iScience, Volume 25

Supplemental information

Differing impact of phosphoglycerate mutase

1-deficiency on brown and white adipose tissue

Yohko Yoshida, Ippei Shimizu, Yung-Ting Hsiao, Masayoshi Suda, Goro Katsuumi, Masahide Seki, Yutaka Suzuki, Shujiro Okuda, Tomoyoshi Soga, and Tohru Minamino

Figure S1 Adipose tissue-specific Pgam1 deletion has differing effects on BAT and WAT, Related to Figure 1

(A) Transcripts for *Pgam1* of inguinal WAT (iWAT) from Adipo-Pgam1 knockout (Adipo-Pgam1 KO) and their littermate WT (Cont) mice (n=4, 4). (B) iWAT weight of mice prepared in Supplemental Fig. 1A (n=18, 16). (C) Transcripts for *Cd11c* of gonadal WAT (gWAT) from Adipo-Pgam1 knockout (Adipo-Pgam1 KO) and their littermate WT (Cont) mice (n=14, 9). (D) Immunostaining for F4/80 in gonadal WAT (gWAT) from Adipo-Pgam1 knockout (Adipo-Pgam1 KO) and their littermate WT (Cont) mice. Scale bar=50 μ m. Data were analyzed by the 2-tailed Student's t-test (A–C). *P<0.05, **P<0.01. Values represent the mean \pm s.e.m. NS = not significant.

Figure S2 Opposing metabolic profiles of BAT and WAT in Adipo-Pgam1 KO mice, Related to Figure 2

(A) Transcripts for enzymes related to glycolysis, TCA cycle and oxidative phosphorylation of inguinal WAT (iWAT) from Adipo-Pgam1 knockout (Adipo-Pgam1 KO) and their littermate WT (Cont) mice (n=4,4). (B) Tissue weight-adjusted metabolite level in glycolysis, TCA cycle and oxidative phosphorylation in iWAT from mice prepared in Supplemental Fig. 2A (each n=3, 3). Data were analyzed by the 2-tailed Student's t-test (A, B). *P<0.05, **P<0.01. Values represent the mean \pm s.e.m. NS = not significant.

