

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Maternal over-the-counter analgesics use during pregnancy and adverse perinatal outcomes: Cohort study of 151,141 singleton pregnancies

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-048092
Article Type:	Original research
Date Submitted by the Author:	29-Dec-2020
Complete List of Authors:	Zafeiri, Aikaterini; University of Aberdeen, School of Medicine, Medical Sciences and Nutrition Hay, David ; University of Edinburgh Fowler, Paul ; University of Aberdeen Raja, Edwin Amalraj; University of Aberdeen, Medical Statistics Team Mitchell, Rod; The University of Edinburgh Bhattacharya, Sohinee; University of Aberdeen
Keywords:	Epidemiology < INFECTIOUS DISEASES, OBSTETRICS, CLINICAL PHARMACOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Title: Maternal over-the-counter analgesics use during pregnancy and adverse
perinatal outcomes: Cohort study of 151,141 singleton pregnancies

Authors: ¹Aikaterini ZAFEIRI, MSci, Ms, ²Edwin A. RAJA, PhD, ³Rod T. MITCHELL, MBChB, PhD, ⁴David C. HAY, PhD, ⁵Sohinee BHATTACHARYA, MBBS, PhD, ¹Paul A. FOWLER, FRSB, PhD

¹Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom, ²Medical Statistics Team, Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom, ³MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4JT, UK, ⁴MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, UK, ⁵Aberdeen Centre for Women's Health Research, Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom, Corresponding Author: Aikaterini Zafeiri, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom, cell phone number: (+44)7713837285, email: r01az17@abdn.ac.uk

Running Title: Maternal over-the-counter analgesia and offspring outcomes

1		
2 3	20	Abstract
4 5	20	ADStract
6 7 8	21	OBJECTIVES
9 10	22	To identify any associations between in utero exposure to five over-the-counter (non-
11 12	23	prescription) analgesics (paracetamol, ibuprofen, aspirin, diclofenac, naproxen) and
13 14 15	24	adverse neonatal outcomes.
16 17 18	25	DESIGN
19 20 21	26	Retrospective cohort study using the Aberdeen Maternity and Neonatal Databank.
22 23 24	27	PARTICIPANTS
25 26 27	28	151,141 singleton pregnancies between 1985 and 2015.
28 29 30	29	MAIN OUTCOME MEASURES
31 32 33	30	Premature delivery (<37 weeks), stillbirth, neonatal death, birthweight, standardised
34 35	31	birthweight score, neonatal unit admission, APGAR score at 1 and 5 minutes, neural
36 37	32	tube and amniotic band defects, gastroschisis and, in males, cryptorchidism, and
38 39 40	33	hypospadias.
41 42 43	34	RESULTS
44 45	35	83.7% of women taking over-the-counter analgesics reported first trimester use
46 47 48	36	when specifically asked about use at their first antenatal clinic visit. Pregnancies
49 50	37	exposed to at least one of the five analgesics were significantly independently
51 52	38	associated with increased risks for premature delivery <37 weeks (aOR=1.50,
53 54	39	95%CI 1.43-1.58), stillbirth (aOR=1.33, 95%CI 1.15-1.54), neonatal death
55 56 57	40	(aOR=1.56, 95%Cl 1.27-1.93), birthweight <2,500g (aOR=1.28, 95%Cl 1.20-1.37),
58 59 60	41	birthweight >4,000g (aOR=1.09, 95%CI 1.05-1.13), admission to neonatal unit

(aOR=1.57, 95%CI 1.51-1.64), APGAR score <7 at 1 minute (aOR=1.18, 95%CI 1.13-1.23) and 5 minutes (aOR=1.48, 95%CI 1.35-1.62), neural tube defects (aOR=1.64, 95%CI 1.08-2.47) and hypospadias (aOR=1.27, 95%CI 1.05-1.54 males only). The overall prevalence of over-the-counter analgesics use during pregnancy was 29.1%, however it rapidly increased over the 30-year study period, to include over 60% of women in the last seven years of the study. This makes our findings highly relevant to the wider pregnant population.

CONCLUSIONS

Over-the-counter (non-prescription) analgesics consumption during pregnancy was associated with a substantially higher risk for adverse perinatal health outcomes in the offspring. The use of paracetamol in combination with other non-steroidal antiinflammatory drugs conferred the highest risk. The increased risks of adverse neonatal outcomes associated with non-prescribed, over-the-counter, analgesics use during pregnancy indicate that healthcare guidance for pregnant women regarding analgesic use need urgent updating.

Strengths and limitations of this study

- This is one of the largest and most comprehensive studies of this type. It includes consumption of five different analgesics during pregnancy in a large cohort of singleton pregnancies. It examines associations with an extensive range of offspring perinatal outcomes, while adjusting for important confounding factors
 - Anlagesic consumption was analysed both as use of a single compound and in combinations of the five drugs considered in this study

1		
2 3 4	65	Details of the exact dose and timing of consumption during pregnancy was
5 6	66	not available within our dataset
7 8 9	67	Follow-up of the offspring health later in life was not available at this time
10 11 12	68	
13 14	69	Funding Biotechnology and Biological Sciences Research council (BBSRC) funding
15 16 17	70	under the EASTBIO doctoral training programme (grant number 1942576) to AZ and
18 19	71	EU Horizon 2020 project FREIA (Grant Number 825100) to PAF. RTM is supported
20 21 22	72	by MRC Centre for Reproductive Health Grant MR/N022556/1.
23 24	73	Key words acetaminophen, aspirin, diclofenac, ibuprofen, in utero exposure,
25 26 27	74	naproxen, offspring outcomes, over-the-counter analgesics, offspring outcomes,
28 29	75	paracetamol, pregnancy
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 45 56 57 58 59 60	76	

77 Introduction

Globally 23-85% of women use one or more types of prescribed medications during pregnancy ^{1,2}. A similarly high proportion of expectant mothers self-medicate using non-prescription, "over-the-counter" (OTC) medicines ^{3,4} and use during pregnancy is becoming increasingly prevalent, especially in Western countries ⁵. While some analgesics e.g. paracetamol are considered safe to consume throughout pregnancy, use of non-steroidal anti-inflammatory drugs (NSAIDs) is not recommended in pregnancy unless on the advice of a medical specialist and should be avoided beyond gestational week 30 because of the risk of premature closure of the ductus arteriosus. However, current evidence is largely conflicting regarding the safety of gestational analgesic use both for the pregnancy and offspring health ⁶. Several studies have reported increased risks for multiple adverse outcomes including hypospadias, cryptorchidism, amniotic band defects and neural tube defects ^{7–11}, whilst others have not found significant associations ^{12–17}. Taken overall, this has led to significant concern that postnatal health is adversely affected by maternal analgesic use during pregnancy ¹⁸.

The use of small cohorts in the current epidemiological studies makes it difficult to draw firm conclusions and definite recommendations^{12,17,19,20}. There are other aspects of analgesic use that have to be taken into account. Firstly, due to their abundance, it is not always feasible to determine exact consumption rates and dosage. Secondly, even though the mechanisms of action for most of these compounds is not fully understood, most over-the-counter analgesics can diffuse through the placenta and reach the developing fetus ²¹. Thirdly, maternal pharmacokinetics during pregnancy are altered and there are limited pregnancy safety data for these compounds.

BMJ Open

Given the diversity in study population, methodology, sample size and findings in the published studies, we conclude that more extensive data from larger cohorts are essential in order to understand the risks over-the-counter analgesic use during pregnancy pose to neonatal health and function. Here we address many limitations of previous studies by analysing one of the largest cohorts, widest range of health data and, pregnancy use of five over-the-counter analgesics consumed in combination or separately. We report on the prevalence of maternal consumption of five different over-the-counter analgesics during pregnancy and their associations with offspring neonatal outcomes using a large cohort of 151,141 singleton pregnancies spanning three decades of population-based data from a single maternity hospital serving the entire population of Aberdeenshire in the North East of Scotland.

