
 

Editors 
 

As you can see from the reviews, the feedback is generally positive and, in our judgement, none of 

the raised issues present a fundamental objection to the soundness and relevance of the work. We 

nonetheless ask that the authors consider all the points raised to improve the manuscript. 

 

Response 

We thank the Editors and the Reviewers for the overall positive feedback about our work. We feel that 

we addressed major points in this revised version. 

 

  



 

Reviewer #1 
 

General: 

Giliberti and colleagues conduct a machine learning meta-analysis including different metagenomic 

datasets, using the information about presence and absence of bacterial species as input features 

for modelling rather than their relative abundance. The machine learning analyses are performed 

in a technically thorough manner and uncover a surprising finding, i.e. that the presence/absence 

information alone seems to be as predictive for various disease states as relative abundances. 

However, the biological relevance of the presented results are not fully clear and should be 

discussed in more detail. 

 

Response 

We thank the Reviewer for the overall appreciation of our work. 

 

Major: 

1. The authors discuss the implications for practical applications in diagnostic tests. However, it 

remains unclear to this referee whether detection of bacteria present rather than their 

quantification (by a cheap target approach such as qPCR) would make a diagnostic routine easier to 

implement in practice. The authors might want to discuss for which diagnostic assays this could 

matter. 

 

Response 

We agree that this discussion was not clear. We modified the last paragraph of the “Conclusions” 

section as follows (line 393): 

The growing literature aiming at identifying microbial biomarkers for different diseases opened the 

possibility to build non-invasive diagnostic tools from microbiome data. To this purpose, much 

superior accuracy can be achieved by considering multi-feature rather than single biomarkers 

diagnostic models, and in which machine learning-based classification approaches have a fundamental 

role in building such models. Moreover, maximal accuracy can usually be achieved by using a limited 

number of features (in the order of ten or twenty). Such findings recently presented in the literature 

in addition to outcomes of our study, which suggest that the detection of microbial taxa is sufficient 

to maximize classification accuracies, are important steps toward the development of fast and 

inexpensive tests applied on stool samples for diagnostic purposes. 

 

2. We feel that some of the chosen visualizations are not optimal to convey differences between 

various approaches in terms of AUC differences. A better alternative might be scatter plots with the 

original AUC on the x-axis and the AUC from the model trained on presence/absence data (or with 

different threshold, different taxonomic levels, or different machine learning algorithms) on the y-

axis. 

 

Response 

As suggested by the Reviewer we added scatterplots that convey differences among various 

approaches in a better way. We added these plots as supplementary material, and more specifically 

as S1 Fig and S3 Fig for the shotgun data and as S4 Fig for the 16S data: 

 



 

 
S1 Fig. Classification accuracies are robust to degradation from species-level relative abundance to 

presence/absence profiles in shotgun datasets. Comparison in terms of AUC between 

presence/absence and relative abundance profiles for the 25 case-control shotgun datasets. 

 

 
S3 Fig. Classification accuracies are robust to degradation from species-level relative abundance to 

presence/absence profiles in shotgun datasets. Comparison in terms of AUC between 

presence/absence and relative abundance profiles for the 25 case-control shotgun datasets by (A) 

thresholding at different relative abundance values (ranging from 0% to 0.1%), (B) changing taxonomic 

resolution (from species to order level), and (C) changing classification algorithm. 

 



 

 
S4 Fig. Classification accuracies are robust to degradation from species-level relative abundance to 

presence/absence profiles in 16S rRNA datasets. Comparison in terms of AUC between 

presence/absence and relative abundance profiles for the 30 case-control 16 rRNA datasets. 

 

And we modified the main text accordingly in multiple parts (line 244): 

Surprisingly, we observed negligible differences between the two experimental settings (Fig 1B, Fig 

1C, S1 Fig, and S2 Table). 

and (line 311): 

We did not observe changes in the classification accuracy when the threshold was set to 0.0001% and 

0.001% (Fig 3A, S3 Fig part A, and S2 Table). 

and (line 338): 

While no differences were obtained at species-level (as already discussed in Fig 1), we observed that 

coarser resolutions brought increasing AUC differences (Fig 4, S3 Fig part B, and S11 Table). 

and (line 362): 

On average, thresholding of relative abundance values did not negatively impact classification 

accuracies, instead it generally improved results in a quite unexpected way (Fig 5 and S3 Fig part C). 

and (line 265): 

By degrading relative abundance to presence/absence profile, we obtained few differences in the 

classification results between the two profile types (Fig 2B, Fig 2C, S4 Fig and S5 Table). 

