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Section A — Calcite 

Phase purity of commercial calcite

The phase purity of the commercially supplied calcite is documented by XRD (Fig. A1-A), with the highest intensity 
representing (104) at 2θ = 29.3°. All other peaks also belong to calcite, i.e. (113), (116), (018), (202), (110), (012), 
(1010) and (215). Thermal analysis of the powder (Fig. A1-B) showed only weight loss above 700 °C which relates 
to thermal decomposition of calcium carbonate; and it corresponds also to the endothermal peak in the DTA curve. 
Prior to this event, no weight loss or other endo-/exothermal events can be identified which assures the absence of 
organic substances or a potentially amorphous phase. The overall weight loss is 43–44% which is in agreement with 
the theoretical loss of 44 wt% [1]. The ATR/FT-IR spectrum of the powder (Fig. A1-C) shows the characteristic 
absorption bands of calcite: the in-plane band  (ν4) at 711 cm-1, the out plane band (ν2) at 876 cm-1, and an anti-
symmetry stretch  (ν3) at 1402 cm-1 [2].  It is worth mentioning that sharp bands at 876 cm-1 confirm phase-pure 
calcite because the out-of-plane band (ν2) of aragonite is at 854 cm-1 and for vaterite at 867 cm-1 [3]. Raman 
spectroscopy studies also showed the characteristic bands of calcite and no bands of a second polymorph 
(Fig. A1-D). The single band at 1085 cm-1 is related to internal modes that originates from the ν1 symmetric 
stretching mode of the carbonate ion. The ν4 in-plane-bending mode of carbonate can be found at 711 cm-1. Bands 
below 300 cm-1 correspond to translational and rotational lattice modes [4]. 

Figure A1. Characterization of commercial calcite. (A) X-ray diffraction, (B) TGA/DTA analysis, (C) ATR/FT-

IR spectroscopy, and (D) Raman spectroscopy.
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Figure A2. Evolution of X-ray diffractograms of calcite during incubation (A) in water and (B) in SBF for a time 

period of up to 28 d. Throughout, only reflections from calcite are present. 

Figure A3. Evolution of ATR/FT-IR spectra of calcite during incubation in SBF for a time period of up to 28 d. No 

characteristic phosphate bands are present even after 4 weeks.
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Section B — Aragonite 

Phase purity of synthesized aragonite

The phase purity of aragonite was assured by XRD (Fig. B1-A), where the analysis shows that all the diffraction 
peaks are in accordance with the standard data  PDF No. 00-041-1475 [5]. Thermal analysis of the precipitated 
powder (Fig. B1-B) showed a first weight loss of ~0.5–1.0 wt% below 100 °C which is due to the elimination of 
physically adsorbed water. The second weight loss of 1.0–2.0 wt% at 240–400 °C is due to the elimination of 
occluded water. The thermal decomposition at the temperature range 550–750 °C; the overall weight loss and the 
absence of further endo- or exothermic events identicates that only one phase pure of organic impurites is present. 
The ATR/FTIR spectrum of the sample (Fig. B1-C) features the anti-symmetry stretching vibration (ν3) at 1460 cm-1,  
a symmetric carbonate stretching vibration (ν1) at 1084 cm-1  and a carbonate out-of-plane bending (ν2) vibration at 
854 cm-1 which are all characteristic of the aragonite structure [6].  In aragonite, the symmetric stretching vibration 
(ν1) is active both in Raman and IR whereas in the case of calcite it is only Raman-active. Often, this band at 
~1080 cm-1 is used to discriminate aragonite from mixtures of aragonite and calcite [7]. The pair of bands at ca. 
713 and 700 cm-1 are assigned to the in-plane bending modes (ν4) which are also characteristic for aragonite [6,8]. 
No characteristic vibrational bands belonging to calcite or vaterite were detected, which further demonstrate that the 
powder obtained is pure aragonite. The Raman spectrum presents (Fig. B1-D) the strongest line in the ν1 symmetric 
stretch of CO3

2- ion at ~1084 cm-1. A pair of bands presented at 700 and 704 cm-1 are characteristic of aragonite [9]. 
Bands below 300 cm-1 corresponded to translational and rotational lattice modes [10].