Page 8 of 41

114 Materials and Methods

This retrospective cohort study utilised data collected in the Aberdeen Maternity and Neonatal Databank (AMND) in Aberdeen, UK on 151,141 pregnancies over a 30 year period (1985-2015). Details about AMND have been previously published ²². Data were collected from medical notes of women retrospectively after delivery. Women were specifically asked about their use of over-the-counter (non-prescription) analgesics at their first antenatal clinic. Data were entered by dedicated coding staff into a computerised database. Data validity was ensured via checking completeness of data entry against NHS (UK National Health Service) returns monthly and constant data cleaning and validation against case notes reported quarterly by the Data Management team to the AMND Steering Committee. A research protocol was submitted and approved by the AMND Steering Committee before data extraction. Approval was received on 6 June 2018. The dataset was fully anonymised, therefore there was no requirement for NHS ethics committee approval. There was no involvement of patients or the public in the design, or conduct, or reporting, or dissemination plans of our research. The main analysis considered consumption during pregnancy of at least one out of five different analgesics: paracetamol (no; yes), ibuprofen (no; yes), naproxen (no; yes), diclofenac (no; yes) or aspirin (no; yes) as the exposure group against no analgesic consumption as the unexposed group. Then, three sub-group analyses against the control group were performed using only paracetamol, only diclofenac, or at least one analgesic from aspirin/naproxen/ibuprofen as exposure groups,

⁵ 136 excluding pregnancies exposed to multiple analgesics at the same time. As 98.3% of

pregnancies using diclofenac were between 2005 and 2015, diclofenac sub-group

Page 9 of 41

BMJ Open

1		
2 3 4	138	analysis only considered pregnancies during that time frame in order to rule out any
5 6 7	139	temporal effect.
8 9	140	The offspring outcomes compared between control and exposed groups were:
10 11 12	141	gestation at delivery (preterm <37 gestation weeks, term \geq 37 gestation weeks),
13 14	142	pregnancy outcome (livebirth, stillbirth, neonatal death), baby weight (low birth
15 16	143	weight (LBW) \leq 2,499 g, high birth weight (HBW) \geq 4,000 g, normal birth weight
17 18 19	144	(NBW) 2,500g-3,999 g), standardised birthweight score was considered as a
20 21	145	continuous variable as previously described by Campbell and colleagues ²³ , baby
22 23	146	admission to neonatal unit (no; yes), APGAR score at one and five minutes (<7, \geq 7),
24 25 26	147	cryptorchidism (no; yes) (ICD-10 code Q53), neural tube defects (no; yes) (ICD-10
26 27 28	148	code Q00-07), amniotic band defects (no; yes) (ICD-10 codes Q70-74), hypospadias
29 30	149	(no; yes) (ICD-10 code Q54), gastroschisis (no; yes) (ICD-10 code Q79.3). A
31 32	150	composite outcome (presence of at least one congenital anomaly (no; yes)) was
33 34 35	151	created using the variables neural tube defects, amniotic band defects, and
36 37	152	gastroschisis and, in males, cryptorchidism and hypospadias.
39 40	153	The baseline characteristics compared between exposed and unexposed
41 42	154	pregnancies were (reference category first): year of delivery (1985-1994, 1995-2004,
43 44 45	155	2005-2015), maternal age at delivery (20-25, <20, 26-35, >35 years), previous
46 47	156	pregnancy (no; yes), maternal body mass index (BMI) (normal weight 18.5-24.9
48 49	157	kg/m², underweight <18.5 kg/m², overweight 25-29.9 kg/m², obese <30 kg/m²),
50 51	158	maternal first antenatal visit (1st, 2nd, 3rd trimester), maternal smoking status (non-
52 53 54	159	smoker, smoker, ex-smoker), Scottish Index of Multiple Deprivation (SIMD) decile (1-
55 56	160	6, 7-10, decreasing deprivation with increasing score), maternal hypertensive
57 58	161	disorders (no disorder, gestational hypertension, preeclampsia, eclampsia), maternal
59 60	162	antepartum haemorrhage (no haemorrhage, abruption, placental previa), type of

labour (spontaneous, elective caesarean section, induced), type of delivery
(spontaneous vaginal delivery, instrumental, caesarean section), analgesia during
labour (no; yes), baby presentation at delivery (occiput anterior, occiput posterior),
baby sex (female; male).

Patient and Public Involvement

This was a retrospective analysis of data on singleton pregnancies over a 30-year period. Therefore, there was no involvement of patients or the public in the design, conduct, reporting or any other aspect of the study.

172 Statistical Analysis

Baseline characteristics were compared between exposed and unexposed pregnancies to any analgesic using χ^2 test for categorical variables and t-test for normally distributed continuous variables as appropriate. Relationships between exposures and outcomes were examined by binary logistic regression for binary outcome variables, multinomial logistic regression for nominal categorical outcome variables, and multiple linear regression for continuous variables. The strength of association was reported as odds ratios (ORs) with 95% confidence intervals (CI). The socio-demographic characteristics that were likely to confound our exposure-to-outcome path were identified using a directed acyclic graph (DAG) (Figure S1)²⁴. Factors that were associated with consumption of over-the-counter analgesics during pregnancy at 10% level of significance and deemed clinically relevant, were included in the model as confounders. All outcomes were adjusted for year of delivery, maternal age at delivery, SIMD and maternal first antenatal visit. In addition to these confounders, individual outcomes were adjusted for relevant cofactors. Gestation at

BMJ Open

hypertensive disorders and antepartum haemorrhage. Weight of the baby, neonatal

hypospadias and gastroschisis variables were also adjusted for gestation at delivery.

APGAR score at one and five minutes were adjusted for type of delivery. A p-value

of less than 0.05 was considered statistically significant. All statistical analyses were

ja Jink, NY.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

carried out using IBM SPSS Statistics version 25.0 (Released 2017. IBM SPSS

Statistics for Windows, Armonk, NY: IBM Corp.). R version 3.6.2 was used to

delivery and pregnancy outcome were both additionally adjusted for maternal

unit admission, cryptorchidism, neural tube defects, amniotic band defects,

10

2	
3 4	187
5 6	188
7 8	189
9 10 11	190
12 13	191
14 15	192
16 17 10	193
18 19 20	194
21 22	195
23 24	
25 26 27	
27 28 29	
30 31	
32 33	
34 35 26	
30 37 38	
39 40	
41 42	
43 44	
45 46 47	
47 48 49	
50 51	
52 53	
54 55 56	
57 58	
59 60	

generate Figure 2.

Results

83.7% of women taking over-the-counter analgesics reported first trimester use when specifically asked about use at their first antenatal clinic. Overall, from the total 151,141 pregnancies across 30 years in 107,143 (70.9%) pregnancies, no over-the-counter analgesic consumption was reported. At least one over-the-counter analgesic was consumed in 43,998 (29.1%) pregnancies, whereas paracetamol use alone was reported in 24,099 (18.4%) pregnancies. Diclofenac use was observed in 20.0% of pregnancies in the 10-year period when diclofenac was available over-the-counter (without prescription). Finally, at least one out of three analgesics (naproxen, ibuprofen, aspirin) was consumed in 762 (0.7%) pregnancies (Figure 1). Prevalence of use for all five analgesics increased dramatically over the 30-year study period (1985-2015) (Figure 2). Percentage of pregnancies with consumption of at least one analgesic increased from 1.8% in 1985 to 70.6% in 2015. Paracetamol was consumed in 1.3% of pregnancies in 1985 and it continuously increased reaching 42.2% in 2015. Naproxen, ibuprofen or aspirin consumption during pregnancy was less prevalent, however it also increased during the 30-year study period, starting at 0.5% in 1985 and reaching 1.9% in 2015. Diclofenac was consumed in very few pregnancies between 1985 (<0.01%) and 2005 (0.2%). Percentage of consumption, however, dramatically increased during the next decade following deregulation of diclofenac, reaching 25.0% in just one year (2006) and 45.6% of all pregnancies in 2015. Table 1 compares the baseline characteristics between the unexposed group of pregnancies where no analgesic was consumed and each of the exposure groups. In

most, but not all, comparisons across all four analyses, there was a statistically

1		
2 3 4	220	significant difference (p<0.001) for most variables. In the paracetamol sub-group
5 6	221	analysis, baby presentation at delivery (p=0.525) and sex of the baby (p=0.861) were
7 8 9	222	not significantly different between the groups. In the analysis considering
) 10 11	223	consumption of at least one analgesic from aspirin/naproxen/ibuprofen, again the
12 13	224	variables for baby presentation at delivery (p=0.093) and sex of the baby (p=0.732),
14 15 16	225	together with maternal smoking status (p=0.132) and maternal antepartum
16 17 18	226	haemorrhage (p=0.434) were not statistically different compared to the unexposed
19 20	227	group. All variables were statistically different between unexposed and exposed
21 22 23	228	groups for the main analysis and diclofenac sub-group analysis.
23 24 25	229	Table 2 summarises the comparison of neonatal outcomes between the unexposed
26 27 28	230	group (no analgesic at all) and the exposed groups of at least one analgesic, only
20 29 30	231	paracetamol and at least one out of aspirin/naproxen/ibuprofen. Comparison of
31 32	232	outcomes for the diclofenac sub-group analysis is shown in Table 3.
33 34 35 36	233	
37 38 39	234	All analgesics and neonatal outcomes
40 41	235	As shown in Table 2, compared to unexposed pregnancies in which women did not
42 43	236	use any analgesic, pregnancies with consumption of at least one analgesic
44 45 46	237	(paracetamol, diclofenac, aspirin, naproxen, ibuprofen) were independently
47 48	238	associated with significantly higher odds for premature delivery (aOR=1.50, 95%CI
49 50	239	1.43-1.58), stillbirth (aOR=1.33, 95%Cl1.15-1.54), LBW (aOR=1.28, 95%Cl 1.20-
51 52 53	240	1.37), HBW (aOR=1.09, 95%CI 1.05-1.13), baby admission to neonatal unit
55 54 55	241	(aOR=1.57, 95%Cl 1.51-1.64), APGAR score <7 at five minutes (aOR=1.48, 95%Cl
56 57	242	1.35-1.62), neural tube defects (aOR=1.64, 95%CI 1.08-2.47) and hypospadias
58 59	243	(aOR=1.27, 95%CI 1.05-1.54) in adjusted analyses. Significantly decreased odds for