 

3. The included datasets (and samples within a dataset) vary considerably in terms of their mean 

sequencing depth, which likely affects the detection of taxa with lower relative abundance. For this 

reason data is often downsampled (rarefied) before presence/absence calls and derived richness 

estimates are calculated. This issue is partially addressed by the authors’ use of different threshold 

values above which the authors call a taxa “present”, but this aspect might need further 

clarification. A more explicit description of how their thresholding strategy relates to downsampling 

datasets should be added and in the best case show both approaches could be compared empirically 

(on a few datasets). 

 

 



 

Response 

First, we assessed to what extent there was a correlation between the number of statistically 

significant species and the average number of reads on a per dataset basis. We didn’t find any 

correlation as summarized in the S5 Fig: 

 
S5 Fig. Number of differentially abundant species has weak correlation with the average number of 

reads. Each dot represents one of the 26 case-control shotgun studies. The number of statistically 

significant species is computed on relative abundance profiles. 

 

And discussed in the text as follows (line 275): 

By comparing the sets of statistically significant species in the different case-control studies (q < 0.05; 

using Mann-Whitney U test for relative abundance and Fisher exact test for presence/absence 

profiles, both corrected through false detection rate (FDR), S6 Table) we found similar numbers (Fig 

1D and S7 Table), with values more driven by disease and dataset types than average number of reads 

(S5 Fig). 

 

We further conducted a rarefaction analysis that is described in the “Materials and Methods” section 

(new subsection “Rarefaction analysis”) as follows (line 205): 

We further performed rarefaction analysis by: i) considering the three datasets having the highest 

number of significant species from relative abundance profiles (i.e., JieZ_2017, NielsenHB_2014, and 

QinN_2014); ii) rarefying raw reads (using https://github.com/lh3/seqtk) and considering 1M reads 

for each metagenome; iii) applying the same pipeline to generate taxonomic profiles through 

MetaPhlAn3; iv) applying the same pipeline to build classification models and identifying statistically 

significant species. 

 

Results are summarized in the new S9 Table: 

S9 Table. Results obtained on three selected shotgun datasets after rarefying metagenomes at 1M 

reads. Comparison in terms of AUC, F1, precision, recall, in addition to number of statistically 

significant taxa (q<=0.05),  between the results obtained classifying on the abundances matrix and the 

classification made on the presence/absence boolean matrix at different  taxonomic levels (only at 

species level). 

https://github.com/lh3/seqtk


 

And discussed in the text as follows (line 324): 

Results on rarefied reads (Methods) showed, as expected, a slight decrease in terms of classification 

accuracies and number of detected biomarkers with respect to the original data set, although patterns 

in function of the thresholding value when going from relative abundance to presence/absence data 

were confirmed (S9 Table). 

 

4. The analysis of statistically significant taxa in both approaches (lines 330 and following, also SFig. 

4) feels disconnected from the rest of the manuscript and generally underdeveloped. 

 

Response 

We moved this part earlier in the manuscript and put it in the new section “Statistically significant taxa 

are consistent between relative abundance and presence/absence profiles”. We also performed 

additional analyses and added more text as follows (line 272): 

 

Statistically significant taxa are consistent between relative abundance and 

presence/absence profiles 
We extended the analysis from classification to identification of differentially abundant/present taxa 

(i.e., possible biomarkers) through statistical testing (Methods). By comparing the sets of statistically 

significant species in the different case-control studies (q < 0.05; using Mann-Whitney U test for 

relative abundance and Fisher exact test for presence/absence profiles, both corrected through false 

detection rate (FDR), S6 Table) we found similar numbers (Fig 1D and S7 Table), with values more 

driven by disease and dataset types than average number of reads (S5 Fig). On average, we found 39 

and 32 significant species from relative abundance and presence/absence profiles, respectively. 

