Supplementary Information

Low voltage operation of a silver/silver chloride battery with high desalination capacity in seawater

Pattarachai Srimuk,^{1,2} Samantha Husmann,¹ Volker Presser^{1,2,*}

- ¹ INM Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- ² Department of Materials Science and Engineering, Saarland University, 66123 Saarbrücken, Germany
- * Corresponding author's eMail: volker.presser@leibniz-inm.de

Figure S1: Ideal crystal structure of AgCl and Ag along with selected crystallographic information.

- **Figure S2**: A) scanning electron micrograph of AgNP-10CB electrode before (up) and after electrochemistry (bottom) and B) X-ray diffraction pattern of AgNP-10CB electrode before and after electrochemistry.
- **Table S1**:Measured crystal structure data obtained via Rietveld analysis of the measured
X-ray diffraction pattern.

		Ag		AgCl		
	a (Å)	Size (nm)	Amount (%)	a (Å)	Size (nm)	Amount (%)
AgNP	4.0897	75	>99	-	-	-
AgCI-20CNT	4.0905	>200	15	5.6200	>200	85

Figure S3: Electrochemical characterization using a half-cell setup and 1 M NaCl for AgNP-10CB. For this experiment, AgNP was blended with carbon black the same way as we did for AgCl-20CNT electrodes. A) Cyclic voltammetry at 1 mV/s, B) galvanostatic charge/discharge at 0.1 A/g, C) galvanostatic rate handling at 0.1-10 A/g, and D) galvanostatic charge/discharge cycling stability at 0.25 A/g.

Figure S4: Electrochemical characterization using a half-cell setup and 1 M NaCl for AgCl-10CB. For this experiment, Ag was thermally chlorinated at 300 °C for 3 h, achieving full conversion to AgCl. The AgCl powder was then processes like AgNP-10CB electrodes to obtain AgCl-10CB electrodes. A) Cyclic voltammetry at 1 mV/s, B) galvanostatic charge/discharge at 0.1 A/g, C) galvanostatic rate handling at 0.1-10 A/g, and D) galvanostatic charge/discharge cycling stability at 0.25 A/g.

Table S2:Desalination performance and corresponding specific capacity for selected literature that provided required data on charge, charge
efficiency, and salt removal capacity (considering NaCl as the only salt). NID: sodium-ion desalination. CID: chlorine-ion desalination;
CDI: capacitive deionization; MCDI: membrane capacitive deionization. MC-MCDI: multi-channel membrane capacitive deionization (-
aq: aqueous media; -bi: organic/aqueous bi-electrolyte).

Material	Cell	NaCl	Cell	Charge	Desalination	Charge	Comment
	type	concentration	voltage	capacity	capacity	efficiency	
		(mM)	(V)	(mAh/g)	(mg/g)	(%)	
Any	Any	Any	Any	100	109	100	Theory, assuming Eq. 3
Any	Any	Any	Any	100	87	80	Theory, assuming Eq. 3
Any	Any	Any	Any	100	55	50	Theory, assuming Eq. 3
Ag/AgCl	CID	600	±0.1	110	115	96	This work
Ag/AgCl	CID	Any	Any	211	230	100	Theory, ideal
Bi/BiClO	CID	Any	Any	114	125	100	Theory, ideal
Kynol 5092-15	CDI	5	1.2	15ª	13	76	Ref. ¹
Kynol 507-20	CDI	5	1.2	16 ^a	14	79	Ref. ¹
Kynol 507-20+	CDI	5	1.2	17 ^a	16	89	Ref. ¹
Kynol 507-20	MC-MCDI-aq ^b	5	±1.2	22ª	22	93	Ref. ²
Kynol 507-20	MC-MCDI-aq ^c	5	±1.2	54 ^a	51	87	Ref. ²
Kynol 507-20	MC-MCDI-bi ^d	5	2.4	61 ^a	63	95	Ref. ³
Kynol 507-20	MC-MCDI-aq/i ^e	100	0.7	100	69	64	Ref. ⁴
MoS ₂	CDI	500	0.8	25	27	96	Ref. ⁵
Nickel hexacyanoferrate &	NID	500	Δ0.8 ^e	56	60	98	Ref. ⁶
sodium iron hexacyanoferrate							

^a Charge storage capacity per one electrode for symmetric cells. ^b side-channel concentration: aqueous 5 mM NaCl. ^c side-channel concentration: aqueous 1000 mM NaCl. ^d side-channel concentration: aqueous 600 mM NaCl and 600 mM NaClO₄ in propylene carbonate. ^d side-channel concentration: aqueous 1000 mM Nal. ^e cell was cycled between 0.05 V and 0.85 V.

Supplementary References

- 1. C. Kim, P. Srimuk, J. Lee, S. Fleischmann, M. Aslan and V. Presser, *Carbon*, 2017, **122**, 329-335.
- 2. C. Kim, J. Lee, P. Srimuk, M. Aslan and V. Presser, *ChemSusChem*, 2017, **10**, 4914-4920.
- 3. C. Kim, P. Srimuk, J. Lee and V. Presser, *Desalination*, 2018, **443**, 56-61.
- 4. J. Lee, P. Srimuk, S. Carpier, J. Choi, R. L. Zornitta, C. Kim, M. Aslan and V. Presser, *ChemSusChem*, 2018, **11**, 3460-3472.
- 5. P. Srimuk, J. Lee, S. Fleischmann, S. Choudhury, N. Jäckel, M. Zeiger, C. Kim, M. Aslan and V. Presser, *Journal of Materials Chemistry A*, 2017, **5**, 15640-15649.
- 6. J. Lee, S. Kim and J. Yoon, *ACS Omega*, 2017, **2**, 1653-1659.