Page 14 of 41

BMJ Open

2 3 4	244
5 6	245
7 8 0	246
9 10 11	247
12 13	248
14 15 16	249
17 18	250
19 20	251
21 22 23	252
23 24 25	253
26 27	254
28 29 30	255
31 32	256
33 34	257
35 36 27	258
37 38 39	259
40 41 42	260
43 44 45	261
46 47 48	262
48 49 50	263
51 52	264
53 54	265
55 56 57	266
58 59 60	267

1

244	APGAR score <7 at one minute were found in the crude analysis (cOR=0.96, 95%Cl
45	0.92-0.99), however when adjusted for year of delivery, maternal age at delivery,
46	SIMD, first gestational booking and type of delivery, the significance changed
47	direction showing significantly increased odds (aOR=1.18, 95%CI 1.13-1.23). A
48	significantly lower standardised birthweight score (aOR=0.046. 95%CI 0.032-0.059)
49	was found for the exposure group compared to no analgesic at all. Cryptorchidism
250	(aOR=0.92, 95%CI 0.77-1.11), amniotic band defects (aOR=1.02, 95%CI 0.71-1.47)
251	gastroschisis (aOR=1.10, 95%CI 0.56-2.20) and the composite outcome variable
252	(aOR=1.12, 95%CI 0.99-1.26), were all associated with increased odds in the
253	exposure group compared to not exposed, however the association was not
254	significant in the adjusted model. There was no significant association between
255	neonatal death and exposure to at least one analgesic in the crude analysis
256	(cOR=1.19, 95%CI 0.99-1.42), however there were significantly higher odds of
257	neonatal death in the adjusted analysis (aOR=1.56, 95%Cl 1.27-1.93) in the
258	exposed group compared to control.
259	
060	Paracotamol and noonatal outcomos
.00	

In the sub-group analysis considering only paracetamol consumption during
pregnancy as our exposure group, most of the associations reported in the main
analysis remained significant with the same direction of significance (Table 2). The
differences were: maternal paracetamol consumption during pregnancy was
associated with significantly decreased odds for offspring HBW (cOR=0.94, 95%CI
0.90-0.99) in the crude analysis however significance was lost in the adjusted model
(aOR=0.98, 95%CI 0.93-1.02), and there were no significant associations in the

1	4
_	-

1		14
2 3 4	268	adjusted models for neural tube defects (aOR=1.21, 95%CI 0.71-2.06) and
5 6 7	269	hypospadias (aOR=1.07, 95%CI 0.84-1.37).
7 8 9	270	
10 11 12 12	271	Aspirin/naproxen/ibuprofen and neonatal outcomes
13 14 15	272	Consumption of at least one analgesic from aspirin, naproxen or ibuprofen during
16 17	273	pregnancy was compared against the same control group of pregnancies where no
18 19 20	274	analgesic was used (Table 2). Again, when comparing associations between groups
21 22	275	in this sub-group analysis and main analysis, fewer outcome variants showed similar
23 24	276	significance pattern. The only shared significant associations were for increased
25 26 27 28 29 30 31	277	odds for premature delivery (aOR=1.42, 95%Cl 1.08-1.86), stillbirth (aOR=2.34,
	278	95%CI 1.29-4.25) and baby admission to neonatal unit (aOR=1.54, 95%CI 1.22-
	279	1.94) in the adjusted regression analyses.
32 33 34	280	
35 36 37 38	281	Diclofenac and neonatal outcomes
39 40	282	In the sub-group analysis of pregnancies coinciding with non-prescription, over-the-
41 42	283	counter, availability of diclofenac (years 2005-2015) were considered, and outcomes
43 44 45	284	compared between the diclofenac group and no analgesic consumption group (Table
45 46 47 48 49 50 51	285	3). Compared to the main analysis, diclofenac consumption during pregnancy was
	286	not significantly associated with premature delivery (aOR=1.10, 95%CI 0.99-1.22),
	287	neonatal death (aOR=1.26, 95%CI 0.73-2.15) and APGAR score <7 in one minute
53 54	288	(aOR=0.93, 95%CI 0.83-1.04) in the adjusted models. Associations with APGAR
55 56	289	score <7 in five minutes (aOR=0.94, 95%CI 0.72-1.23), cryptorchidism (aOR=1.05,
57 58	290	95%CI 0.78-1.42), amniotic band defects (aOR=0.81, 95%CI 0.41-1.58) and
59 60	291	gastroschisis (aOR=2.93, 95%CI 0.97-8.88) were no longer significant in both crude

and adjusted analyses. Maternal consumption of diclofenac was independently associated with a significant decrease in stillbirth (aOR=0.59, 95%CI 0.41-0.87). It is also interesting to note that diclofenac was the only sub-group analysis agreeing with the main analysis (exposure to at least one analgesic) on the significance of exposure association with increased incidence of neural tube defects (aOR=3.62, d hypos, icies in adjustec 95%CI 1.95-6.74) and hypospadias (aOR=1.49, 95%CI 1.09-2.03) compared to

unexposed pregnancies in adjusted models.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		10
2 3 4	300	Discussion
6 7	301	Main Findings
8 9 10	302	Consumption of paracetamol, ibuprofen, aspirin and naproxen during pregnancy,
11 12	303	either in combination or separately, was significantly associated with increased
13 14	304	premature delivery, stillbirth, neonatal death, LBW, abnormal standardised
15 16 17	305	birthweight score and more frequent admission to neonatal unit. Consumption of
18 19	306	paracetamol alone was further associated with higher odds for APGAR score <7 at
20 21	307	one and five minutes both in crude and adjusted analyses. There was a dramatic
22 23 24	308	increase in the frequency of over-the-counter (non-prescription) analgesic use in
24 25 26	309	pregnancies between 1985 and 2015, reaching 70.5% of women in the final decade
27 28	310	of our study. This means that our findings are applicable far beyond the percentage
29 30 31	311	(between 14% and 38%) ²⁵ of pregnant women with underlying health deficits related
32 33	312	to the adverse outcomes we report here.
34 35 36	313	
37 38 39	314	Diclofenac use increased steeply from 2005 (Figure 2A), which reflects the change in
40 41	315	Scottish legislation, leading to diclofenac becoming available without prescription in
42 43	316	that year. Diclofenac use was associated with fewer adverse outcomes but showed
44 45 46	317	increased risk of neural tube defects and hypospadias in male neonates.
47 48	318	Furthermore, and surprisingly, exposure to diclofenac only was associated with
49 50	319	significant decrease in the incidence of stillbirth. The reasons for such differences
51 52 53	320	between the changes in neonatal outcomes following diclofenac consumption
53 54 55	321	compared with those following use of the other NSAIDS are not clear. The proportion
56 57	322	of women using diclofenac, especially in the last 7 years of our study makes it highly
58 59 60	323	unlikely to be due to an underlying maternal condition and/or other compounds used

in combination (e.g. prescriptions) by women taking diclofenac. It is possible that the drug could act directly on fetal development then this difference could also be due to structural and/or mechanistic differences of the compound compared to the other drugs. However, not enough is known about the specific mechanisms of action of the different analgesics studied to conclude further. Overall, comparing our main analysis with all three sub-analyses, it is evident that the most significant differences were observed when paracetamol was taken with at least one other analgesic. This is mostly due to the high number of pregnancies where paracetamol was used, comprising almost 55% of the exposed cases in the main analysis.

RR Strengths and Limitations

A major strength of the present study is the large cohort of 151,141 pregnancies over a 30-year study period from 1985 until 2015, using a robust data source AMND. This is one of the largest cohorts used in studies examining the effects of analgesic use during pregnancy. The dataset contains high quality and consistent data from the geographically defined area of Aberdeen and surrounding district, in the North East of Scotland, UK. In addition, as Aberdeen Maternity Hospital is the only maternity hospital serving the area, over 95% of pregnancies in the area are included in the dataset, considerably minimizing the risk for selection bias. We were able to analyse maternal consumption data of the five most commonly used analgesics available over-the-counter in the UK and most countries, which is not matched in the current literature. The nature of our data allowed for the analysis of analgesics consumed alone or in combination, unlike most existing studies, and this gives our study the added strength of better reflecting real-life consumption patterns ^{26,27}. We were able

Page 19 of 41

1

BMJ Open

2		
3 4	348	to adjust for important confounding factors, relevant to each analysed outcome.
5 6	349	Adjustment for maternal deprivation also allowed us to further account for potential
7 8	350	unmeasured factors that can influence maternal and neonatal health, which is a
9 10 11	351	major strength of our analysis compared to most studies.
12 13 14	352	A potential concern was that women were probably using analgesics to treat some
15 16	353	inherent medical condition which in turn could have been the mediating factor for
17 18 10	354	adverse outcomes. However, since these medications are widely available without
20 21	355	prescription, this is unlikely to be a factor that affects the findings of this study. This
22 23 24	356	is especially the case during the "diclofenac analysis" covering 2005-2015, where
25 26	357	this study presents results on multiple neonatal outcomes for the given cohort. In this
27 28	358	way we offer a comprehensive approach to the exploration of associations with in
29 30 31	359	utero analgesic exposure rather than only focusing on a single outcome of interest.
32 33	360	Our data were based on medical notes; however, over-the-counter consumption is
34 35	361	self-reported, and details on the timing, dosage, product type (single-ingredient vs
36 37	362	combination) and administration type were not available in the database. Complete
38 39 40	363	case analyses were performed ignoring pregnancies with missing data in the
41 42	364	covariates, however due to the low number of missing data there is little chance that
43 44	365	this might have affected the validity of our results. Compared to our cohort size,
45 46 47	366	there were, overall, very few cases of cryptorchidism, neural tube defects, amniotic
47 48 49	367	band defects, hypospadias and gastroschisis, resulting in potentially underpowered
50 51	368	statistical analyses to detect a difference for these outcomes. Our study only
52 53	369	considered neonatal health outcomes and follow-up of the offspring was not
54 55 56	370	available at this time.
57 58 59 60	371	