Figure B1. Characterization of synthesized aragonite. (A) X-ray diffraction, (B) TGA/DTA analysis, 

(C) ATR/FT-IR spectroscopy, and (D) Raman spectroscopy.
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Figure B2. Evolution of X-ray diffractograms of aragonite before/during incubation (A) in water and (B) in 

SBF for a time period of up to 28 d. Only after 28 d, a small peak of calcium phosphate is present. No calcite 

appears. (C) EDS of spherulitic precipitates, as marked in Fig. 2-B.

Figure B3. Evolution of ATR/FT-IR spectra of aragonite before/during incubation in SBF for a time period of 

up to 28 d. Only after 28 d, a small peak of calcium phosphate is present. No calcite appears; however, after 28 days 

of incubation absorption bands typical for phosphate groups at 1029, 601 and 563 cm-1 appear additionally to the 

bands of aragonite.
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Table B4. Rietveld refinement for aragonite powder after 1–28 days of immersion into MilliQ water.

wt% calcite wt% aragonite

1 day 3 97

3 days 4 96

7 days 4 96

14 days 8 92

21 days 11 89

28 days 18 82
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Section C — Vaterite

Phase purity of synthesized vaterite

Vaterite was synthesized by a double decomposition technique and its phase purity was documented by XRD 
(Fig. C1-A) which is in agreement with the standard data  PDF NO. 00-033-0268 [5]. The precipitated powder was 
characterized by TG-DTA analysis (Fig. C1-B) where the first slow weight lost shows a total of 0.5 wt% which we 
attribute to the evaporation of the physically adsorbed water [11]. The second weight loss of 1.0–1.5 wt% at 150–
450 °C is due to the elimination of occluded water in vaterite, similar to the observations made in case of aragonite. 
The last weight lost in the temperature of 500–800 °C (~42.0 wt%) is due to decomposition of CaCO3 to CaO and 
CO2 and is accompanied by an endothermic peak at 715 °C in the DTA curve. The TGA/DTA analysis gave no 
evidence for a second, e.g. amorphous, phase and assured the the absence of organic impurities.  ATR/FTIR analysis 
(Fig. C1-C) only showed absorption bands characteristic of vaterite:1090 cm-1 (ν1 symmetric carbonate stretching 
vibration), 867 cm-1 (ν2 a carbonate out-of-plane bending), 1409 cm-1 (ν3 anti-symmetry stretch) and 736 cm-1 (ν4 in-
plane bending). No bands belonging to aragonite at 713 and 700 cm-1, or calcite at 711 and 876 cm-1 were detected, 
further corroborating that ellipsoidal polycrystals are vaterite [8,12]. Raman spectroscopy studies also showed only 
bands characteristic of vaterite (Fig. C1-D).[10] Raman bands at 1073 and 1089 cm-1 correspond to the internal mode 
that derives from the ν1 symmetric stretching mode of the carbonate ion. At 738–750 cm-1 the ν4 in-plane bending 
mode of carbonate can be found. Samples exhibit bands below 300 cm-1, which correspond to translational and 
rotational lattice modes.

Figure C1. Characterization of synthesized vaterite. (A) X-ray diffraction, (B) TGA/DTA analysis, (C) ATR/FT-

IR spectroscopy, and (D) Raman spectroscopy.
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Figure C2. Evolution of X-ray diffractograms of vaterite before/during incubation (A) in water and (B) in SBF 

for a time period of up to 28 d. Only after 28 d, a small peak of calcium phosphate is present. Already after one day 

of incubation in water, calcite reflections appear additional to those of vaterite; after 3 d all vaterite reflection have 

vanished. In contrast, no calcite formation is detectable in SBF but calcium phosphate reflections are detectable after 

28 d of incubation.

Figure C3. Evolution of ATR/FT-IR spectra of vaterite before/during incubation in SBF for a time period of 

up to 28 d. After 28 days of incubation, absorption bands typical for calcium phosphate at 1029, 601 and 563 cm-1 

appear additionally to the bands of vaterite. 
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Section D – Amorphous Calcium Carbonate