On a per dataset basis, p-values associated with statistically significant species correlated well 

between relative abundance and presence/absence profiles (S6 Fig). This was reflected also by the 

high percentage of taxa (78%) that were detected as significant in both cases, which was further 

confirmed by performing hierarchical clustering on the set of statistically significant taxa coming from 

relative abundance and presence/absence profiles (S7 Fig). Conversely, we identified discrepancies 

between case-enriched and control-enriched taxa in only 1.74% of the statistically significant features, 

which were coming from just 5 of the 24 analysed datasets (S8 Fig). Moreover, we didn’t identify any 

taxa for which the two tests disagreed across datasets (S8 Fig). 

Focusing on the gut microbiome datasets, we also identified the species that were mostly associated 

with disease or health (S7 Fig). The species most enriched in cases was Clostridium bolteae (significant 

in 78% of the diseases), followed by Streptococcus anginosus group (55%), Ruthenibacterium 

lactatiformans (55%), Hungatella hathewayi (55%), and Eisenbergiella tayi (55%) with all of them 

already reported in the literature as possible biomarkers for different disease conditions 

[6,13,39,41,56]. Similarly, species most enriched in controls were Anaerostipes hadrus (significant in 

66% of the diseases), Roseburia faecis (55%), Roseburia intestinalis  (55%), Prevotella copri  (44%), and 

Eubacterium hallii (44%) [6,10,39,57]. 

Consistence between relative abundance and presence/absence outcomes was finally obtained on 

the 16S data, with 20 and 15 genera that were found to be significant on average from relative 

abundance and presence/absence profiles, respectively (Fig 2D and S8 Table). 

 

https://paperpile.com/c/UgSJeq/hHc6+qLP8+OEII+lwxa+igr0
https://paperpile.com/c/UgSJeq/hHc6+lw6IR+sqQcc+OEII


 

Could the authors compare the p-values from the Wilcoxon and Fisher tests, maybe again via scatter 

plots (on -log10 scale of the p-values)? How well do the p-values correlate? 

 

Response 

We performed this analysis and obtained high correlations between p-values from the Wilcoxon and 

Fisher tests. We added this as new S6 Fig: 

 

 

S6 Fig. P-values associated with statistically significant species correlate well between relative 
abundance and presence/absence profiles. Each dot represents a different taxa (i.e., species) and we 
report only species significant in at least one of the two data types. Only datasets with at least ten 
data points are shown. 
 

And discussed this in the text (line 285): 

On a per dataset basis, p-values associated with statistically significant species correlated well 

between relative abundance and presence/absence profiles (S6 Fig).  

Are there taxa for which the two tests disagree consistently across datasets? 



 

Response 

This aspect was addressed only marginally in the previous version of the manuscript, and expanded 

more now. We summarized results in the new S8 Fig: 

 
S8 Fig. Statistically significant taxa from relative abundance and presence/absence profiles did not 

disagree across datasets. We identified discrepancies between case-enriched and control-enriched 

taxa derived from relative abundance and presence/absence data in only 1.74% of the statistically 

significant features, which were coming from just 5 datasets. No taxa disagreed across datasets. 

 

And discussed this in the text (line 289): 

Conversely, we identified discrepancies between case-enriched and control-enriched taxa in only 

1.74% of the statistically significant features, which were coming from just 5 of the 24 analysed 

datasets (S8 Fig). Moreover, we didn’t identify any taxa for which the two tests disagreed across 

datasets (S8 Fig). 

 

How does it look like when abundance fold change and prevalence difference across groups is 

compared? Is there a clear correlation? In general, this analysis could be greatly expanded to bolster 

the biological interpretation of the results. 

 

Response 

We thank the Reviewer for the nice suggestion. We performed some analyses in this direction, 

however we didn’t find any interesting pattern to show and discuss in the manuscript. 

In this context, it is also important to note that there are many CRC datasets in the set of included 

studies, potentially biasing the disease-associations reported in lines 339 and following. Instead, the 



 

authors could try to get a single significance value for each disease (including all available studies of 

this disease) and compare again. 