Interpretation

Previous literature has considered fewer outcomes with fewer analgesic combinations compared to our study. Consistent with our results, increased risk of preterm birth and miscarriage has been associated with analgesic consumption during pregnancy ^{28–31}, while others reported no associations with miscarriage, stillbirth or preterm delivery ^{20,28,29,32}. Similarly, increased risk for offspring cryptorchidism, hypospadias, neural tube defects, amniotic band defects and gastroschisis have been shown by many studies ^{7–9,33–40}, although, again, a lack of associations with major birth defects have been reported ^{13–17,41,42}. Compared to our analysis, all these studies used a smaller cohort, considered a shorter study time and there was frequent disagreement with respect to the choices of adjusted confounding factors. Another difference is that maternal questionnaires/interviews were frequently the method of choice to evaluate maternal consumption. Some of the studies reported increased risks for specific pregnancy trimesters which is something our study could not evaluate. Differences in study design and adjustment for different confounders might also account for the disagreement of our results that provide a more accurate assessment. Our study is one of the largest in terms of cohort size, duration, number of analgesics and range of outcomes included which might also contribute to differences compared to other studies. The literature currently reports conflicting evidence, limiting our ability for definite

decision-making. Over-the-counter analgesics are recommended to women by healthcare professionals in order to deal with pregnancy symptoms and other conditions. Policy-makers have taken a stand on the topic, either being reassuring about over-the-counter use during pregnancy or recommending caution when consumption is necessary ^{43–46}. Different compounds can affect the mother and the

Page 21 of 41

1

60

BMJ Open

2		
3 4	397	fetus in a different way, and their combined use might worsen the risk for offspring ill
5 6	398	health. This study demonstrates the need for additional research, before the field can
7 8 9	399	be confidently directed towards one direction or the other.
10 11 12	400	Whether the associations we report result from flu, fever, rheumatological or
13 14	401	inflammatory conditions, and/or combination with other prescribed medications or
15 16	402	solely related to over-the-counter analgesics consumption is a matter of further
17 18	403	research. Underlying health conditions could well influence the outcomes we see in
19 20 21	404	this study, however, as these could be very different conditions it is biologically
22 23	405	unlikely that they are responsible for the effects we observe here. Our study
24 25	406	demonstrates an association of maternal over-the-counter analgesic consumption
26 27 28 29 30	407	during pregnancy with adverse neonatal offspring outcomes. Future collaborative
	408	approaches such as an individual patient data meta-analysis that includes follow-up
31 32	409	data on long-term outcomes during childhood and adulthood would significantly
33 34	410	inform decision making. Going forward, uncovering the mechanisms of action and off
35 36 37	411	target effects will also provide a solid foundation for the development of pregnancy-
38 39	412	safe compounds. Finally, the findings present here suggest that diclofenac is
40 41	413	associated with fewer changes in risk for the more frequent adverse outcomes
42 43	414	although it is associated more with rarer, but severe, negative outcomes, including
44 45 46	415	neural tube defects. Diclofenac may have a lower risk for the main adverse neonatal
47 48	416	outcomes reported for paracetamol. However, it should be noted that our study is not
49 50	417	designed to specifically test differences in level of risk between the analgesics
51 52 53	418	included. Therefore, it should be emphasised that this does not mean that the
54 55	419	authors are stating that diclofenac is preferable to paracetamol.
56 57 58 59	420	

Page 22 of 41

Conclusions

Pain control is currently a therapeutic priority during pregnancy. Our findings of
increased risk of adverse health outcomes for the offspring following at least first
trimester maternal use of readily available over-the-counter analgesics are crucial to
information for the management of pain during pregnancy.

427 Acknowledgements: N/A

428 Disclosure of interests: Professor David Hay is a founder, director and shareholder
429 in Stemnovate Limited. The remaining authors have no interests to disclose.

Contribution to Authorship: AZ, SB and PAF contributed to the conception, design
and coordination of the research. EAR provided critical input in the design and
planning of statistical analysis. AZ conducted the statistical analysis and prepared
the manuscript, figures and tables. AZ, SB, PAF, RTM and DCH substantially
contributed to the analysis and interpretation of the work. All authors contributed to
critical discussion of intellectual content, development and review/approval of the
final manuscript version.

Funding: This work is supported by the Biotechnology and Biological Sciences
Research council (BBSRC) funding the lead author under the EASTBIO doctoral
training programme and to PAF, the EU Horizon 2020 project FREIA (Grant Number
825100). RTM is supported by MRC Centre for Reproductive Health Grant
MR/N022556/1. The funders had no role in study design, data collection, data
analysis, decision to publish, or manuscript preparation.

BMJ Open

Ethics Statement: The AMND dataset used in this study was fully anonymised,

- 3 1	443
5	444
0 7	
8 9	445
10 11	446
12	447
14	
15 16	448
17 18	
19 20	
21	
22 23	
24 25	
26 27	
28	
29 30	
31 32	
33 34	
35	
36 37	
38 39	
40 41	
42	
43 44	
45 46	
47 48	
49	
50 51	
52 53	
54 55	
56	
57 58	
59 60	

therefore there was no requirement for ethical approval. The North of Scotland Research Ethics Service has devolved Caldicott approval to the Chair of the AMND steering committee. Approval to access and analyse data was obtained from the .tee (. AMND steering Committee (AMND 004/2018).

1				
2 3 4	449	Refe	erences	
5 6 7	450	1.	Gendron M-P, Martin B, Oraichi D, Berard A. Health care providers' requests	
, 8 9	451		to Teratogen Information Services on medication use during pregnancy and	
10 11 12	452		lactation. Eur J Clin Pharmacol. 2009;65(5):523-531.	
13 14	453	2.	Mitchell AA, Gilboa SM, Werler MM, Kelley KE, Louik C, Hernández-Díaz S.	
15 16 17	454		Medication use during pregnancy, with particular focus on prescription drugs:	
18 19 20	455		1976-2008. Am J Obstet Gynecol. 2011;205(1):51.e1-51.e8.	
21 22	456	3.	Werler MM, Mitchell AA, Hernandez-Diaz S, Honein MA. Use of over-the-	
23 24	457		counter medications during pregnancy. Am J Obstet Gynecol.	
25 26 27	458		2005;193(3):771-777.	
28 29 30	459	4.	Glover DD, Amonkar M, Rybeck BF, Tracy TS. Prescription, over-the-counter,	,
31 32	460		and herbal medicine use in a rural, obstetric population. Am J Obstet Gynecol	
33 34 35	461		2003;188(4):1039-1045.	
36 37	462	5.	Lupattelli A, Spigset O, Twigg MJ, et al. Medication use in pregnancy: A cross	;-
38 39 40	463		sectional, multinational web-based study. BMJ Open. 2014;4(2).	
41 42 42	464	6.	Zafeiri A, Mitchell RT, Hay DC, Fowler PA. Over-the-counter analgesics during	g
43 44 45	465		pregnancy: a comprehensive review of global prevalence and offspring safety	•
46 47 48	466		Hum Reprod Update. Published online October 29, 2020.	
49 50	467	7.	Lynberg MC, Khoury MJ, Lu X, Cocian T. Maternal flu, fever, and the risk of	
51 52	468		neural tube defects: A population-based case-control study. Am J Epidemiol.	
53 54 55	469		1994;140(3):244-255.	
56 57 58	470	8.	Werler MM, Louik C, Mitchell AA. Epidemiologic analysis of maternal factors	
59 60	471		and amniotic band defects. Birth Defects Res Part A - Clin Mol Teratol.	

