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Differentiable form of the optimization problem 

The inverse design objective function: maximize 𝐩𝐩 �min
𝜆𝜆∈𝜆𝜆𝜆𝜆

�𝐼𝐼𝜆𝜆�𝐱𝐱𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,𝐩𝐩��� as shown in the main 
text is non-differentiable. Fortunately, it is possible to reformulate the problem using an epigraph 
approach, where we optimize a “dummy” variable 𝑓𝑓0 subject to the nonlinear constraints that it is 
smaller than the intensity at each of the wavelengths1,2  

maximize 𝐩𝐩,𝑓𝑓0(𝑓𝑓0) 

∀𝜆𝜆 ∈ 𝜆𝜆s, 0 ≥ �𝐼𝐼𝜆𝜆�𝐱𝐱𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,𝐩𝐩� − 𝑓𝑓0� 

Given a function evaluating the nonlinear constraints and their gradients, a gradient-based 
optimization algorithm can find local optima in high-dimensional design space.3 We used a 
multi-start approach to find a satisfying local optimum by exploring multiple random starting 
parameters.4 

Principle of equivalence 

The fields on a plane can be treated as equivalent current sources that generate the fields 
everywhere else. These equivalent electric (J) and magnetic (K) current densities are defined by 

the principle of equivalence:5 � 𝐉𝐉𝐊𝐊� =  � 𝒏𝒏� × 𝐇𝐇
−𝒏𝒏� × 𝐄𝐄� where 𝐧𝐧� is the surface unit-normal vector and the 

delta function implies that these are surface currents on the plane. 

Implementation details of the approximate solver 
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The electric field at the target focal spot is computed using a convolution between the local 
sources and the appropriate Green’s function 

𝐄𝐄�⃗ �𝐱𝐱�⃗ 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭� = ��⃗�𝐒𝐥𝐥𝐥𝐥𝐥𝐥𝐭𝐭𝐥𝐥(𝐱𝐱�⃗ ,  𝐩𝐩��⃗ ) ⊙𝐆𝐆�𝐱𝐱�⃗ ,  𝐱𝐱�⃗ 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭�𝑑𝑑𝐱𝐱�⃗
𝚺𝚺

 

The support of the integral is technically infinite, but a “windowing” method truncates this 
integral accurately to a finite region.6 This integral is two-dimensional, which is expensive to 
evaluate for large area metasurfaces (diameter > 1000λ). To improve efficiency, we impose 
cylindrical symmetry in the parameter function, which translates into a radial local field and a 
radial source function. Even though the meta-atom parameters are chosen to be rotationally 
symmetrical, the surface is not axisymmetric at a subwavelength scale, in contrast to recent work 
on axisymmetric metasurfaces.7 In our locally periodic approximation, the Green’s function is 
also cylindrical symmetric when the focal spot is on the focal axis, so the problem is reduced to 
the one-dimensional convolution, which dramatically speeds up the evaluation of the intensity 

𝐼𝐼(𝐱𝐱𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭) = �𝐄𝐄�⃗ �𝐱𝐱𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭��
𝟐𝟐
 in the far field. A surrogate model—a data-driven fit that predicts the 

solution of Maxwell’s equations instead of solving the equations numerically during 
optimization—is used to evaluate the local field of a given set of parameters efficiently (106× 
speed gain, see “Surrogate model vs. RCWA” section below). Here, the surrogate model is based 
on Chebyshev interpolation.  

Equivalence principle and Green’s function for polarization conversion 

First, we transpose the mode on the Cartesian basis, where the dyadic Green’s function is well 
known. With the focal axis and the propagation along the z-direction, the right circular 
polarization (RCP) corresponds to  𝐸𝐸𝑥𝑥𝐱𝐱�+𝑖𝑖𝐸𝐸𝑦𝑦𝐲𝐲�

√2
 in the Cartesian basis 𝐱𝐱� and 𝐲𝐲� (for a wave 

propagating in the z-direction), where 𝐸𝐸𝑥𝑥 = 𝐸𝐸𝑦𝑦 = 𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅 is the complex coefficient of the RCP 
mode. The principle of equivalence transforms an electric field into an artificial magnetic current 
−𝐧𝐧� × 𝐄𝐄 = 𝐊𝐊 where 𝐧𝐧� = 𝐳𝐳� is the normal to the metasurface 5. Therefore 𝐊𝐊 = −𝐳𝐳� ×  𝐸𝐸𝑥𝑥𝐱𝐱�+𝑖𝑖𝐸𝐸𝑦𝑦𝐲𝐲�

√2
=

𝑖𝑖𝐸𝐸𝑦𝑦
√2
𝐱𝐱� − 𝐸𝐸𝑥𝑥

√2
𝐲𝐲�, the equivalent currents are 𝐊𝐊𝐱𝐱 = 𝑖𝑖𝐄𝐄𝐲𝐲

√2
 and 𝐊𝐊𝐲𝐲 = − 𝐄𝐄𝐱𝐱

√2
. The non-zero Green’s functions 

in the vacuum for these two currents are 𝐺𝐺𝐾𝐾𝑥𝑥𝐸𝐸𝑦𝑦(𝐱𝐱𝟏𝟏, 𝐱𝐱𝟐𝟐) = −𝑓𝑓(𝑟𝑟)𝐭𝐭� × 𝐱𝐱� ⋅  𝐲𝐲� = −𝑓𝑓(𝑟𝑟)𝑟𝑟𝑧𝑧 and 
𝐺𝐺𝐾𝐾𝑦𝑦𝐸𝐸𝑥𝑥(𝐱𝐱𝟏𝟏, 𝐱𝐱𝟐𝟐) = −𝑓𝑓(𝑟𝑟)𝐭𝐭� × 𝐲𝐲� ⋅ 𝐱𝐱� = 𝑓𝑓(𝑟𝑟)𝑟𝑟𝑧𝑧, respectively. Here, 𝑟𝑟𝑧𝑧 is the z-component of the 
normalized vector 𝐭𝐭� = 𝐭𝐭

𝑟𝑟
 where 𝐭𝐭 = 𝐱𝐱𝟏𝟏 − 𝒙𝒙𝟐𝟐, and 𝑟𝑟 = |𝐭𝐭|. The coefficient is a radial function 

𝑓𝑓(𝑟𝑟) = 𝑛𝑛𝑛𝑛
4𝜋𝜋𝑟𝑟

exp �𝑖𝑖 �𝑘𝑘𝑟𝑟 + 𝜋𝜋
2
��  𝑍𝑍 �1 − 1

𝑖𝑖𝑛𝑛𝑟𝑟
�, where 𝑍𝑍 = �𝜇𝜇

𝜖𝜖
 is the impedance of free space, 𝑛𝑛 =

√𝜖𝜖𝜖𝜖, and 𝑘𝑘 = 2𝜋𝜋𝑛𝑛
𝜆𝜆

. 𝑟𝑟𝑧𝑧 is constant when 𝐱𝐱𝟐𝟐 is on the cylinder axis as we swipe the rotation angle 𝜙𝜙 
of the polar coordinate 𝐱𝐱𝟏𝟏 and fix its radius, so the Green’s function is cylindrical symmetric 
when the focal spot is on the focal axis of the lens. The contribution of a given radius r to the far-
field is then ∫ �𝐊𝐊𝐲𝐲𝐺𝐺𝐾𝐾𝑦𝑦𝐸𝐸𝑥𝑥�(𝑟𝑟,𝜙𝜙), 𝑥𝑥2�𝐱𝐱� + 𝐊𝐊𝐱𝐱𝐺𝐺𝐾𝐾𝑥𝑥𝐸𝐸𝑦𝑦�(𝑟𝑟,𝜙𝜙), 𝑥𝑥2�𝐲𝐲�� 𝑑𝑑𝜙𝜙 = ∫ �− 𝐄𝐄𝐱𝐱

√2
𝑓𝑓(𝑟𝑟)𝑟𝑟𝑧𝑧𝐱𝐱� −

𝑖𝑖𝐄𝐄𝐲𝐲
√2
𝑓𝑓(𝑟𝑟)𝑟𝑟𝑧𝑧𝐲𝐲��  𝑑𝑑𝜙𝜙 = −2𝜋𝜋

√2
𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓(𝑟𝑟)𝑟𝑟𝑧𝑧(𝐱𝐱� + 𝑖𝑖𝐲𝐲�) where (𝑟𝑟,𝜙𝜙) is the position of the source in polar 



coordinates, which shows that the convolution boils down to a single radial term in the integrand. 
The reasoning is similar for a left circular polarization. 