 

Response 

We perfectly agree on this. We redid the analysis on a per disease instead of a per dataset basis. We 

updated the S7 Fig: 

 

 

S7 Fig. Statistically significant taxa are consistent between relative abundance and 
presence/absence data on a per dataset basis. Heatmap generated on the p-values (after FDR 
correction; p > 0.05 in grey) obtained by applying statistical tests on the case-control metagenomic 
datasets. Only the 18 datasets with at least one discriminative taxa are reported. Left-most colorbar 
identifies the taxonomic class of each taxa. The two right-most colorbars indicate the percentage of 
diseases for which the species resulted to be enriched in controls (in green) and in cases (in red). This 
percentage is computed on a per disease basis, when multiple datasets are available for the same 
disease, the taxa is considered significant when detected as significant in at least one dataset. 
 

And the text accordingly (line 286): 



 

This was reflected also by the high percentage of taxa (78%) that were detected as significant in both 
cases, which was further confirmed by performing hierarchical clustering on the set of statistically 
significant taxa coming from relative abundance and presence/absence profiles (S7 Fig). [...] 
Focusing on the gut microbiome datasets, we also identified the species that were mostly associated 
with disease or health (S7 Fig). The species most enriched in cases was Clostridium bolteae (significant 
in 78% of the diseases), followed by Streptococcus anginosus group (55%), Ruthenibacterium 
lactatiformans (55%), Hungatella hathewayi (55%), and Eisenbergiella tayi (55%) with all of them 
already reported in the literature as possible biomarkers for different disease conditions 
[6,13,39,41,56]. Similarly, species most enriched in controls were Anaerostipes hadrus (significant in 
66% of the diseases), Roseburia faecis (55%), Roseburia intestinalis  (55%), Prevotella copri  (44%), and 
Eubacterium hallii (44%) [6,10,39,57]. 
 

5. Does the disease which is to be predicted have any influence on loss of/retaining accuracy after 

converting features to presence/absence information? One could imagine that CRC, relying more 

on rare biomarkers, could be less affected by downgrading features to presence/absence 

information than for example IBD, which is characterized by stronger community shifts in highly 

abundant and prevalent taxa. This analysis could contribute to developing a clearer understanding 

of the biological relevance of the presented analysis. 

 

Response 

This is an interesting question. We agree with the hypothesis formulated by the Reviewer, although 

there was weak evidence based on our data and results. We added few sentences in the text as follows 

(line 280): 

We may hypothesize that diseases that rely on rare biomarkers are less affected by degradation to 

presence/absence profiles than the ones that are characterized by stronger community shifts in 

abundant and prevalent taxa. Although this is not sufficiently supported by our data, further 

investigation in this direction is warranted. 

 

Minor: 

1. The LODO analysis for CRC studies could be moved from the supplement to the main manuscript, 

especially if the display items are streamlined via scatter plots. 

 

Response 

We agree on this and moved the analysis from the supplementary material to the main manuscript 

(as Fig 6): 

 

https://paperpile.com/c/UgSJeq/hHc6+qLP8+OEII+lwxa+igr0
https://paperpile.com/c/UgSJeq/hHc6+lw6IR+sqQcc+OEII


 

 

Fig 6. Degradation of relative abundance profiles does not impact LODO classification. Results in 

terms of leave-one-dataset-out (LODO) validation on 10 CRC shotgun datasets. (A) AUC scores using 

RF as back-end classifiers on species-level relative abundance (in pink) and presence/absence profiles 

generated at different threshold values. (B) Difference in AUC between species and other taxonomic-

level resolutions. A negative value indicates that species-level outperforms the comparison level. (C) 

Difference in AUC between presence/absence and relative abundance classification results at varying 

taxonomic levels. 

 

2. Are the different models trained on the same cross-validation splits? If not, adopting this 

approach could remove the random noise introduced by repeated CV splitting. 

 

Response 

Yes, different models were trained on the same cross-validation splits. This was actually an important 

detail that was missing and that we added in the “Validation and evaluation strategies” section (line 

136): 

In cross-validation, samples were randomly divided into k (with k = 10 in our case) folds by considering 

a stratified cross-validation approach to preserve the percentage of samples of each class. Results 

were repeated and averaged on 20 independent runs. Different models were trained on the same 

cross-validation splits. 

