdRp reverse	GTGTGATGTTGAWATGACATGGTC		
mice			
IL-1 β forward	GAAATGCCACCTTTTGACAGTG		
IL-1β reverse	TGGATGCTCTCATCAGGACAG		
IL-6 forward	CTGCAAGAGACTTCCATCCAG		
IL-6 reverse	AGTGGTATAGACAGGTCTGTTGG		
IFN-γ forward	CAGCAACAGCAAGGCGAAAAAGG		
IFN-γ reverse	TTTCCGCTTCCTGAGGCTGGAT		
β-actin forward	AAGGCCAACCGTGAAAAGAT		
β-actin reverse	GTGGTACGACCAGAGGCATAC		
hamster			
IL-4 forward	ACAGAAAAAGGGACACCATGCA		
IL-4 reverse	GAAGCCCTGCAGATGAGGTCT		
IL-6 forward	AGACAAAGCCAGAGTCATT		
IL-6 reverse	TCGGTATGCTAAGGCACAG		
IL-10 forward	GGTTGCCAAACCTTATCAGAAATG		
IL-10 reverse	TTCACCTGTTCCACAGCCTTG		
TNF-α forward	TGAGCCATCGTGCCAATG		
TNF-α reverse	AGCCCGTCTGCTGGTATCAC		
CCL17 forward	GTGCTGCCTGGAGATCTTCA		
CCL17 reverse	TGGCATCCCTGGGACACT		
FOXP3 forward	GGTCTTCGAGGAGCCAGAAGA		
FOXP3 reverse	GCCTTGCCCTTCTCATCCA		
GAPDH forward	GACATCAAGAAGGTGGTGAAGCA		
GAPDH reverse	CATCAAAGGTGGAAGAGTGGGA		
B-actin forward			
B actin reverse			
p-actin 10,00180	ICUIIUCCAAIUUIUAIUAC		

Table S1. Primers used in this study.