
Scheme S1: The proposed mechanism of the nano linker (NL) synthesis. 
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Fig. S2: The mass spectrum of the nano linker (NL)



Fig. S3: The proposed fragmentation scheme of the nano linker (NL). 



Fig. S4: The 1H-NMR spectrum of nano linker (NL).



Fig. S5: The 13C-NMR spectrum of nano linker (NL).



Fig. S6: The FT-IR spectrum of nano linker (NL).



Fig. S7: (a, b, and c) The electronic absorption spectra of Aip, Phen, and NL at different ranges, (d) The band gap 
energy of Aip, Phen, and NL.



Fig. S8: The thermogravimetric analysis (TGA-DTGA) of the NL.



Table S9: EDX analysis of the NL.

Element Weight % Atomic % Net Int. Error %

C 52.75 59.25 155.31 6.25

N 10.36 8.05 4.28 16.24

O 36.89 32.7 70.01 11.98



Scheme S10: The proposed mechanism of the Mn-MOF synthesis.



Fig. S11: The proposed fragmentation scheme of the Mn-MOF.



Fig. S12: The 1H-NMR spectrum of the Mn-MOF.



Fig. S13: The FT-IR spectra of the NL and Mn-MOF.



Fig. S14: (a, b, and c) The electronic absorption spectra of the NL and Mn-MOF at different ranges, (d) The optical 
band gap energy of the NL and Mn-MOF.



Fig. S15:  The X-ray diffraction patterns of the Mn-MOF.



Table S16: Summary of XRD data, Millar indices and interplanar distances of Mn-MOF

Peak 
No.

2θ Intensity Intensity d value Θ 
Radians

Sin θ Sin 2θ Ratio 1 Ratio 2 (hkl)

Å count % Å Å Å Å
1 11.665 27.5 31.501 7.5802 0.1018 0.1016 0.0103 1 2
2 14.115 12.7 14.548 6.2695 0.1232 0.1229 0.0151 1.4618 2.9236
3 15.415 85.2 97.595 5.7435 0.1345 0.1341 0.018 1.1915 2.383 111
4 17.62 15.5 17.755 5.0294 0.1538 0.1532 0.0235 1.3041 2.6083 002
5 21.052 60.2 68.958 4.2166 0.1837 0.1827 0.0334 1.4227 2.8454 021
6 22.671 19.2 21.993 3.919 0.1978 0.1966 0.0386 1.1576 2.3153
7 23.446 56.7 64.948 3.7912 0.2046 0.2032 0.0413 1.0686 2.1371 121
8 25.282 20.1 23.024 3.5199 0.2206 0.2188 0.0479 1.1601 2.3202
9 27.303 87.3 100 3.2638 0.2383 0.236 0.0557 1.1631 2.3262 202
10 28.582 86.6 99.198 3.1206 0.2494 0.2468 0.0609 1.0939 2.1878 212
11 31.017 51.6 59.107 2.8809 0.2707 0.2674 0.0715 1.1733 2.3466
12 32.884 15.1 17.297 2.7215 0.287 0.283 0.0801 1.1206 2.2412 222
13 33.801 26 29.782 2.6497 0.295 0.2907 0.0845 1.0549 2.1098 023
14 36.022 33.8 38.717 2.4913 0.3144 0.3092 0.0956 1.1934 2.3867 213
15 37.414 18.9 21.649 2.4017 0.3265 0.3207 0.1029 1.076 2.1519
16 38.38 13.3 15.235 2.3435 0.3349 0.3287 0.108 1.0503 2.1007 004
17 42.542 20.8 23.826 2.1233 0.3712 0.3628 0.1316 1.2181 2.4362 133
18 44.455 24.4 27.95 2.0363 0.3879 0.3783 0.1431 1.0873 2.1746 142
19 47.658 12.8 14.662 1.9066 0.4159 0.404 0.1632 1.1406 2.2812 242
20 50.243 10.2 11.684 1.8144 0.4385 0.4245 0.1802 1.1042 2.2084 333
21 50.775 10.2 11.684 1.7967 0.4431 0.4287 0.1838 1.0199 2.0398 342
22 53.419 19.1 21.879 1.7138 0.4662 0.4495 0.202 1.099 2.1981 152
23 65.267 9.47 10.848 1.4284 0.5696 0.5393 0.2908 1.4395 2.879 226



Table S17: Summary of calculated crystallite size of Mn-MOF at different position on XRD patterns

Position Area Cry Size L(nm) Microstrain RMS 
Strain(%)