  



 

Reviewer #2 
 

Giliberti et al. present a very well written paper comparing the predictive performance of 

quantitative vs qualitative taxonomic profiles. The breadth of the work is comprehensive in the 

range of phenotypes (IBD, CRC, T2D, etc) being analyzed and the data types (16S rRNA and 

Metagenomics). The core question being answered is an interesting one and this paper will likely be 

of interest to the broad microbiome community. However, there are three main issues that would 

first need to be addressed. The first is a logistical issue concerned with the availability of the source 

code used to generate the data in this paper. The second issue is concerned with the use of the AUC 

of the ROC to evaluate classification tasks on unbalanced datasets. The last issue is concerned with 

the choice of test used to compute differential abundance. 

 

Response 

We thank the Reviewer for the overall appreciation of our work. Very briefly, we addressed the three 

raised issues as follows, with more details in the next responses: i) we made a public repository hosted 

in GitHub with a tutorial that goes through the entire analysis pipeline and all the data and code 

necessary to reproduce the results and figures/tables of the paper; ii) we complemented AUC 

evaluation with AUPRC values, which were in strong agreement; iii) we kept the statistical tests that 

were considered in the previous version of the manuscript, however some additional evaluations will 

be discussed in this letter and some discussions were added to the main text. 

 

The code used to generate the data and figures included in this paper needs to be made available 

and well documented. Please note the versions of the software dependencies used, how to run 

these scripts, and when and where the datasets were downloaded from. My recommendation is to 

host this repository on GitHub or another source code sharing platform. 

 

Response 

We created a public repository hosted in GitHub (https://github.com/RGilib/giliberti-meta-analysis-

2022) and more specifically a detailed Wiki section (https://github.com/RGilib/giliberti-meta-analysis-

2022/wiki). 

This Wiki is structured in two main sections. First, a tutorial on a single dataset aiming at going through 

the entire pipeline. Then, the data and code necessary to replicate all results and figures/tables of the 

paper. We also list in the Wiki the list of software/libraries with their versions. 

We added this sentence in the Data availability statement: 

The data and source code used to produce the results and analyses presented in this manuscript are 

available on a GitHub repository at https://github.com/RGilib/giliberti-meta-analysis-2022. 

 

Using the AUC of the ROC for evaluating the performance of a classification task for unbalanced 

datasets is likely to yield misleading results. My suggestion would be to use this metric and the area 

under the precision-recall curve AUPRC. Alternatively using any of the other metrics that were 

already measured for this dataset would also be appropriate. These metrics need to be also 

evaluated with the statistical testing framework used for the AUC of the ROC. 

 

 

 

https://github.com/RGilib/giliberti-meta-analysis-2022
https://github.com/RGilib/giliberti-meta-analysis-2022
https://github.com/RGilib/giliberti-meta-analysis-2022/wiki
https://github.com/RGilib/giliberti-meta-analysis-2022/wiki
https://github.com/RGilib/giliberti-meta-analysis-2022


 

Response 

We complemented AUC evaluation with AUPRC values. Results were in strong agreement. We added 

these results in Fig 1 (for shotgun) and Fig 2 (for 16S) as a new panel C: 

 

 

Fig 1. Classification accuracies are robust to degradation from species-level relative abundance to 
presence/absence profiles in shotgun datasets. Results obtained on 25 case-control studies for host 
phenotype classification from human microbiomes. (A) Number of case and control samples across 
the different studies. (B) AUC and (C) AUPRC scores using RF as back-end classifiers on species-level 
taxonomic profiles. Comparison between relative abundance (in blue) and presence/absence (in red) 
profiles highlighted negligible differences and no statistical differences in none of the studies (see S2 
Table for p-values). Metrics of comparison in terms of AUC, AUPRC, precision, recall, and F1 are 
summarized in S2 Table. (D) Number of statistically significant taxa from relative abundance (in blue) 
and presence/absence (in red) profiles. 
 