Wirtinger calculus and gradient of the intensity at the focal spot 

Wirtinger calculus8 is a common framework to differentiate complex-valued functions. Instead 
of taking the partial derivative of a complex number 𝑧𝑧 = 𝑎𝑎 + 𝑖𝑖𝑖𝑖 with respect to its real and 
imaginary parts, Wirtinger calculus takes the partial derivatives with respect to z and its complex 
conjugate 𝑧𝑧̅ = 𝑎𝑎 − 𝑖𝑖𝑖𝑖. This formalism is especially useful for non-holomorphic functions of the 
complex plane like 𝑓𝑓(𝑧𝑧) = |𝑧𝑧|2 = 𝑧𝑧𝑧𝑧̅, where the differential becomes 𝑑𝑑𝑓𝑓 = 𝜕𝜕𝑓𝑓

𝜕𝜕𝑧𝑧
𝑑𝑑𝑧𝑧 + 𝜕𝜕𝑓𝑓

𝜕𝜕�̅�𝑧
𝑑𝑑𝑧𝑧̅ =

𝑧𝑧̅𝑑𝑑𝑧𝑧 + 𝑧𝑧𝑑𝑑𝑧𝑧̅ = 2ℜ𝑒𝑒(𝑧𝑧̅𝑑𝑑𝑧𝑧). 

In the case of the gradient of the intensity, the relevant complex number is the electric field E 
and the intensity is 𝐼𝐼(𝐩𝐩) = 𝐄𝐄(𝐩𝐩)𝐄𝐄�(𝐩𝐩), where p is the vector of all the parameters defining the 
metasurface. 

Using the differential from Wirtinger calculus, we get dI(p)= 2ℜ𝑒𝑒(𝐄𝐄�(𝐩𝐩)𝑑𝑑𝐄𝐄(𝐩𝐩)). From the 
differential, we can define the gradient with respect to the metasurface parameters ∇𝐩𝐩𝐼𝐼(𝐩𝐩) =
 2ℜ𝑒𝑒�𝐄𝐄�(𝐩𝐩)∇𝐩𝐩𝐄𝐄(𝐩𝐩)�. 

The only thing left to do is to find the gradient ∇𝐩𝐩𝐄𝐄(𝐩𝐩), starting from Equation. 1 in the main text 

𝐄𝐄�⃗ �𝐱𝐱𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭� = ��⃗�𝐒𝐥𝐥𝐥𝐥𝐥𝐥𝐭𝐭𝐥𝐥(𝐱𝐱,  𝐩𝐩��⃗ ) ⊙𝐆𝐆�𝐱𝐱,  𝐱𝐱𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭�𝑑𝑑𝐱𝐱
𝚺𝚺

 

We can transfer ∇𝐩𝐩 inside the integral sign using the dominated convergence theorem 

∇𝐩𝐩 𝐄𝐄�⃗ �𝐱𝐱𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭� = �∇𝐩𝐩  ��⃗�𝐒𝐥𝐥𝐥𝐥𝐥𝐥𝐭𝐭𝐥𝐥(𝐱𝐱,  𝐩𝐩��⃗ ) ⊙𝐆𝐆�𝐱𝐱,  𝐱𝐱𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭�� 𝑑𝑑𝐱𝐱
𝚺𝚺

 

Since the Green’s function is independent of the parameters of the metasurface, it can be factored 
out of the differentiation. 