Page 25 of 41

BMJ Open

1			27
2 3 4	472		2003;67(1):68-72.
5 6 7	473	9.	Snijder CA, Kortenkamp A, Steegers EAP, et al. Intrauterine exposure to mild
8 9	474		analgesics during pregnancy and the occurrence of cryptorchidism and
10 11	475		hypospadia in the offspring: The Generation R Study. Hum Reprod.
12 13 14	476		2012;27(4):1191-1201.
15 16 17	477	10.	Lind JN, Tinker SC, Broussard CS, et al. Maternal medication and herbal use
18 19	478		and risk for hypospadias: Data from the National Birth Defects Prevention
20 21 22	479		Study, 1997-2007. Pharmacoepidemiol Drug Saf. 2013;22(7):783-793.
23 24	480	11.	Interrante JD, Ailes EC, Lind JN, et al. Risk comparison for prenatal use of
25 26 27	481		analgesics and selected birth defects, National Birth Defects Prevention Study
27 28 29	482		1997–2011. Ann Epidemiol. 2017;27(10):645-653.e2.
30 31 32	483	12.	Philippat C, Gorgis-Allemand L, Chevrier C, et al. Analgesics during pregnancy
33 34 35	484		and undescended testis. <i>Epidemiology</i> . 2011;22(5):747-749.
36 37	485	13.	Hernandez RK, Werler MM, Romitti P, Sun L, Anderka M. Nonsteroidal
38 39	486		antiinflammatory drug use among women and the risk of birth defects. In:
40 41 42	487		American Journal of Obstetrics and Gynecology. Vol 206. Mosby Inc.;
43 44	488		2012:228.e1-228.e8.
45 46 47	489	14.	Cassina M, De Santis M, Cesari E, et al. First trimester diclofenac exposure
48 49	490		and pregnancy outcome. <i>Reprod Toxicol</i> . 2010;30(3):401-404.
50 51 52	491	15.	Padberg S, Tissen-Diabaté T, Dathe K, et al. Safety of diclofenac use during
53 54 55	492		early pregnancy: A prospective observational cohort study. Reprod Toxicol.
56 57	493		2018;77:122-129.
58 59 60	494	16.	van Gelder MMHJ, Roeleveld N, Nordeng H. Exposure to non-steroidal anti-

Page 26 of 41

1			
2 3 4	495		inflammatory drugs during pregnancy and the risk of selected birth defects: A
5 6 7	496		prospective cohort study. PLoS One. 2011;6(7).
8 9	497	17.	Dathe K, Fietz AK, Pritchard LW, et al. No evidence of adverse pregnancy
10 11 12	498		outcome after exposure to ibuprofen in the first trimester – Evaluation of the
12 13 14 15	499		national Embryotox cohort. Reprod Toxicol. 2018;79:32-38.
15 16 17	500	18.	Pariente G, Leibson T, Carls A, Adams-Webber T, Ito S, Koren G. Pregnancy-
18 19	501		Associated Changes in Pharmacokinetics: A Systematic Review. Chappell LC,
20 21 22	502		ed. <i>PLoS Med</i> . 2016;13(11):e1002160.
23 24	503	19.	McElhatton PR, Sullivan FM, Volans GN. Paracetamol overdose in pregnancy
25 26 27	504		analysis of the outcomes of 300 cases referred to the teratology information
27 28 29 30	505		service. <i>Reprod Toxicol</i> . 1997;11(1):85-94.
31 32	506	20.	Kozer E, Costei AM, Boskovic R, Nulman I, Nikfar S, Koren G. Effects of
33 34	507		aspirin consumption during pregnancy on pregnancy outcomes: Meta-analysis.
35 36 37	508		Birth Defects Res Part B - Dev Reprod Toxicol. 2003;68(1):70-84.
38 39	509	21.	Nitsche JF, Patil AS, Langman LJ, et al. Transplacental Passage of
40 41 42	510		Acetaminophen in Term Pregnancy. Am J Perinatol. 2017;34(6):541-543.
43 44 45	511	22.	Ayorinde AA, Wilde K, Lemon J, Campbell D, Bhattacharya S. Data resource
46 47	512		profile: The Aberdeen Maternity and Neonatal Databank (AMND). Int J
48 49 50	513		<i>Epidemiol</i> . 2016;45(2):389-394.
51 52	514	23.	Campbell D, Hall M, Lemon J, Carr-Hill R, Pritchard C, Samphier M. Clinical
54 55	515		birthweight standards for a total population in the 1980s. BJOG An Int J Obstet
56 57 58	516		<i>Gynaecol</i> . 1993;100(5):436-445.
59 60	517	24.	Textor J, van der Zander B, Gilthorpe MS, Liśkiewicz M, Ellison GT. Robust

Page 27 of 41

BMJ Open

1			20
2 3 4	518		causal inference using directed acyclic graphs: The R package "dagitty." Int J
5 6 7	519		<i>Epidemiol</i> . 2016;45(6):1887-1894.
8 9	520	25.	Royal College of Obstetricians and Gynaecologists. RCOG review clarifies
10 11 12	521		pain relief options for women during pregnancy and breastfeeding. Published
12 13 14	522		2018. https://www.rcog.org.uk/en/news/new-rcog-review-clarifies-pain-relief-
15 16 17	523		options-for-women-during-pregnancy-and-breastfeeding/
18 19	524	26.	Sarganas G, Buttery AK, Zhuang W, et al. Prevalence, trends, patterns and
20 21	525		associations of analgesic use in Germany. BMC Pharmacol Toxicol.
22 23 24	526		2015;16(1).
25 26 27	527	27.	Hider-Mlynarz K, Cavalié P, Maison P. Trends in analgesic consumption in
28 29	528		France over the last 10 years and comparison of patterns across Europe. Br J
30 31 32	529		<i>Clin Pharmacol</i> . 2018;84(6):1324-1334.
33 34	530	28.	Rebordosa C, Kogevinas M, Bech BH, Sørensen HT, Olsen J. Use of
35 36 37	531		acetaminophen during pregnancy and risk of adverse pregnancy outcomes. Int
38 39	532		J Epidemiol. 2009;38(3):706-714.
40 41 42	533	29.	Nielsen GL, Sørensen HT, Larsen H, Pedersen L. Risk of adverse birth
43 44	534		outcome and miscarriage in pregnant users of non-steroidal anti-inflammatory
45 46 47	535		drugs: Population based observational study and case-control study. Br Med J.
47 48 49	536		2001;322(7281):266-270.
50 51 52	537	30.	Czeizel AE, Dudá I, Puhó E. Short-term paracetamol therapy during pregnancy
53 54	538		and a lower rate of preterm birth. Paediatr Perinat Epidemiol. 2005;19(2):106-
55 56 57	539		111.
58 59 60	540	31.	Li Z, Ren A, Liu J, et al. Maternal flu or fever, medication use, and neural tube

2			
3 4	541		defects: A population-based case-control study in northern China. Birth
5 6 7	542		Defects Res Part A - Clin Mol Teratol. 2007;79(4):295-300.
8 9	543	32.	Pastore LM, Hertz-Picciotto I, Beaumont JJ. Risk of stillbirth from medications,
10 11 12	544		illnesses and medical procedures. Paediatr Perinat Epidemiol. 1999;13(4):421-
13 14 15	545		430.
16 17	546	33.	Kozer E, Nikfar S, Costei A, Boskovic R, Nulman I, Koren G. Aspirin
18 19	547		consumption during the first trimester of pregnancy and congenital anomalies:
20 21 22	548		A meta-analysis. <i>Am J Obstet Gynecol</i> . 2002;187(6):1623-1630.
23 24 25	549	34.	Kristensen DM, Hass U, Lesn L, et al. Intrauterine exposure to mild analgesics
25 26 27	550		is a risk factor for development of male reproductive disorders in human and
28 29 30	551		rat. <i>Hum Reprod</i> . 2011;26(1):235-244.
31 32	552	35.	Jensen MS, Rebordosa C, Thulstrup AM, et al. Maternal use of
33 34	553		acetaminophen, ibuprofen, and acetylsalicylic acid during pregnancy and risk
35 36 37	554		of cryptorchidism. <i>Epidemiology</i> . 2010;21(6):779-785.
38 39	555	36.	Correy JF, Newman NM, Collins JA, Burrows EA, Burrows RF, Curran JT. Use
40 41 42	556		of prescription drugs in the first trimester and congenital malformations. Aust N
43 44 45	557		<i>Z J Obs Gynaecol</i> . 1991;31(4):340-344.
46 47	558	37.	Lind DV, Main KM, Kyhl HB, et al. Maternal use of mild analgesics during
48 49	559		pregnancy associated with reduced anogenital distance in sons: A cohort
50 51 52	560		study of 1027 mother-child pairs. Hum Reprod. 2017;32(1):223-231.
53 54 55	561	38.	Werler MM, Mitchell AA, Shapiro S. First trimester maternal medication use in
56 57 58	562		relation to gastroschisis. <i>Teratology</i> . 1992;45(4):361-367.
59 60	563	39.	Torfs CP, Katz EA, Bateson TF, Lam PK, Curry CJR. Maternal medications

Page 29 of 41

BMJ Open

1			20
2 3 4	564		and environmental exposures as risk factors for gastroschisis. Teratology.
5 6 7	565		1996;54(2):84-92.
7 8 9	566	40.	M. Werler M, Sheehan JE, Mitchell AA. Maternal medication use and risks of
10 11 12	567		gastroschisis and small intestinal atresia. Am J Epidemiol. 2002;155(1):26-31.
13 14	568	41.	Slone D, Heinonen OP, Kaufman DW, Siskind V, Monson RR, Shapiro S.
15 16	569		ASPIRIN AND CONGENITAL MALFORMATIONS. Lancet.
17 18 19	570		1976;307(7974):1373-1375.
20 21 22	571	42.	Shaw GM, Todoroff K, Velie EM, Lammer EJ. Maternal illness, including fever,
23 24	572		and medication use as risk factors for neural tube defects. Teratology.
25 26 27	573		1998;57(1):1-7.
28 29 30	574	43.	Mosley II JF, Smith LL, Dezan MD. An overview of upcoming changes in
31 32	575		pregnancy and lactation labeling information. Pharm Pract (Granada).
33 34 35	576		2015;13(2):605.
36 37	577	44.	SMFM (Society for Maternal-Fetal Medicine Publications Committee). Prenatal
38 39	578		acetaminophen use and outcomes in children. Am J Obstet Gynecol.
40 41 42	579		2017;216(3):B14-B15.
43 44 45	580	45.	Bisson DL, Newell SD, Laxton C. Antenatal and Postnatal Analgesia: Scientific
46 47	581		Impact Paper No. 59. BJOG An Int J Obstet Gynaecol. 2018;(59).
48 49 50	582	46.	RCOG. RCOG review clarifies pain relief options for women during pregnancy
51 52	583		and breastfeeding. Published 2018. https://www.rcog.org.uk/en/news/new-
53 54 55	584		rcog-review-clarifies-pain-relief-options-for-women-during-pregnancy-and-
56 57 58 59 60	585		breastfeeding/

Table 1. Comparison of baseline characteristics between exposed (use of analgesics) and unexposed (no analgesic use) groups of pregnancies (P values < 0.05 shown in bold).