 

 

Fig 2. Classification accuracies are robust to degradation from genus-level relative abundance to 
presence/absence profiles in 16S rRNA datasets. Results obtained on 30 case-control studies for host 
phenotype classification from human microbiomes. (A) Number of case and control samples across 
the different studies. (B) AUC and (C) AUPRC scores using RF as back-end classifiers on species-level 
taxonomic profiles. Comparison between relative abundance (in blue) and presence/absence (in red) 
profiles highlighted negligible differences and no statistical differences in none of the studies (see  S5 
Table for p-values) as found also in shotgun datasets (see Fig 1). Metrics of comparison in terms of 
AUC, AUPRC, precision, recall, and F1 are summarized in S5 Table. (C) Number of statistically 
significant taxa from relative abundance (in blue) and presence/absence (in red) profiles. 
 

Such AUPRC values were also added accordingly to S2 Table (for shotgun) and S5 Table (for 16S). 

 

For shotgun data, we also produced a scatterplot showing the strong correlation between AUC and 

AUPRC values as new S2 Fig: 



 

 
S2 Fig. AUC correlates well with AUPRC. Comparison in terms of classification accuracies between 

AUC (area under the curve) and AUPRC (area under the precision-recall curve) for the 25 case-control 

shotgun datasets and by considering relative abundance (in blue; Spearman correlation = 0.889) and 

presence/absence (in red; Spearman correlation = 0.918) profiles. 

 

We commented these results in the text as follows (line 228): 

More specifically, we considered a RF classifier applied on the species-level relative abundance 

profiles, and evaluated classification accuracies in terms of multiple metrics (i.e., area under the ROC 

curve (AUC), area under the precision-recall curve (AUPRC), precision, recall, and F1) using a cross-

validation (CV) approach (see Methods). 

and (line 244): 

Surprisingly, we observed negligible differences between the two experimental settings (Fig 1B, Fig 

1C, S1 Fig, and S2 Table). In both cases (i.e., using presence/absence or relative abundance profiles), 

we obtained an average AUC of 0.83 (AUPRC = 0.83) across the 25 case-control studies, with AUC and 

AUPRC values strongly correlated (S2 Fig; Spearman correlation = 0.918). 

and (line 265): 

By degrading relative abundance to presence/absence profile, we obtained few differences in the 

classification results between the two profile types (Fig 2B, Fig 2C, S4 Fig and S5 Table). 

 

Lastly, performing differential abundance comparisons using Mann-Whitney’s U test is 

inappropriate due to the compositional nature of the data. The authors should update these results 

to use a different test and or normalization strategy. 

 

Response 

We thank the Reviewer for raising this point. All sequencing data are compositional in nature. For 

RNA-seq data it has not proven to be a major consideration, and in limited benchmarking in 

microbiome data it is still not clear that it should be a primary consideration in all habitats. We also 



 

conducted a sensitivity analysis using the recently proposed method ZINQ that takes into account the 

compositional issue for microbiome data analysis (Ling W, Zhao N, Plantinga AM, Launer LJ, Fodor AA, 

Meyer KA, et al. Powerful and robust non-parametric association testing for microbiome data via a 

zero-inflated quantile approach (ZINQ). Microbiome. 2021;9: 181.). Results in terms of statistically 

significant taxa (at species and genus level) are summarized in this table and show quite comparable 

numbers with what we report in the paper using the Mann-Whitney’s U test: 

 

datasetID Paper_species ZINQ_species Paper_genus ZINQ_genus 

Castro-NallarE_2015 9 6 3 4 

ChngKR_2016 5 3 3 1 

FengQ_2015 24 19 24 13 

GhensiP_2019 77 59 36 19 

GhensiP_2019_m 0 3 0 1 

GuptaA_2019 44 30 26 16 

HanniganGD_2017 0 0 0 0 

Heitz-BuschartA_2016 3 2 3 2 

IjazUZ_2017 86 70 51 41 

JieZ_2017 128 100 51 44 

KarlssonFH_2013 3 0 0 0 

KosticAD_2015 17 13 6 2 

LiJ_2017 0 0 0 0 

NielsenHB_2014 204 150 78 65 

QinJ_2012 29 17 25 14 

QinN_2014 247 186 83 72 

RaymondF_2016 23 15 13 8 

ThomasAM_2018a 0 0 0 0 

ThomasAM_2018b 3 0 2 0 

VogtmannE_2016 0 0 1 0 

WirbelJ_2018 37 22 25 16 

YachidaS_2019 28 15 20 12 

YeZ_2018 1 0 0 0 

YuJ_2015 13 9 11 7 

ZellerG_2014 3 2 2 2 

http://paperpile.com/b/UgSJeq/Eikb
http://paperpile.com/b/UgSJeq/Eikb
http://paperpile.com/b/UgSJeq/Eikb