∇𝐩𝐩𝐄𝐄�⃗ �𝐱𝐱𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭� = �∇𝐩𝐩�⃗�𝐒𝐥𝐥𝐥𝐥𝐥𝐥𝐭𝐭𝐥𝐥(𝐱𝐱,  𝐩𝐩��⃗ ) ⊙𝐆𝐆�𝐱𝐱,  𝐱𝐱𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭�𝑑𝑑𝐱𝐱
𝚺𝚺

 

For completeness, ∇𝐩𝐩�⃗�𝐒𝐥𝐥𝐥𝐥𝐥𝐥𝐭𝐭𝐥𝐥(𝐱𝐱,  𝐩𝐩��⃗ ) is obtained by taking the analytical derivative of the surrogate 
model for the local field, i.e., the derivative of our Chebyshev interpolation of the zeroth order 
Fourier coefficient of the transmitted field with respect to the meta-atom parameter. Therefore, 
the surrogate model enables us to efficiently evaluate both the local field and its gradient. In 
contrast, methods that are not based on a surrogate model need to solve for Maxwell’s equation 
both for the forward and the adjoint problem. 

Cylindrical symmetry and Cartesian grid  



To further speed up the inverse design, we use a solver with cylindrical symmetry. The 
parameter function we use is cylindrical symmetric; however, the evaluation on the parameter 
function is on a Cartesian grid.  

 

 
Figure S1. When defining the parameters on a Cartesian grid (blue dots) using a cylindrically symmetry 
function, the number of degrees of freedom (orange dots) is significantly bigger than the Cartesian grid 
resolution (green lines).  

Figure S1 shows the schematic of a metalens, which has meta-atom (blue dots) arranged in 
Cartesian coordinates (green grid). The spacing between the grid is the unit cell period. Each 
meta-atom has an “image” on radial axis (X) as represented by an orange dot. When imposing 
cylindrical symmetry, we consider the contribute from each meta-atom on the Cartesian grid via 
its “image” along the radial direction. In simulation, we have two additional sampling points 
within each unit cell period shown as red dots. The EM responses of the “image” meta-atoms 
(orange dots) are estimated through interpolation using the fine grid.  

Surrogate model vs. RCWA 



 
Figure S2. Surrogate model against simulated data. The interpolation results from Chebyshev regression 
are smoother than the real data (evaluated on a grid with resolution of 5nm with lower bound of 50 and 
upper bound of 340, 3481 simulations).  The smoothing is obtained by fitting a polynomial on 3481 
points using polynomials of up to order 22 (250 polynomials), done on purpose to avoid big oscillations 
in the interpolation from resonance in the data. The error from the smoothing is negligible compared to 
the error from LPA or fabrication errors.  

In contrast to a solver, which provides the full electric and magnetic fields when given a 
discretized geometry, a surrogate solver returns the complex transmission when given a 
parameterization of the geometry. To train our surrogate model, the data was rigorously 
simulated on a grid with the width and the length ranging from 50 to 340 by increment of 5 nm 
using an RCWA method based on reticolo,9 which results in 3481 simulations. Chebyshev 
regression fits a surrogate with 250 polynomials of degree up to 22, using the Chebyshev basis. 
The implementation uses ApproxFun.jl in Julia language, and the regression is performed by 
constructing the Chebyshev–Vandermonde matrix and performing a least-squares fit. Chebyshev 
regression smooths the data, especially where there are resonances, to reduce rapid oscillations in 
the surrogate model (which may result in poor local optima). The error introduced by this 
smoothing is negligible compared to the error of LPA or fabrication error, because the optimal 
design largely employs parameters far from such resonances. Evaluation of the surrogate model 
takes 8.5 µs on average, whereas solving with the RCWA library takes 10 s on average, which 
corresponds to a 6 orders-of-magnitude speedup for our surrogate-based model. 
 