3.602555 0.481147 152.7 0.1 0.1
11.64649 4.562902 96.1 0.1 0.1
14.09831 3.330751 44.3 0.1 0.1
15.39315 22.83284 58.3 0.1 0.1
17.93485 20.21825 3 0.1 0.1
21.02227 14.15183 69.7 0.1 0.1
23.36765 50.80222 3 0.1 0.1
23.43363 8.73104 117 0.1 0.1
27.28584 28.0254 49.3 0.1 0.1
28.55771 23.90066 66.2 0.1 0.1
31.00315 21.24583 32.2 0.1 0.1
32.85082 5.019268 32.4 0.1 0.1
33.80285 9.942127 36.2 0.1 0.1
35.63326 4.023009 68.6 0.1 0.1
35.99059 11.05639 50.6 0.1 0.1
37.36077 5.930203 53.7 0.1 0.1
38.38768 2.829175 64.3 0.1 0.1
39.02342 4.984149 24.2 0.1 0.1
42.55086 5.358178 62.1 0.1 0.1
44.37924 9.889326 42.1 0.1 0.1
50.73838 2.034004 90.9 0.1 0.1
53.34017 14.13539 17 0.1 0.1



Fig. S18: The thermogravimetric analysis (TGA-DTGA) of the Mn-MOF



Table S19: EDX analysis of the Mn-MOF.

Element Weight % Atomic % Net Int. Error %

C 44.97 54.09 104.33 7.37

N 8.44 7.98 3.89 29.04

O 37.85 35.88 69.67 11.78

Mn 8.74 2.05 29.13 11.49



 Fig. S20: The magnetization curve of the Mn-MOF.



Fig. S21. The PL emission spectra at different excitation wavelength for the Mn-MOF. 



Fig. S22. Excitation (black line) and emission (red line) spectra of Mn-MOF.



Scheme S23. Schematic diagram of the electrochemical cell for potentiometric measurements.



Table S24: Response characteristics of electrode utilizing various solvent mediators

Solvent mediator Linear concentration range (ng/mL) Slope/mV per decade

o-NPOE 0.01 – 30.0 59.0 ± 0.99

DOP 0.25 – 15.0 50.5 ± 1.1

DOS 0.50 – 20.0 48.2 ± 1.2



Table S25: Comparison between the Mn-MOF biosensor and some existing methods for the determination of cTn.

Method
Linear detection 

range (ng/mL)

LOD

(ng/mL)
Reference

Electrochemiluminescent 0.05 – 30.0 0.033 [11] 
Ultrasensitive Plasmonic 

Biosensors
- 0.015 [12]

Ultrasensitive 

photoelectrochemical 

immunosensor

0.00002 -50.0
6.7 

fg/mL
[13]

Ultrasensitive label-free optical 

microfibe

2.0 – 10.0

fg/mL

2.0

fg/mL
[14]

Enzyme-linked immunosorbent 

assay
- 0.1 [34] 

Mn-MOF biosensor 0.01 – 30.0 0.055 Present work



Table S26: Selectivity coefficients  for various interfering analytes using separate solution method.pot
BAK ,

Interfering 
analyte

pot
BAK ,

Cu+2 3.95 x 10-4

Mn+2 1.39 x 10-4

Cl- 1.40 x 10-4

Glucose 1.38 x 10-4

Lactose 1.36 x 10-4

Starch 1.36 x 10-4

Citric acid 1.35 x 10-4

CK-Total 1.42 x 10-4

CK-MB 1.42 x 10-4

PSA 1.43 x 10-4

CEA 1.41 x 10-4

Biotin 1.38 x 10-4

Bilirubin 1.34 x 10-4

Cholesterol 1.38 x 10-4

Triglyceride 1.34 x 10-4

Caffeine 1.35 x 10-4



 Table S27: Evaluation of intra-day, inter-day accuracy, precision, and results of recovery study using spiking 

technique.

Repeatability

Intra-day precision

Reproducibility

Inter-day precision

cTn recovery

(Percent ± SD)

Standard 

cTn

Added, 

ng/mL* X SD CV RE% X SD CV RE% Intra-day Inter-day

0.1 0.101 0.004 2E-05 0.993 0.098 0.003 9E-06 0.983 100.7 ±0.004 98.34 ± 0.003
2.0 1.947 0.021 4E-04 1.027 1.955 0.03 9E-04 0.978 97.33 ±0.021 97.75 ± 0.03
20.0 19.6 0.203 0.041 1.02 20.02 0.236 0.056 1.001 98.02 ±0.203 100.1 ± 0.236

* Each reading was repeated Five times; X, mean values; SD, standard deviation; CV, the coefficient of variation; %RE, percent of relative error.