Baseline Characteristics	No analgesic (n=107,143) n (%)	At least one analgesic (n=43,998) n (%)	P value†	Paracetamol (n=24,099) n (%)	P value†	Ibuprofen/ Aspirin/ Naproxen (n=762) n (%)	P value†	No analgesic 2005-2015 (n=20,544) n (%)	Diclofenac 2005-2015 (n=10,291) n (%)	P value‡
Year of delivery			•							
1985-1994	50,152 (46.8)	5,737 (13.0)	<0.001	5,390 (22.4)	<0.001	213 (28.0)	<0.001	n/a	n/a	<0.001
1995-2004	36,447 (34.0)	7,263 (16.5)		6,571 (27.3)		321 (42.1)		n/a	n/a	
2005-2015 /	20,544 (19.2)	30,998 (70.5)		12,138 (50.4)		228 (29.9)		n/a	n/a	
2005-2009 *	n/a	n/a		n/a		n/a		11,105 (54.1)	4,021 (39.1)	
2010-2015 *	n/a	n/a		n/a		n/a		9,439 (45.9)	6,270 (60.9)	
Maternal age at de	ivery		-							
Younger than 20	9,236 (8.6)	3,834 (8.7)	<0.001	2,936 (12.2)	<0.001	34 (4.5)	<0.001	1,286 (6.3)	311 (3.0)	<0.001
20-25	24,249 (22.6)	8,700 (19.8)		5,932 (24.6)		113 (14.8)		3,436 (16.7)	1,152 (11.2)	
26-35	63,499 (59.3)	25,367 (57.7)		12,896 (53.5)		464 (60.9)		12,664 (61.1)	6,628 (64.4)	
Older than 35	10,159 (9.5)	6,097 (13.9)		2,335 (9.7)		151 (19.8)		3,158 (15.4)	2,200 (21.4)	
Previous Parity										
Nulliparity (0)	48,684 (45.4)	23,353 (53.1)	<0.001	12,510 (51.9)	<0.001	300 (39.4)	0.004	8,336 (40.6)	5,004 (48.6)	<0.001
Multiparity (1-11)	58,457 (54.6)	20,639 (46.9)		11,587 (48.1)		462 (60.6)		12,206 (59.4)	5,284 (51.4)	
Missing	2 (<0.1) §	6 (<0.1) §		2 (<0.1) §		0 (0.0) §		2 (<0.1) §	3 (<0.1) §	
Maternal BMI										
Underweight (<18.5)	1,998 (2.4)	869 (2.2)	<0.001	545 (2.6)	<0.001	10 (1.5)	0.007	492 (2.7)	174 (1.9)	<0.001
Normal weight (18.5-24.9)	50,127 (60.8)	18,958 (48.8)		10,486 (50.5)	-	361 (55.)	-	10,239 (55.2)	4,671 (50.0)	
Overweight (25.0-29.9)	20,500 (24.9)	10,960 (28.2)		5,733 (27.6)		192 (29.5)		4,930 (26.6)	2,630 (28.1)	
Obese (≤ 30.0)	9,773 (11.9)	8,046 (20.7)	1	3,995 (19.2)	1	88 (13.5)		2,881 (15.5)	1,871 (20.0)	1
Missing data	24,745 (23.1) §	5,165 (11.7) §]	3,340 (13.9) §	1	111 (14.6) §	<u> </u>	2,002 (9.7) §	945 (9.2) §	1

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 31	of 41
---------	-------

 BMJ Open

1 st Trimester	69,896 (65.4)	36,789 (83.7)	<0.001	19,075 (79.2)	<0.001	569 (75.0)	<0.001	18,155 (88.4)	9,185 (89.4)	0.036
2 nd Trimester	29,269 (27.4)	5,791 (13.2)		4,117 (17.1)		166 (21.9)		1,770 (8.6)	829 (8.1)	
3 rd Trimester	7,741 (7.2)	1,376 (3.1)		890 (3.7)		24 (3.2)		605 (2.9)	264 (2.6)	
Missing	237 (0.2) §	42 (0.1) §	-	17 (0.1) §		3 (0.4) §		14 (0.1) §	13 (0.1) §	-
Maternal smoking S	status				-		-		1	-
Unknown	6,505 (6.1) §	819 (1.9) §	<0.001	500 (2.1) §	<0.001	32 (4.2) §	0.132	448 (2.2) §	155 (1.5) §	<0.001
Ex-smoker	5,952 (5.6)	3,363 (7.6)		1,923 (8.1)		35 (4.8)		1,427 (7.1)	660 (6.5)	
Non-smoker	70,319 (69.9)	31,421 (72.8)		15,755 (66.8)		534 (73.2)		15,525 (77.3)	8,368 (82.6)	
Smoker	24,367 (24.2)	8,395 (19.4)		5,921 (25.1)		161 (22.2)		3,144 (15.6)	1,108 (10.9)	
Maternal SIMD Dec	ile		6							
Least Deprived (7-10)	65,227 (61.8)	25,192 (57.9)	<0.001	12,807 (53.8)	<0.001	501 (66.3)	0.012	12,806 (62.9)	6,714 (66.1)	<0.001
Most Deprived (1-6)	40,321 (38.2)	18,289 (42.1)		11,017 (46.2)		255 (33.7)		7,564 (37.1)	3,442 (33.9)	
Missing	1,595 (1.5) §	517 (1.2) §	-	275 (1.1) §		6 (0.8) §	-	174 (0.8) §	135 (1.3) §	
Maternal hypertens	sive disorders						1			1
None	91,276 (85.2)	35,529 (80.8)	<0.001	18,635 (77.3)	<0.001	636 (83.5)	0.001	18,851 (91.8)	9,273 (90.1)	<0.001
Gestational Hypertension	13,029 (12.2)	5,501 (12.5)		3,584 (14.9))	88 (11.5)		1,165 (5.7)	690 (6.7)]
Preeclampsia	2,780 (2.6)	2,941 (6.7)		1,861 (7.7)		38 (5.0)		523 (2.5)	324 (3.1)	
Eclampsia	58 (0.1)	27 (0.1)		19 (0.1)		0 (0.0)		5 (<0.1)	4 (<0.1)	
Maternal antepartu	im haemorrhage									
No haemorrhage	97,527 (91.0)	37,673 (85.6)	<0.001	20,306 (84.3)	<0.001	684 (89.8)	0.434	18,549 (90.3)	9,244 (89.8)	<0.001
Abruption	697 (0.7)	468 (1.1)		221 (0.9)		8 (1.0)		103 (0.5)	106 (1.0)	
Placenta previa	308 (0.3)	368 (0.8)		152 (0.6)		2 (0.3)		23 (0.1)	114 (1.1)	
Unspecified	8,611 (8.0)	5,489 (12.5)		3,420 (14.2)		68 (8.9)		1,869 (9.1)	827 (8.0)	
Type of labour		·			•				•	
Elective Caesarean Section	5,967 (5.6)	6,925 (15.7)	<0.001	1,384 (5.7)	<0.001	67 (8.8)	<0.001	616 (3.0)	3,843 (37.3)	<0.001
Induced	24,120 (22.5)	16,276 (37.0)	1	10,067 (41.8)	1	228 (29.9)	1	3,895 (19.0)	1,998 (19.4)	1
Spontaneous	77 056 (71 9)	20 797 (47 3)	1	12 648 (52 5)	1	167 (61 3)	1	16 033 (78 0)	1 150 (13 2)	1