The experimental validation matches numerical results because the focal lengths measured 
correspond to the ones optimized by the inverse-design framework. This shows that LPA is 
accurate in the regime of our lenses’ designs. Various computational methods to improve upon 
the accuracy of LPA exist, including overlapping-domain decomposition,10 or spatially truncated 
multipole expansions11 (which unfortunately cannot currently incorporate substrates). However, 
in the regime where LPA works, as in the case of this paper, the more accurate solver gives very 
similar results to LPA but at a major sacrifice in performance (especially when surrogates are 
used in LPA). LPA is quite robust to differences in neighboring atoms, and is observed to work 
well even for large variations in localized portions of the metasurface—it only breaks down in 



situations very different from those in this paper involving rapid variations over large areas, such 
as occur in designs for very oblique angles of incidence12 or for very high numerical apertures.13 

Optical setup for metalens measurements 

 
Figure S3. Schematic of the optical setup used to measure the focusing performance of the metalens in 
three dimensions. The laser output (either from laser diodes or a super continuum laser) is collimated by a 
fiber coupled collimator (Thorlabs, RC12APC-P01) and incident on the metalens. The three-dimensional 
intensity distribution of the focal spot is then imaged through a home-built microscopic system as shown 
in the dashed box. It consists of a 100X objective lens (Olympus), a tube lens (Thorlabs TTL180-A), and 
a CMOS camera (Thorlabs, DCC1545M). The microscopic system is mounted on a translational stage.  

 
Figure S4. Schematic of the optical setup used to characterize the imaging performance of the metalens. 
The laser source is either a laser diode or a super continuum laser. The output light is collimated by a 
fiber coupled collimator (Thorlabs, RC12APC-P01) and goes through a diffuser. It is then slightly 
focused by an objective lens (Mitutoyo objective, 10x magnification) onto the United States Air Force 
resolution target. The metalens is placed at focal length away from the surface of the target. The relayed 
image by the metalens and the tube lens (Thorlabs TTL180-A) is captured by a CMOS camera (PCO, 
panda 4.2). The metalens, the tube lens, and the camera are mounted on a translational stage.   



 
Figure S5. Measured focal intensity distribution in the XZ cross section at design wavelengths when (A) 
incident light is in the LCP state, and output light is selected in the RCP state; (B) incident light is in the 
RCP state, and output light is selected in the LCP state; (C) no particular polarization state is selected for 
incident and output light. 

We measured the focusing intensity distribution of the 2-mm-diameter, NA = 0.7, RGB-
achromatic metalens in three polarization configurations. We put a polarizer pair consisting of a 
wire grid polarizer and an achromatic quarter waveplate between the collimator and metalens to 
select the polarization state of incident beam, and we put another analyzer pair between the tube 
lens and the CMOS camera to select the polarization state of output beam. Figure S5(A) shows 
the measured focusing intensity distribution in the XZ cross section when we configure the 
incident light in the LCP state and output light in the RCP state. Figure S5(B) shows the 
measurement result when we configure the incident light in the RCP state and output light in the 
LCP state. The measurement results in two configurations are identical. It is because each meta-
atom has the same response when converting light from an LCP state to an RCP state or vice 
versa according to Jones’ matrix. Since any polarization state can be decomposed into the 
orthogonal basis of LCP and RCP states, the metalens can work for incidence in an arbitrary 
polarization state and has polarization-insensitive focusing performance. Figure S5(C) (as also 
shown in the main text) shows the measurement results when we did not particularly select the 
polarization state of incident or output light (no polarizer and analyzer is used), and it shows the 
same focusing performance as Fig. S5(A) and (B).  

Point spread functions (PSFs) of the RGB-achromatic metalens 

 



Figure S6. Measured focal intensity line profile (solid line (A) to (C)) at 488 nm, 532 nm, and 658 nm, 
respectively, in comparison with ideal Airy function profiles (dashed line). 

Figure S6 shows the focal intensity line profile of the RGB-achromatic metalens (NA = 0.7) at 
blue, green, and red wavelengths. The theoretical Airy function profiles are also shown for 
comparison. The calculated Strehl ratios are 0.97, 0.96, and 0.94, respectively. Here, the light 
sources used are three laser diodes. 

 
Figure S7. Top ((A) to (C)): Measured focal intensity distribution in the XY cross section at 488 nm, 532 
nm, and 658 nm, respectively, using super continuum laser as the light source instead of laser diodes. 
Bottom ((D) to (F)): Measured focal intensity line distribution (solid line) in comparison with their 
respective ideal Airy function profiles (dashed line).  

