Electronic Supplementary Information

Preparation of functionalized Magnetic Nanoparticles conjugated with feroxamine and their application for pathogen detection

Diana Martínez-Matamoros,^a Socorro Castro-García,^a Miguel Balado^b, Adriana Matamoros-Veloza,^c Miller Alonso Camargo-Valero,^{d,f} Oscar Cespedes,^e Jaime Rodríguez,^{a*} Manuel L. Lemos,^b and Carlos Jiménez^{a*}

^a Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain

^bDepartment of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain

^cInstitute of Thermofluids, School of Mechanical Engineering, University of Leeds, Leeds LS2 2JT, UK

^dBioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK

^eFaculty of Mathematics and Physical Sciences School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK ^fDepartamento de Ingeniería Química, Universidad Nacional de Colombia, Campus La Nubia, Manizales, Colombia

Figure S1. Comparison of MNP (Fe ₃ O ₄) (blue) and magnetite pattern (black) diffractograms
Figure S2 . FT-IR spectra of MNP@SiO ₂ @NH ₂ , MNP@SiO ₂ @NH@Fa (4), MNP@SiO ₂ @NHBoc, MNP@SiO ₂ @NHBoc@Fa (5), MNP@SiO ₂ @NHCOOH and MNP@SiO ₂ @NHCOOH@Fa (6)
Figure S3. A) Hysteresis cycle of the magnetization for the initial MNP (Fe ₃ O ₄), and the subsequent components added in different layers to the MNP, MNP@SiO ₂ , MNP@SiO ₂ @NH ₂ , and MNP@SiO ₂ @NH@Fa (4) and B) their corresponding hysteresis loops
Figure S4. Thermogravimetric analysis (TGA) of MNP@SiO ₂ @NH@Fa (4), MNP@SiO ₂ @NHBoc@Fa (5) and MNP@SiO ₂ @NHCOOH@Fa (6)5
Figure S5. SEM images of Y. enterocolitica WC-A interacting with MNP@SiO2@NH@Fa (4)6
Figure S6. TEM images of Y. enterocolitica WC-A interacting with MNP@SiO ₂ @NH@Fa (4). a) Attachment of nanoparticles to the surface of a single bacterial cell; b) and c) detail of the attachment at two different regions of the bacterial membrane
Figure S7. EDX maps of Y. enterocolitica WC-A interacting with MNP@SiO2@NH@Fa (4)8
Figure S8 . CFU of Y. enterocolitica WC-A (wild type) captured per 100 µg of magnetic nanoparticles in iron and iron deficiency growth conditions
Figure S9 Attraction of the conjugate MNP@SiO ₂ @NH@Fa (4) in solution in the presence of a magnet

Figure S1. Comparison of MNP (Fe₃O₄) (blue) and magnetite pattern (black) diffractograms.

Figure S2. FT-IR spectra of MNP@SiO₂@NH₂, MNP@SiO₂@NH@Fa (**4**), MNP@SiO₂@NHBoc, MNP@SiO₂@NHBoc@Fa (**5**), MNP@SiO₂@NHCOOH and MNP@SiO₂@NHCOOH@Fa (**6**).

Figure S3. A) Hysteresis cycle of the magnetization for the initial MNP (Fe₃O₄), and the subsequent components added in different layers to the MNP, MNP@SiO₂, MNP@SiO₂@NH₂, and MNP@SiO₂@NH@Fa (**4**) and **B**) their corresponding hysteresis loops.

Figure S4. Thermogravimetric analysis (TGA) of MNP@SiO₂@NH@Fa (4), MNP@SiO₂@NHBoc@Fa (5) and MNP@SiO₂@NHCOOH@Fa (6).

Estimation of feroxamine bonded to a 1 mg of MNP@SiO₂@NH₂:

Weight loss of MNP@SiO₂@NH₂ = 5.6 %

Weight loss of MNP@SiO₂@NH@Fa = 11.1 %

Expected Weight loss for MNP@SiO2@NH@Fa:

= (% Wt loss of MNP@SiO₂@NH@Fa) - (% Wt loss of MNP@SiO₂@NH₂)

= (11.1 – 5.6) % = **5.44%**

Weight loss of feroxamine from 1 mg of conjugate:

 $1mg \ \frac{5.44 \ \% \ of \ feroxamine}{100} = 0.0544 \ mg \ of \ feroxamine}{\frac{5.44 \ x \ 10^{-3}g}{713.98 \ mg \ /mmol}} = 7.62x 10^{-5} mmol \ of \ feroxamine}$

The amount of feroxamine per mg of MNP@SiO₂@NH₂ is 0.0544 mg, approximately. The conjugation was carried out using an excess of feroxamine to ensure that several amine groups were successfully coupled to the siderophore.

Figure S5. SEM images of *Y. enterocolitica* WC-A interacting with MNP@SiO₂@NH@Fa (4).

Figure S6. TEM images of Y. *enterocolitica* WC-A interacting with MNP@SiO₂@NH@Fa (**4**). a) Attachment of nanoparticles to the surface of a single bacterial cell; b) and c) detail of the attachment at two different regions of the bacterial membrane.

100nm

Figure S7. EDX maps of Y. enterocolitica WC-A interacting with MNP@SiO₂@NH@Fa (4).

Figure S8. CFU of Y. *enterocolitica* WC-A (wild type) captured per 100 µg of magnetic nanoparticles in iron and iron deficiency growth conditions.

Figure S9. Attraction of the conjugate $MNP@SiO_2@NH@Fa$ (4) in solution in the presence of a magnet.