2	4
~	
3	T
_	

Type of delivery										
Spontaneous vaginal delivery (SVD)	75,027 (70.1)	19,287 (43.8)	<0.001	15,983 (66.3)	<0.001	496 (65.2)	0.003	16,398 (79.8)	1,403 (13.6)	<0.001
Instrumental	15,409 (14.4)	8,107 (18.4)		4,043 (16.8)		120 (15.8)		2,546 (12.4)	1,927 (18.7)	
Caesarean Section	n 15,566 (14.5)	16,351 (37.2)		3,879 (16.1)		141 (18.5)		1,509 (7.3)	6,937 (67.4)	
Other	1,096 (1.0)	247 (0.6)		191 (0.8)		4 (0.5)		89 (0.4)	24 (0.2)	
Missing	45 (<0.1) §	6 (<0.1) §		3 (<0.1) §		1 (0.1) §		2 (<0.1)§	0 (0.0) §	
Analgesia during	labour				•		l			1
No	105,176 (98.2)	36,117 (82.1)	<0.001	20,974 (87.0)	<0.001	729 (95.7)	<0.001	19,915 (96.9)	8,235 (80.0)	<0.001
Yes	1,967 (1.8)	7,881 (17.9)		3,125 (13.0)		33 (4.3)		629 (3.1)	2,056 (20.0)	
Baby presentation	on at delivery					- I	1	- I - · ·		1
Occiput anterior	11,571 (10.8)	8,152 (18.6)	<0.001	2,636 (11.0)	0.525	68 (8.9)	0.093	1,401 (6.8)	2,967 (28.9)	<0.001
Occiput posterio	r 95,352 (89.2)	35,745 (81.4)		21,409 (89.0)	1	694 (91.1)		19,100 (93.2)	7,306 (71.1)	
Missing	220 (0.2) §	101 (0.2) §		54 (0.2) §		0 (0.0) §		43 (0.2) §	18 (0.2) §	
Sex of baby						1			1	
Female	52,265 (48.8)	21,139 (48.0)	0.010	11,739 (48.7)	0.861	367 (48.2)	0.732	10,124 (49.3)	4,907 (47.7)	0.008
Male	54,866 (51.2)	22,852 (51.9)		12,354 (51.3)		395 (51.8)		10,417 (50.7)	5,384 (52.3)	
Missing	12 (<0.1) §	7 (<0.1) §		6 (<0.1) §		0 (0.0)§		3 (<0.1) §	0 (0.0) §	1
Missing12 (<0.1)§7 (<0.1)§6 (<0.1)§0 (0.0)§3 (<0.1)§0 (0.0)§587n/a, not applicable; n, number of pregnancies588*Only applicable to Diclofenac 2005-2015 analysis589†p value in comparison to the first ("No analgesic") column590‡p value in comparison to "No analgesic 2005-2015" control column591§Percentage of missing data on total, not included in the analysis										
		For peer	review only	y - http://bmjopen.	omj.com/sit	e/about/guideli	nes.xhtml			

Table 2. Regression analysis of offspring outcomes between control (no analgesic) and groups exposed to at least one analgesic, only paracetamol, and at least one from ibuprofen, aspirin, naproxen.

1 2 3 4	Outcomes	No analgesic (n=107,143) n (%)	At least one analgesic (n=43,998)	Crude	Adjusted	Paracetamol (n=24,099) n (%)	Crude	Adjusted	Ibu/Asp/Na pr (n=762)	Crude	Adjusted	
5	Gestation at	delivery (weeks)	n (%)	OR (CI 95%)	OR (95% CI)		OR (95% CI)	OK (95% CI)	n (%)	OR (95% CI)	OR (95% CI)	
5	>=37	100.879 (94.2)	39.838 (90.5)	1.00	1.00	21.589 (89.6)	1.00	1.00	697 (91.5)	1.00	1.00	
7	<37	6.264 (5.8)	4.160 (9.5)	1.68 (1.61-1.75)	1.50 (1.43-1.58) ^a	2.510 (10.4)	1.87 (1.78-1.97)	1.56 (1.48-1.65) ^a	65 (8.5)	1.50 (1.16-1.94)	1.42 (1.08-1.86) ^a	
8	Pregnancy o	outcome	, , ,	. ,		, , ,	. ,	. ,	. ,			
9 [Livebirth	105,949 (98.9)	43,407 (98.7)	1.00	1.00	23,704 (98.4)	1.00	1.00	747 (98.0)	1.00	1.00	
10	Stillbirth	803 (0.7)	405 (0.9)	1.23 (1.09-1.39)	1.33 (1.15-1.54) ^a	275 (1.1)	1.53 (1.33-1.76)	1.52 (1.30-1.77) ^a	13 (1.7)	2.30 (1.32-3.99)	2.34 (1.29-4.25) a	
11	Neonatal	373 (0.3)	182 (0.4)	1.19 (0.99-1.42)	1.56 (1.27-1.93) ^a	117 (0.5)	1.40 (1.14-1.73)	1.56 (1.24-1.96) ^a	2 (0.3)	0.76 (0.19-3.06)	0.93 (0.23-3.74) ^a	
12	Death											
13	Missing	18 (<0.1)	4 (<0.1)	n/a	n/a	3 (<0.1)	n/a	n/a	0 (0.0)	n/a	n/a	
14	4 Weight of baby (grams)											
15	NBW	87,966 (82.1)	34,555 (78.6)	1.00	1.00	19,163 (79.5)	1.00	1.00	605 (79.5)	1.00	1.00	
16	LBW	5,910 (5.5)	3,571 (8.1)	1.54 (1.47-1.61)	1.28 (1.20-1.37) ^b	2,213 (9.2)	1.72 (1.63-1.81)	1.60 (1.51-1.69) ^b	59 (7.7)	1.45 (1.11-1.90)	1.29 (0.91-1.83) ^b	
17	HBW	13,233 (12.4)	5,863 (13.3)	1.13 (1.09-1.17)	1.09 (1.05-1.13) ^b	2,720 (11.3)	0.94 (0.90-0.99)	0.98 (0.93-1.02) ^b	97 (12.7)	1.07 (0.86-1.32)	0.99 (0.80-1.24) ^b	
18	Missing	34 (<0.1)	9 (<0.1)	n/a	n/a	3 (<0.1)	n/a	n/a	1 (0.1)	n/a	n/a	
19 Standardised Birthweight Score												
20	Mean (SD)	0.001 (0.003)	-0.002 (0.065)	0.03 (0.02-0.04)	0.046 (0.032-	0.001 (0.991)	-0.04 (-0.058	-0.014 (-0.029-	0.046	0.045 (-0.029-	0.049 (-0.025-	
21					0.059) ^c	2	0.029)	0.001) ^c	(0.038)	0.119)	0.123) ^c	
22	Admitted to	neonatal unit										
23	No	62,378 (58.2)	32,391 (73.6)	1.00	1.00	16,342 (67.8) 🗸	1.00	1.00	480 (63.0)	1.00	1.00	
24	Yes	11,011 (10.3)	7,448 (16.9)	1.30 (1.26-1.35)	1.57 (1.51-1.64) ^b	3,956 (16.4)	1.37 (1.32-1.43)	1.45 (1.38-1.53) ^b	117 (15.4)	1.38 (1.13-1.69)	1.54 (1.22-1.94) ^b	
25	Missing	33,754 (31.5)	4,159 (9.5)	n/a	n/a	3,801 (15.8)	n/a	n/a	762 (21.7)	n/a	n/a	
26	APGAR score	e at 1 min										
27	Normal	92,217 (86.1)	38,224 (86.9)	1.00	1.00	20,593 (85.5)	1.00	1.00	659 (86.5)	1.00	1.00	
28	<7	14,335 (13.4)	5,674 (12.9)	0.96 (0.92-0.99)	1.18 (1.13-1.23) ^d	3,437(14.3)	1.07 (1.03-1.12)	1.23 (1.18-1.28) ^d	101 (13.3)	0.99 (0.80-1.22)	1.07 (0.86-1.32) ^d	
29	Missing	591 (0.6)	100 (0.2)		n/a	69 (0.3)	n/a	n/a	2 (0.3)	n/a	n/a	
30	APGAR score	e at 5 min								· · · · · · · · · · · · · · · · · · ·		
31	Normal	104,292 (97.3)	42,730 (97.1)	1.00	1.00	23,334 (96.8)	1.00	1.00	738 (96.9)	1.00	1.00	
32	<7	2,216 (2.1)	1,163 (2.6)	1.28 (1.19-1.38)	1.48 (1.35-1.62) ^d	690 (2.9)	1.39 (1.28-1.52)	1.53 (1.40-1.68) ^d	21 (2.8)	1.34 (0.87-2.07)	1.52 (0.97-2.36) ^d	
33	Missing	635 (0.6)	105 (0.2)	n/a	n/a	75 (0.3)	n/a	n/a	3 (0.4)	n/a	n/a	
34	4 Cryptorchidism (only males included)											
35	No	54,509 (99.3)	22,616 (99.0)	1.00	1.00	12,247 (99.1)	1.00	1.00	394 (99.4)	1.00	1.00	
36	Yes	357 (0.7)	236 (1.0)	1.59 (1.35-1.88)	0.92 (0.77-1.11) ^b	107 (0.9)	1.33 (1.07-1.66)	0.87 (0.69-1.09) ^b	1 (0.3)	0.39 (0.05-2.77)	0.28 (0.04-1.98) ^b	
37[7 Neural Tube Defects											