In comparison, we also used a super continuum laser as the light source to measure the focal 
spots of the metalens. Figure S7, (A) to (C), shows the focal intensity distribution in the XY 
cross section at design wavelengths. Figure S7, (D) to (F), shows the corresponding focal 
intensity line distribution. The measurement shows slightly different from the previous 
measurement when the laser diodes are used. There are some background light around focal 
spots, and the PSF profile shows focusing intensity tail decaying as radial distance in contrast 
with Airy function profile, which shows negligible focusing intensity within side lobes.  



 
Figure S8. Measured full width half maxima (FWHMs) at design wavelengths, which are compared with 
FWHMs of ideal Airy functions.  

The measured FWHMs at wavelengths of 488 nm, 532 nm, and 658 nm are 450 nm, 468 nm, and 
520 nm, respectively as shown in Fig. S8. They are slightly larger than the theoretical values of 
Airy functions, which are 358 nm, 391 nm, and 483 nm, respectively. 

 



Figure S9 (A). Measured spectra of blue, green, and red laser diodes. (B). Measured spectra of a super 
continuum laser when the peak intensity of output light is tuned to center at 488 nm, 532 nm, and 658 nm 
(corresponding to operation wavelengths of laser diodes).   

The measurement difference between two experiments can be explained by the laser spectra. 
Figure S9(A) shows the spectra of the laser diodes operating at blue, green, and red wavelength. 
In comparison, Figure S9(B) shows the spectra of the super continuum laser when the 
wavelength of the peak intensity is tuned to match with laser diodes. The laser diodes have a 
linewidth of 0.5 – 1 nm whereas the super continuum laser has a minimum linewidth of 4 – 7 
nm, which is about one order of magnitude larger. The larger beam linewidth of the super 
continuum laser causes the broadening of the focal spots and the showing up of the focal 
intensity tails. 

Focusing near the design wavelength 

 
Figure S10 (A) Measured focusing intensity distribution of the 2-mm-diameter RGB-achromatic metalens 
in the XZ plane near the design wavelength of 532 nm. (B) Measured normalized focusing intensities. 
The focusing efficiency is normalized to the one at 532 nm.  

The measured focusing intensity distribution near the design wavelength of 532 nm for the 2-
mm-diameter RGB-achromatic metalens is shown in Fig. S10(A). The metalens is chromatic 
near the design wavelength as can be seen from the focal shift. Within a 20nm bandwidth, the 
light is well focused. The measured focusing intensity, normalized to the one at 532 nm, is also 
shown in Fig. S10(B). It is possible to not only realize multi-wavelength-achromatic focusing but 
also to alter the dispersion near the design wavelength by using a hybrid lens system that 
combines a metasurface with a refractive lens.14 

Additional USAF imaging results by the RGB-achromatic metalens (NA = 0.7) 



 
Figure S11. Imaging results of the USAF resolution target group No.7 elements No.5 and 6. under 
synthesized color illumination.   

Figure S11 shows additional imaging results of the elements No.5 and 6 from the group No.7 of the 
USAF resolution target by the RGB-achromatic metalens. The smallest linewidth is 2.2 µm. The 
illumination color is synthesized by mixing blue and green light (A), blue and red light (B), and green and 
red light (C). The imaging results under synthesized illumination prove the RGB-achromatic imaging 
performance of the metalens. As long as the metalens has diffraction-limited and achromatic imaging 
performance for primary RGB colors, it will have the same imaging performance for other synthesized 
colors. It implies a platform for display imaging.    

Focusing measurement of the polychromatic metalenses 

 
Figure S12 (A) to (F). Measured focal intensity line distribution of the six-wavelength-achromatic 
metalens with NA = 0.3 at design wavelength of 490 nm, 520 nm, 540 nm, 570 nm, 610 nm, and 650 nm, 
respectively. The solid lines are the measurements, and the dashed lines are the theoretical Airy function 
profiles. 