 

In light of these results and more importantly given the lack of understanding in the field about which 

is the proper method that should be used (at least to the best of our knowledge), we prefer to i) keep 

the analysis in the manuscript as it is and ii) modify the text as follows (line 196): 

We used Mann-Whitney U test to identify the set of significant taxa when relative abundance profiles 

were involved, while we adopted Fisher exact test to deal with presence/absence data. Although it is 

out of the scope of the present study to perform a comprehensive evaluation of available statistical 

tests, further investigation taking into account alternatives including methodologies that can deal with 

compositional issues [53,54] is warranted. 

 

[53] Morton JT, Marotz C, Washburne A, Silverman J, Zaramela LS, Edlund A, et al. Establishing 

microbial composition measurement standards with reference frames. Nat Commun. 2019;10: 

2719. 

[54]  Ling W, Zhao N, Plantinga AM, Launer LJ, Fodor AA, Meyer KA, et al. Powerful and robust non-

parametric association testing for microbiome data via a zero-inflated quantile approach 

(ZINQ). Microbiome. 2021;9: 181. 

 

Beyond these issues, I would recommend that the authors rethink the title of their paper, as it 

stands the classification performance is shown to be comparable in between both cases. The title 

makes an implication about qualitative profiles outperforming quantitative profiles. Furthermore 

the use of the term "metagenome" in the title is misleading since amplicon sequencing data is also 

presented in this paper. 

 

Response 

We modified the title as follows (line 1): “Host phenotype classification from human microbiome data 

is mainly driven by the presence of microbial taxa”. 

  

https://paperpile.com/c/UgSJeq/Jgqi+Eikb


 

Reviewer #3 
 

This paper proposed a meta-analysis on 25 publicly available dataset of metagenomic studies and 

30 public dataset of 16S rRNA studies, the major investigation purpose is whether presence/absence 

data could be a valid and efficient indicator for classifying samples. The conclusion is that by 

degrading abundance data to binary(presence/absence) data, the classification performance could 

be maintained without decreasing AUC in many parameter settings. This is an interesting paper for 

host-phenotype classification by only considering binary(presence/absence) data instead of 

abundance data, because it may suggest that it may be possible for designing microbe-based 

diagnostic tasks in future by the detection of the presence of a microbial taxa set rather than the 

complex abundance estimation by sequencing technology. The writing of the paper is very clear, 

however there are several concerns may be useful to consider, at least valuable to discuss: 

 

Response 

We thank the Reviewer for the overall appreciation of our work. 

 

(1) The paper used Random forest, SVM, Lasso and Elastic Net for comparison, it is possible to adopt 

some updated classification approaches, for example: 

https://pubmed.ncbi.nlm.nih.gov/32396115/ 

https://pubmed.ncbi.nlm.nih.gov/32657370/ 

 

Response 

We thank the Reviewer for raising this point. The main goal of our study is to test differences between 

relative abundance and presence/absence profiles on classification results, and focusing more on a 

comparison among feature types rather than classification methods. Our analysis shows consistent 

outcomes across five (traditional) classification algorithms suggesting that findings are quite robust to 

the classifier choice. Anyhow, we have tried to performed additional analyses as follows: 

● We tested five other classifiers available in the Python scikit-learn library (which is the library 

already used in our framework for the classification task). Our main messages were confirmed 

also by these other classification algorithms. At the same time, we didn’t have consistent 

improvements of accuracy with respect to what was already reported in the manuscript. So 

we prefer to not add these additional classifiers in the manuscript since they do not add too 

much to the story; 

● The source code for the first manuscript suggested by the Reviewer is not available. Anyhow, 

authors already reported in this original publication that the proposed algorithm didn’t 

outperform other methods such as random forest which is already considered in our analysis. 