BAT

gWAT

		P-value	0-value	Direction			P-value	0-value	Direction
	Phagosome	0.000	0.000	2.898		Oxidative phosphorylation	0.000	0.000	4,766
	NF-kappa B signaling					Citrate cycle (TCA cycle)	0.000	0.000	6.724
	pathway	0.000	0.000	3.124		Biosynthesis of amino			
	Focal adhesion	0.000	0.000	2.333		acids	0.000	0.000	4.125
Up-regulated genes	Ribosome	0.000	0.000	2.547		Ribosome	0.000	0.000	2.831
	Protein processing in	0 000	0 000	2 305		Aminoacyl-tRNA	0.000	0.000	3.530
	endoplasmic reticulum	0.000	0.000	2.555		Lysosome	0.000	0.000	2.706
	Regulation of actin	0.000	0.000	2.127		Glycolysis /	0.000	0.000	3.362
	cytoskeleton					Amino sugar and nucleotide	0 000	0.000	3 608
	ECM-receptor interaction	0.000	0.000	2.582		sugar metabolism	0.000	0.000	3.030
	Cell adhesion molecules	ion molecules 0.000	0.000	2.086		Fatty acid elongation	0.000	0.001	5.085
		0.000	0.000	2 509	genes	Pentose phosphate	0.000	0.001	4.438
	Apoptosis	0.000	0.000	2.598		Purine metabolism	0.000	0.001	2.168
	sugar metabolism	0.000	0.000	3.107		HIF-1 signaling pathway	0.000	0.001	2.499
	TNF signaling nathway	0.000	0.000	2,280	ed	Pyruvate metabolism	0.000	0.001	3.530
	DNA replication	0.000	0.001	3.353	lat	Fatty acid metabolism	0.000	0.001	3.328
	Ribosome biogenesis in	0.000	0.001	0.000	2gu	Protein processing in	0.000	0.002	2.101
	eukarvotes	0.000	0.001	2.455	-r	endoplasmic reticulum			
	Cell cycle	0.000	0.001	2.085	Ľ	SNARE interactions in	0.002	0.011	3.362
	Adherens junction	0.002	0.005	2.207		transport	0.004	0.010	2.000
	p53 signaling pathway	0.002	0.005	2.297		DNA replication	0.004	0.018	3.082
	Sphingolipid metabolism	0.006	0.015	2.367		Basal transcription factors	0.005	0.021	2.774
	N-Glycan biosynthesis	0.013	0.028	2.130		RNA degradation	0.012	0.046	2.161
	Non-homologous end-	0.000	0.040	0.077			0.015	0.053	1.849
	joining	0.023	0.043	3.277		Apoptosis	0.016	0.053	2.029
	Other glycan degradation	0.028	0.050	2.762		Proteasome	0.022	0.071	2.465
	One carbon pool by folate	0.034	0.058	2.616		Nucleotide excision repair	0.022	0.071	2.465
F		P-value	Q-value	Direction		eukaryotes	0.037	0.100	1.917
	Oxidative phosphorylation	0.000	0.000	3.793		p53 signaling pathway	0.039	0.105	1.958
Down-regulated genes	Peroxisome	0.000	0.000	3.730		VEGF signaling pathway	0.047	0.118	2.034
	Valine, leucine and	0.000	0.000	3.545		mTOR signaling pathway	0.082	0.166	1.819
	isoleucine degradation	0.000	0.000	0.010			P-value	0-value	Direction
	Proteasome	0.000	0.000	3.414	les	Valine leucine and	i valuo	ę raido	5110011011
	Citrate cycle (TCA cycle)	0.000	0.000	3.879		isoleucine degradation	0.001	0.056	3.447
	Propanoate metabolism	0.000	0.000	3.964		Propanoate metabolism	0.009	0.164	3.373
	Fatty acid metabolism	0.000	0.000	3.175	Gen	Lysine degradation	0.030	0.313	2.343
	Pyruvate metabolism	0.000	0.000	3.142	Down-regulated	Inositol phosphate	0.041	0.050	0.004
	Fatty acid degradation	0.000	0.000	2.880		metabolism	0.041	0.356	2.204
	Glyoxylate and	0.000	0.001	3.348		Ras signaling pathway	0.003	0.110	1.900
	dicarboxylate metabolism	0.000	0.000	0.414		Phosphatidylinositol	0.016	0.224	2 213
	Party acid elongation	0.000	0.002	3.414		signaling system	0.010	0.224	2.213
	Glycolysis / Gluconeogenesi	0.001	0.004	2.250		FoxO signaling pathway	0.018	0.224	1.881
	Sulfur relay system	0.005	0.020	4.096		ABC transporters	0.019	0.224	2.598
	SNARE Interactions in	0.018	018 0.057	2.172		HIF-1 signaling pathway	0.038	0.356	1.884
	vesicular transport					Adherens junction	0.003	0.110	2.624

Figure S3 Transcriptomic analysis of Adipo-Pgam1 KO mice, Related to Figure 2 The results of enrichment analysis for genes in microarray analysis in BAT (left) and gWAT (right).

Figure S4 Expression of beige makers in Adipo-Pgam1 KO mice, Related to Figure 3

Transcripts for beige makers in gWAT, BAT, and iWAT from Adipo-Pgam1 KO mice and their littermate WT (Cont) mice (gWAT; n=14,9 for *Tnfrsf9, Cidea, Prdm16, Tbx1* and *Tmem26*, n=8,4 for *Egln3, Kcnk3, Mtus1* and *Ppargc1a*, BAT; n=8,4, iWAT; n=8,4). Data were analyzed by the 2-tailed Student's t-test. *P<0.05, **P<0.01. Values represent the mean \pm s.e.m. NS = not significant.

Figure S5 Metabolic profiles of iWAT in Adipo-Pgam1 KO mice, Related to Figure 3, Related to Figure 3

(A) The quantification of Ucp1 positive area (%) in immunofluorescent staining showing Ucp1 in iWAT from Adipo-Pgam1 KO and their littermate WT (Cont) mice (each n=4,4). (B) The quantification of Cpt1b positive area (%) in immunofluorescent staining showing Cpt1b in iWAT from mice prepared in Supplemental Figure 5A (each n=4,4). (C) Transcripts for *Ucp1* and *Cpt1b* of iWAT from mice prepared in Supplemental Figure 5A (*ucp1* n=8, 4, *Cpt1b* n=3, 5). (D) Transmission electron microscopy analyzing iWAT from mice prepared in Supplemental Figure 5A. Scale bar=5µm for low magnification (upper panels) and 2µm for high magnification (lower panels). Data were analyzed by the 2-tailed Student's t-test (A–C). *P<0.05, **P<0.01. Values represent the mean \pm s.e.m. NS = not significant.