Figure S12 shows the measured focal intensity line profile of the polychromatic metalens with 
NA = 0.3 at six design wavelengths. The Airy function profiles are also shown in dashed lines. 
The discrepancy between the measurements and the Airy function profiles, which shows up at 
the focal intensity peak tails, is due to the large linewidth of the super continuum laser.  

Figure S13. Measured spectra of the super continuum laser when the output light intensity peak is tuned 
to center at six wavelengths. 

The measured linewidths of the supercontinuum laser are summarized in Fig. S13. Here, the 
supercontinuum laser is tuned to center the peak intensity at wavelengths of 490 nm, 520 nm, 
540 nm, 570 nm, 610 nm, and 650 nm, respectively. The linewidth (FWHM of the spectrum) 
ranges from 4.5 nm to 7 nm. 



 
Figure S14. Measured focal intensity distribution of the six-wavelength-achromatic metalens with NA = 
0.7 at design wavelengths of 490 nm, 520 nm, 540 nm, 570 nm, 610 nm, and 650 nm, respectively.  

 

Figure S15. Measurement of focal intensity line profiles (solid lines) at design wavelengths in comparison 
with the theoretical Airy function profiles (dashed lines).  



focal intensity line profile along radial direction, which has a good agreement with Airy function 
profiles. The measured FWHMs are shown in the main text. 

Focusing efficiency of the polychromatic metalens 

Wavelength 490 nm 520 nm 540 nm 570 nm 610 nm 650 nm
Focusing efficiency 8.7% 7.8% 8.3% 8.2% 8.1% 7.2%

Polychromatic metalens (2 mm; NA = 0.3)

 
Table S1. Measured focusing efficiency of a 2-mm-diameter six-wavelength-polychromatic metalens at 
design wavelengths. 

USAF imaging results by the polychromatic metalens (NA = 0.3) 

 

Figure S16. Imaging results of the USAF resolution target by the polychromatic metalens (NA = 0.3) at 
wavelength of (a) 490 nm (b) 520 nm (c) 540 nm (d) 570 nm (e) 610 nm (f) 650 nm. 

Point spread functions of the cm-scale RGB-achromatic metalens 



 
Figure S17 (A) to (C). The solid lines are measured focal intensity distribution line profiles of the cm-
diameter, RCB-achromatic, NA = 0.3 metalens at design wavelengths of 488 nm, 532 nm, and 658 nm. 
The dashed lines are their respective Airy function profiles.  

The focal intensity line distribution of the cm-scale RGB-achromatic metalens at design 
wavelengths of 488 nm, 532 nm, and 658 nm is summarized in Fig. S17, (A) to (C), respectively. 
The Airy function profiles of NA = 0.3 are shown in the dashed lines. The calculated Strehl 
ratios are 0.90, 0.92, and 0.84, respectively. The light illuminance over the 1cm aperture area is 
not uniform, thus the measured focal profiles are slightly asymmetric.  

Wavelength 488 nm 532 nm 658 nm
Focusing efficieny 16.1% 13.6% 15.8%

RGB-achromatic metalens (1cm)

 
Table S2. Measured focusing efficiency of the 1-cm-diameter RGB-achromatic metalens at design 
wavelengths. 

Forward design vs. Inverse design 

We used our 1cm-diameter RGB-achromatic metalens design as a benchmark to compare 
forward design methods with our inverse design method. The results are summarized in the 
following Table.S3 including the objective functions and simulation results of focusing 
efficiencies at design wavelengths. 

 

 

 

 

 

 

 



 
Forward design  

Objective function 488 nm 532 nm 658 nm 
1 min (� ∆𝜑𝜑𝑖𝑖2

𝑛𝑛

1
) 1.2% 1.1% 2.5% 

2 
min (

∑ ∆𝜑𝜑𝑖𝑖2𝑛𝑛
1
∑ 𝑇𝑇𝑖𝑖𝑛𝑛
1

) 13.3% 9.4% 22.0% 

3 
min (�

∆𝜑𝜑𝑖𝑖2

𝑇𝑇𝑖𝑖

𝑛𝑛

1
) 15.3% 10.1% 20.8% 

4 
min (

max (∆𝜑𝜑𝑖𝑖2)
∑ 𝑇𝑇𝑖𝑖𝑛𝑛
1

) 12.6% 13.3% 18.5% 
 

Inverse design  
𝑚𝑚𝑎𝑎𝑥𝑥 �min

𝜆𝜆∈𝜆𝜆𝑠𝑠
(𝐼𝐼𝜆𝜆(𝒙𝒙��⃗ 𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 ,𝒑𝒑��⃗ ))� 23.8% 23.8% 23.8% 