We were not able to properly install and run the software associated with the second paper. 

In conclusion, we think that doing an extensive evaluation of *all* available classifiers is out of the 

scope of the present study. At the same time, we feel that testing other classification approaches, 

including the ones specifically proposed for the analysis of metagenomic data as suggested by the 

Reviewer, is something relevant for future studies in the microbiome field. We added a couple of 

sentences about this aspect in the text (line 387): 

Moreover, although doing an extensive evaluation of existing classifiers is out of the scope of the 

present study, maximization of classification accuracies may be reached by adopting other 



 

classification approaches including the ones specifically proposed for microbiome data analysis 

[61,62]. 

 

[61]  Reiman D, Metwally AA, Sun J, Dai Y. PopPhy-CNN: A Phylogenetic Tree Embedded Architecture 

for Convolutional Neural Networks to Predict Host Phenotype From Metagenomic Data. IEEE J 

Biomed Health Inform. 2020;24: 2993–3001. 

[62]  Rahman MA, Rangwala H. IDMIL: an alignment-free Interpretable Deep Multiple Instance 

Learning (MIL) for predicting disease from whole-metagenomic data. Bioinformatics. 2020;36: 

i39–i47. 

 

(2) The paper designed many experiments by using a lot of datasets, it is useful to provide a website 

link for downloading the processed dataset for comparison and reproduce the results. 

 

Response 

As suggested also by Reviewer 2, we created a public repository hosted in GitHub 

(https://github.com/RGilib/giliberti-meta-analysis-2022) and more specifically a detailed Wiki section 

(https://github.com/RGilib/giliberti-meta-analysis-2022/wiki). Here, we provide a tutorial aiming at 

going through the entire pipeline in addition to the repository with all the data and code necessary to 

replicate all results and figures/tables of the paper. 

We added this sentence in the Data availability statement: 

The data and source code used to produce the results and analyses presented in this manuscript are 

available on a GitHub repository at https://github.com/RGilib/giliberti-meta-analysis-2022. 

 

(3)Traditionally, classification methods including Random forest, SVM, Lasso and Elastic Net are 

designed for continuous data instead of binary data (presence/absence data). When the data form 

is changed, the algorithm may not adapted to it. The author may explain why these methods could 

work on both continuous data (abundance data) and binary data (presence/absence data) 

 

Response 

This is an interesting point. We agree with the comment formulated by the Reviewer, which is actually 

reinforcing our message. We show that classification accuracies are not affected when relative 

abundance features are degraded to presence/absence profiles. This happens using classification 

methods that are “optimal” for continuous data and potentially “suboptimal” for binary data, 

therefore accuracies may be even better when models on presence/absence profiles are trained using 

classifiers more designed for binary data. We added this consideration in the text as follows (line 382): 

Results were robust to the choice of the classifier. This was obtained by considering different 

traditional classification algorithms that are designed for continuous data and potentially 

“suboptimal” when applied on binary data. This actually reinforces our findings, meaning that 

accuracies may be even better when models on presence/absence profiles are trained using classifiers 

more designed for binary data. 
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Have the authors made all data and (if applicable) computational code underlying the findings in 

their manuscript fully available? 

The PLOS Data policy requires authors to make all data and code underlying the findings described 

in their manuscript fully available without restriction, with rare exception (please refer to the Data 

Availability Statement in the manuscript PDF file). The data and code should be provided as part of 

the manuscript or its supporting information, or deposited to a public repository. For example, in 

addition to summary statistics, the data points behind means, medians and variance measures 

should be available. If there are restrictions on publicly sharing data or code —e.g. participant 

privacy or use of data from a third party—those must be specified. 
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We fixed this issue by creating a public repository hosted in GitHub 

(https://github.com/RGilib/giliberti-meta-analysis-2022). Here we provide a Wiki section 

(https://github.com/RGilib/giliberti-meta-analysis-2022/wiki) with all the data and code necessary to 

replicate results and figures/tables of the paper. 

We added this sentence in the Data availability statement: 

The data and source code used to produce the results and analyses presented in this manuscript are 

available on a GitHub repository at https://github.com/RGilib/giliberti-meta-analysis-2022. 
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