Phase purity of synthesized amorphous calcium carbonate (ACC)
The dried ACC precipitate is X-ray amorphous (Fig. D1-A); only diffuse scattering is observed which is 
common for ACC phase and was already previously reported.10,11 TGA/DTA showed an initial weight loss 
up to 300–460 °C which is attributed to loss of water (~15.0 wt. %, Fig. D1-B). The initial dehydration 
step, below 120 °C, represents the loss of physisorbed water and the further loss between 120–460 °C is 
related to bound water. A remarkable exothermic DTA signal occurred at around 390 ± 3 °C. Since this 
event was accompanied by only a minor increase in weight loss which is probably due to increased release 
of structural water, it denotes a recrystallization event of the ACC to a crystalline phase, probably calcite. 
Above 500 °C, dramatic weight loss occurs due to the decomposition of calcite into CaO and CO2.10 At 
this point, the DTA curve exhibits an endothermic peak centered at 680 °C corresponding to the 
decarbonation of calcite.14  The FT-IR spectrum (Fig. D1-C) presents the significant bands of ACC at 865 
cm-1 (ν2, the carbonate out-of-plane bending), and 1080 cm-1 (ν1, the symmetric stretch in the non-
centrosymmetric structure) and the splitting of the 1425 cm-1 (ν3, the asymmetric stretch) also validate the 
formation of the ACC phase.11,12  The absence of vibrations bands at 713 cm-1  or 745 cm-1, which are 
characteristic of crystalline calcium carbonate phases, indicates that the mineralized product is pure ACC. 
The broad absorption bands between 3000 and 3600 cm-1 (O–H stretching) and a sharper band at 1632 cm-

1  (O–H bending) can be assigned to structural water in ACC.12 The Raman spectrum (Fig. D1-D) does not 
exhibit distinct bands in the spectrum region of 70–360 cm-1 belonging to the lattice modes, whereas the ν1 
band is located at 1080 cm-1, which provides further support for the assumption that the particles are 
indeed ACC.13

Figure D1. Characterization of synthesized amorphous calcium carbonate (ACC). (A) X-ray diffraction, 

(B) TGA/DTA analysis, (C) ATR/FT-IR spectroscopy, and (D) Raman spectroscopy.
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Figure D2. Evolution of X-ray diffractograms of ACC before/during incubation (A) in water and (B) in SBF 

for a time period of up to 28 d. Already after 1 d, only calcite is detectable.

Figure D3. Evolution of ATR/FT-IR spectra of ACC before/during incubation in SBF for a time period of up 

to 7 d. Upon immersion, characteristic bands of calcite appear; already after 1 d absorption bands typical for 

phosphate appear. Arrows mark the broad absorption peak between 3000 and 3600 cm-1 (O–H stretching) and a 

sharper band at 1632 cm-1 (O–H bending) which are assigned to water structurally bound in ACC.
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Figure D.4. EDS analysis of hollow-sphere morphologies formed during incubation of ACC in SBF solution. 

Already after 6 h, signals of phosphorus are detectable.

Figure D5. SEM micrographs and EDS analysis of hollow-sphere morphologies formed during incubation of 

ACC in 10x mSBF solution. Already after 6 h, signals of phosphorus are detectable.
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Figure D6. (A) ATR/FTIR spectra and (B) X-ray diffractograms of ACC before/after incubation in 10xSBF 

for a time period of up to 7 d. After 1 d, signals of vaterite and calcite are present; after 3 d, only calcite is 

detectable. After one day of immersion, the IR spectra show absorption bands of phosphate appear, i.e., anti-

symmetry stretch vibration (ν3) at 1029 cm-1 and in-plane bending (ν4) at 601 and 563 cm-1. Arrows indicate the 

broad absorption peak between 3000 and 3600 cm-1 (O–H stretching) and a sharper band at 1632 cm-1 (O–H bending) 

which are assigned to water structurally bound in ACC.

Table D7. Ion content of Ca2+, Mg2+ and Na+ in the different Mg-ACC powders, as determined by ICP-MS.

Sample wt% Mg wt% Ca wt% Na

ACC_10Mg 0.87 31 0.8

ACC_20Mg 2.6 29 1

ACC_40Mg 5.7 32 0.7
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Figure D8. Analysis of Mg-doped ACC. (A-C) X-ray diffractograms of  Mg-doped ACC (synthesized with 10, 

20, 40 wt% Mg), stored under dry conditions for a time period of up to 31 d. After 7 days of storage the sample with 

10 wt% magnesium addition slowly starts to recrystallize to calcite, samples with 20 and 40 wt% magnesium 

addition after 31 days of storage are still fully amorphous. (D) Weight ratio Mg/(Mg + Ca) in the precipitated 

ACC powders as determined by ICP-OES, plotted against the ratio Mg/(Mg + Ca) in the starting solution.