Table S3. Comparison of forward design and inverse design strategies: optimized focusing efficiencies of 
1cm-diameter RGB-achromatic polarization-insensitive metalens. 

Here, ∆𝜑𝜑𝑖𝑖 is the phase difference between a design phase and a realized phase by a meta atom at 
ith wavelength: i.e., ∆𝜑𝜑𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑑𝑑(𝜑𝜑𝑑𝑑𝑡𝑡𝜆𝜆𝑖𝑖𝑡𝑡𝑛𝑛 − 𝜑𝜑𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡, 2𝜋𝜋) and is in the range of -π to π. The math 
operator 𝑚𝑚𝑚𝑚𝑑𝑑 denotes the remainder after division. Ti is the normalized transmission coefficient 
of a meta atom at i th wavelength. For a fair comparison, we use the same meta library for both 
methods. In a forward design, a proper meta atom is chosen from the meta atom library to be 
placed at each lens position according to an objective function. Each atom is optimized 
independently. The objective function #1 considers only phase matching conditions and shows 
only 1~2% focusing efficiency at three design wavelengths. This is because the transmission of a 
meta atom is not uniform at the design wavelengths, and a good phase matching is realized at the 
cost of low and non-uniform transmission. The objective functions of forward designs #2 - #4 
contain not only the phase matching condition but also the transmission. They aim to decrease 
the phase errors and increase the transmission of meta atoms simultaneously. The corresponding 
results show significant improvements compared to using objective function #1. The highest 
optimal focusing efficiency is 22% at wavelength of 658 nm. However, the optimization results 
vary with the definition of the objective functions, and the optimized focusing efficiencies are 
not uniform at RGB wavelengths. The above optimization results reveal the challenges when 
using a forward design to solve a design problem that involves multiple goals and is subject to 
multiple constraints. In this case, the forward design results in lower and non-uniform focusing 
efficiencies at achromatic wavelengths due to the lack of systematic feedback loops for 
optimization (in another word, it is a one-way design).  

In comparison, our inverse design method achieves uniform 24% focusing efficiencies at RGB 
wavelengths. The meta atoms are optimized during iterations according to the feedbacks of 
objective function evaluation that directly reflects the performance of a desired functionality.  



Display optical setup and strategies for improvement 

 
Figure S18 (A) Our current optical setup for the laser back-illuminated micro-LCD system. (B) Our 
proposed optical setup for a compact display system, where a waveguide-based illumination plate is 
employed.  

In our current laser back-illuminated micro-LCD setup as shown in Fig. S18(A), we use red, 
green, and blue laser diodes as the RGB illumination sources. The RGB laser output beams are 
combined and coupled into a common fiber coupler after reflection and alignment through 
mirrors. The light emitted out from a fiber tip is then reflected and collimated by a reflective 
collimation mirror. The collimated RGB laser light goes through a light diffuser and is then 
incident onto the display panel. The form factor of the laser back-illuminated micro-LCD can be 
reduced, and a possible strategy is discussed in Fig. S18(B). In this step, we propose a 
waveguide-based laser back-illumination plate. An array of meta scatterers is patterned on one 
side, and grating couplers are patterned on the other side. The red, green, and blue laser light is 
first coupled into the waveguide through individual grating coupler. The coupled light is then 
guided through the plate and interacts with meta scatterers multiple times. The meta structures 
will scatter the guided wave into free space, and the light diffusion angle can also be engineered 
by meta scatterers. The scattered RGB laser light then illuminates onto the display after passing 
through a light diffuser. In this proposed setup, this laser illumination plate is more compact and 
has more engineering freedom to realize uniform back-light illumination.  
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