Fig. S28: The PL spectra response for behavior of the Mn-MOF towards cTn.
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Appendix B:

2.1.  Materials

All solvents and chemicals used in this study were of analytical reagent grade and 

were used as received. Polyvinyl chloride powder PVC of  high molecular weight, o-

nitrophenyl octyl ether (o-NPOE), dioctyl phthalate (DOP), dioctyl sebacate (DOS), 

tetrahydrofuran (THF) of purity greater than 99 %, 1, 2-phenylenediamine C6H8N2; melting 

point 100-102 °C; 99.5%; and MnCl2.4H2O; 99.99% were purchased from Sigma-Aldrich. 

5-aminoisophthalic acid C8H7NO4; melting point greater than 300 °C; 98%; was purchased 

from Acros-organics. Standard cardiac troponin (cTn) protein of different buffered 

concentrations were supplied by Monobind, USA. 

2.2. Instruments

The characterization and applications were performed using different analytical 

techniques: The mass spectra of solid NL and Mn-MOF were recorded using a Thermo 

Scientific- ISQ single quadrupole mass spectrometer. The 1H-NMR and 13C-NMR spectra 

of samples in deuterated dimethylsulfoxide (DMSO-D6) were performed with a 500 MHz 

NMR spectrometer (JEOL-ECA 500II). Elemental analysis (C-H-N) were performed using 

a Costech ECS-4010- analyzer. The Fourier transform-infrared (FT-IR) spectra were 

recorded with a JASCO FT/IR-460 spectrophotometer with use of KBr tablets in the range 

from 400 to 4000 cm−1 at room temperature. The UV-vis spectra for samples by were 

obtained using V-770 UV-Visible/NIR spectrophotometer over a range from 200 to 2200 

nm, and the band gap calculated with Optbandgap-204B soft wear. X-ray diffraction (XRD) 

of Mn-MOF was performed with a D8-AVANCE X-ray diffractometer (Bruker AXS, 

Germany) with Cu-Kα radiation (λ =0.154056 nm) for identification of the crystalline 

phase, relative crystallinity and crystal size of as-prepared Mn-MOF. The sample was 

identified in the 2θ range from 3.105° to 70.086° with a 0.020° step at a scan speed of 0.4 

s. The crystallite size was calculated from XRD data by means of the Scherer equation. The 

oxidation states and species in the prepared materials were recorded by Thermo 

Scientific™ K-Alpha™ XPS spectrometer, Al-Kα micro-focused monochromator within 

an energy range up to 4 KeV. The FE-SEM images and EDX spectroscopy spectra were 

recorded with a combination of field emission scanning electron microscopy (FE-SEM), 

and element mapping by spatially resolved energy-dispersive X-ray spectroscopy (EDX) 



(JEOL JSM-6510LV advanced electron microscope with a LAB-6 cathode at 520 keV). 

The structures of the phases formed were examined by using a high-resolution transmission 

electron microscope (HR-TEM) with an acceleration voltage up to 200 kV (JEM-2100-

JEOL, Japan). Thermal analysis (DSC/TGA) of the samples were analyzed with a 

NETZSCH STA 409 C/CD, Germany with a rate of 10 °C min-1 in nitrogen atmosphere. 

The magnetic properties of the fabricated sample was accomplished using a vibrating 

sample magnetometer (7400-1 VSM, U.S., Lake Shore Co., Ltd., USA) in a maximum 

applied field of 20 kOe. The photoluminescence (PL) spectra were investigated using a 

(Shimadzu RF-5301PC spectrofluorophotometer). The samples were used for subsequent 

PL measurements at different excitation wavelengths and then at an excitation wavelength 

300 nm and an emission wavelength of 422 nm. The measurements were performed in a 

quartz cuvette of path length 1 cm, with a scan time of 30 s, at room temperature. All 

potentiometric measurements were performed at room temperature with constant magnetic 

stirring, with an Orion Model A720 digital pH/mV meter and an Orion Ross Combination 

pH electrode (Model 81-02) for all pH measurements. Mn-MOF-PVC based electrode was 

used for all potentiometric measurements in conjunction with a double junction reference 

electrode (Orion Model 90-02) containing KNO3 (10% w/v) in the outer 

compartment\silver-silver chloride reference electrode. The data were analyzed with 

Origin-8. The structures, 3D geometrical structures and Schemes were drawn using 

"ChemBioDraw Ultra12" program.



Appendix C:
Design of the device 

The suggested device can be able to connect to the potentiometric electrode sensor through 

a calibration program. The sensor will be able to detect any changing in the potential response and 

send an information to the device. The device will receive the data from the sensor and will be 

analyze it. The smart program which prepared in an internal memory using calibrated data will be 

appeared on LCD screen. The new device will consist from the microcontroller board, PIC 16F887 

IC, battery, keypad, project box and sensors. A small device controlled with one hand (POCT 

device) in the end will be fabricated, with a size approximately 15 cm length, width 10 cm and 

height 4 cm. 