Figure S6 Pgam1 deletion induces beiging of gWAT via cell-autonomous mechanisms, Related to Figure 3

(A) Immunofluorescent staining showing Cpt1b (red) in gWAT from Adipo-EGFP and

Adipo-EGFP-Pgam1 KO mice. Scale bar=100 μ m. The graphs on the right display the Cpt1b/EGFP double positive area (%) (each n=4,4). (B) Immunofluorescent staining showing Cpt1b (red) and Cre recombinase (green) in gWAT from Adipo-Pgam1 KO and their littermate control mice. Scale bar=100 μ m. (C) Upper panels; Clustering of scRNA-seq analysis using gWAT from Adipo-Pgam1 KO and their littermate control mice. Middle panels; tSNE plot of scRNA-seq in gWAT from Adipo-Pgam1 KO and their littermate control mice. Lower panels; Feature plot of fibroblast and preadipocytes clusters showing *Pgam1* positive cells. (D) The violin plots showing beiging-related differential expressed genes (DEG) in the Fibroblast4 cluster. Data were analyzed by the 2-tailed Student's t-test (A, C and D). *P<0.05, **P<0.01. Values represent the mean \pm s.e.m. NS = not significant.

Figure S7 Effecs of Pgam1 deletion on BAT, Related to Figure 6

(A) BCAA level in BAT from Adipo-Pgam1 KO and their littermate WT (Cont) mice (n=5, 5). (B) Plasma BCAA level in Adipo-Pgam1 KO and their littermate WT (Cont) mice (n=10, 10). (C) Western blot analysis for mTOR and p62 in BAT prepared in Supplemental Figure 7A (n=4, 4). (D) BCAA level in BAT from BAT-Pgam1 KO and their littermate WT (Cont) mice (n=17, 21). (E) Western blot analysis for mTOR and p62 in BAT prepared in Supplemental Figure 7D (n=5, 5). Data were analyzed by the 2-tailed Student's t-test (A–E). *P<0.05, **P<0.01. Values represent the mean \pm s.e.m. NS = not significant.

Figure S8 Effects of Pgam1 deletion on differentiated 3T3-L1 cells, Related to Figure 6

(A) Western blot analysis for Pgam1 in differentiated 3T3-L1 cells infected AAVshPgam1 (shPgam1) or AAV-Control (Cont). GAPDH was used as loading control. Right graphs show the quantification of Pgam1 expression (n=6,6). (B) The quantification of branched amino acids (BCAA) in cells prepared in Supplemental Figure 8A (n=3,3). (C) Western blot analysis for mTOR in cells prepared in Supplemental Figure 8A. Tubulin was used as loading control. Right graphs show the quantification of p-mTOR level (n=6,6). (D) Western blot analysis for Ucp1 in cells prepared in Supplemental Figure 8A. GAPDH was used as loading control. Right graphs show the quantification of Ucp1 expression (n=6,6). (E) Transcripts for *Ucp1* of differentiated 3T3-L1 cells infected AAV-Control (Cont) or AAV-shPgam1 (shPgam1) pre-treated with or without 1 μ M of Rapamycin. (n=6,6,6,6). (F) Expression of Ucp1 by differentiated 3T3-L1 cells treated with or without BCAA (the mixture of 5 μ M Leucine and 2.5 μ M Isoleucine and 5 μ M Valine) (n=6,6). BCAA-free DMEM was used in this experiment. (G) Western blot analysis for p62 in differentiated 3T3-L1 cells treated with or without 2 μ M of mTOR activator (MHY1485). Actin was used as loading control. Right graphs show the quantification of p62 expression (n=6,6). (H) Transcripts for *Ucp1* of cells prepared in Supplemental Figure 8G (n=3,3). Data were analyzed by the 2-tailed Student's t-test (A–H). *P<0.05, **P<0.01. Values represent the mean ± s.e.m. NS = not significant.