2												
3	No	107,093 (99.9)	43,928 (99.8)	1.00	1.00	24,077 (99.9)	1.00	1.00	762 (100)	1.00	1.00	
4	Yes	50 (0.1)	70 (0.2)	3.41 (2.37-4.91)	1.64 (1.08-2.47) ^b	22 (0.1)	1.96 (1.19-3.23)	1.21 (0.71-2.06) ^b	0 (0.0)	n/a	n/a	
5	Amniotic Ba	Band Defects										
6	No	107,053 (99.9)	43,936 (99.9)	1.00	1.00	24,070 (99.9)	1.00	1.00	760 (99.7)	1.00	1.00	
7	Yes	90 (0.1)	62 (0.1)	1.68 (1.21-2.32)	1.02 (0.71-1.47) ^b	29 (0.1)	1.43 (0.94-2.18)	0.98 (0.63-1.52) ^b	2 (0.3)	3.13 (0.77-12.73)	2.29 (0.56-9.37) ^b	
8	Hypospadia	Jias (only males included)										
9	No	54,607 (99.5)	22,600 (98.9)	1.00	1.00	12,258 (99.2)	1.00	1.00	390 (98.7)	1.00	1.00	
10	Yes	259 (0.3)	252 (1.1)	2.35 (1.98-2.80)	1.27 (1.05-1.54) ^b	96 (0.8)	1.65 (1.31-2.09)	1.07 (0.84-1.37) ^b	5 (1.3)	2.70 (1.11-6.59)	1.91 (0.78-4.68) ^b	
11	Gastroschis	hisis										
12	No	107,120 (99.9)	43,979 (99.9)	1.00	1.00	24,089 (99.9)	1.00	1.00	762(100)	1.00	1.00	
13	Yes	23 (0.1)	19 (0.1)	2.01 (1.10-3.70)	1.10 (0.56-2.20) ^b	10 (0.1)	1.93 (0.92-4.06)	0.99 (0.45-2.21) ^b	0 (0.0)	n/a	n/a	
14	At least one	e outcome*								•		
15	No	106,367 (99.3%)	43,363 (98.6%)	1.00	1.00	23,835 (98.9%)	1.00	1.00	754 (99.0%)	1.00	1.00	
16	Yes	776 (0.7%)	635 (1.4%)	2.01 (1.81-2.23)	1.12 (0.99-1.26) ^b	264 (1.1%)	1.52 (1.32-1.75)	0.97 (0.84-1.13) ^b	8 (1.0%)	1.45 (0.72-2.93)	1.11 (0.55-2.23) ^b	
17	592	n/a, not applicable; n, number of pregnancies										
18	593	^a Adjusted for year of delivery, maternal age at delivery. SIMD, first gestational booking, maternal hypertensive disorders, maternal antepartum										
19	E04	had be a convery, material age at actively, sind, inst gestational booking, material hypertensive aboracis, material antepartam										
20	594											
21	595	Adjusted for year of delivery, maternal age at delivery, SIMD, first gestational booking, gestation at delivery										
22	596	• Adjusted for year of delivery, maternal age at delivery, SIMD, first gestational booking										
23	597	^d Adjusted for year of delivery, maternal age at delivery, SIMD, first gestational booking, type of delivery										
24	598	*Including cryptorchidism, neural tube defects, amniotic band defects, hypospadias, gastroschisis										
25	000	molading of yptoremaising neural table derects, anniotic band derects, hypospadias, gastroseniais										
26												
27												
28												
29												
30												
31												
32												
33												
34												
35												
36												
37												
38												
39												
40												
41												
42												
43		For poor roview only, http://bmienen.hmi.com/site/about/guidelines.yhtml										
44		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml										
45												
Table 3. Sub-group regression analysis between control pregnancies and exposed to diclofenac.

		No analgesic	Diclofenac		
599	Outcomes	(n=20,544)	2005-2015		
600	Outcomes	n (%)	(n=10,291)	Crude	Adjusted
601			n (%)	OR (CI 95%)	OR (CI 95%)
C01	Gestation at o	delivery (weeks)	ſ	T	1
602	>=37	19,407 (94.5%)	9,640 (93.7%)	1.00	1.00
603	<37	1,137 (5.5%)	651 (6.3%)	1.15 (1.04, 1.27)	1.10 (0.99, 1.22) ª
604	Pregnancy ou	tcome	1		1
605	Livebirth	20,393 (99.3%)	10,227 (99.4%)	1.00	1.00
606	Stillbirth	116 (0.5%)	39 (0.4%)	0.67 (0.47, 0.96)	0.59 (0.41, 0.87) ^a
607	Neonatal	35 (0.2%)	25 (0.2%)	1.42 (0.85, 2.38)	1.26 (0.73, 2.15) ª
6007	Death				
608	Weight of bat	by (grams)			
609	NBW	16,869 (82.1%)	8,116 (78.9%)	1.00	1.00
610	LBW	965 (4.7%)	572 (5.6%)	1.23 (1.11, 1.37)	1.22 (1.07, 1.40) ^b
611	HBW	2,707 (13.2%)	1,600 (15.5%)	1.23 (1.15, 1.31)	1.21 (1.13, 1.29) ^b
612	Missing	3 (0.0%)	3 (0.0%)		
612	Standardised	Birthweight Score			
613		-0.039 (0.959)	0.132 (1.036)	0.171 (0.145, 0.197)	0.167 (0.141, 0.193) ^c
614	Admitted to r	neonatal unit 🥢		Т	1
615	No	18,224 (88.7%)	8,747 (85.0%)	1.00	1.00
616	Yes	2,175 (10.6%)	1,492 (14.5%)	1.43 (1.33, 1.53)	1.46 (1.35, 1.58) ^b
617	Missing	145 (0.7%)	52 (0.5%)		
640	APGAR score	at 1 min			-
618	Normal	18,709 (91.1%)	9,350 (90.9%)	1.00	1.00
619	<7	1,658 (8.1%)	924 (9.0%)	1.12 (1.03, 1.21)	0.93 (0.83, 1.04) ^d
620	Missing	177 (0.9%)	17 (0.2%)		
621	APGAR score	at 5 min		5	-
622	Normal	20,065 (97.7%)	10,096 (98.1%)	1.00	1.00
(22	<7	302 (1.5%)	177 (1.7%)	0.86 (0.71, 1.04)	0.94 (0.72, 1.23) ^d
623	Missing	177 (0.9%)	18 (0.2%)		
624	Cryptorchidis	m (only males include	d)		-
625	No	10,284 (98.7%)	5,314 (98.7%)	1.00	1.00
626	Yes	133 (1.3%)	70 (1.3%)	1.02 (0.76, 1.36)	1.05 (0.78, 1.42) ^b
627	Neural Tube	Defects			-
620	No	20,527 (99.9%)	10,263 (99.7%)	1.00	1.00
028	Yes	17 (0.1%)	28 (0.3%)	3.29 (1.80, 6.02)	3.62 (1.95, 6.74) ^b
629	Amniotic Ban	d Defects			
630	No	20,514 (99.9%)	10,277 (99.9%)	1.00	1.00
631	Yes	30 (0.1%)	14 (0.1%)	0.93 (0.49, 1.76)	0.81 (0.41, 1.58) ^b
632	Hypospadias	(only males included)			
622	No	10,317 (99.0%)	5,308 (98.6%)	1.00	1.00
055	Yes	100 (1.0%)	76 (1.4%)	1.48 (1.09, 1.99)	1.49 (1.09, 2.03) ^b
634	Gastroschisis				
635	No	20,538 (99.9%)	10,284 (99.9%)	1.00	1.00
636	Yes	6 (0.1%)	7 (0.1%)	2.33 (0.78, 6.94)	2.93 (0.97, 8.88) ^b
637	At least one o	outcome*		· ·	
620	No	20,258 (98.6%)	10,097 (98.1%)	1.00	1.00
n≺x		· · · ·	,		1

maternal hypertensive disorders, maternal antepartum haemorrhage

^b Adjusted for year of delivery, maternal age at delivery, SIMD, first gestational booking, gestation at delivery

^c Adjusted for year of delivery, maternal age at delivery, SIMD, first gestational booking

^d Adjusted for year of delivery, maternal age at delivery, SIMD, first gestational booking, type of delivery

*Including cryptorchidism, neural tube defects, amniotic band defects, hypospadias, gastroschisis

1		55
2 3 4	647	Figure 1: Flowchart of cohort selection and sub-group analyses. n=number of
5 6	648	pregnancies in each analysis.*98.3% of pregnancies using only diclofenac occurred
7 8 0	649	during 2005-2015, therefore analysis was performed only on data from that decade
9 10 11	650	to rule out any temporal effect.
12 13	651	
14 15	652	Figure 2: Prevalence of use during pregnancy for each analgesic sub-group over
16 17 18	653	our 30-year study period. In 2005 there was a change in legislation making
19 20	654	diclofenac available without prescription.
21 22	655	
23 24 25	656	Figure S1: Directed acyclic graph (DAG) of exposure to outcome path and relevant
25 26 27	657	measured and unmeasured biasing factors in our analysis.
28 29 30 31 32 33 4 5 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 34 55 56 57 89 60	658	

Figure 2: Prevalence of use during pregnancy for each analgesic sub-group over our 30-year study period. In 2005 there was a change in legislation making diclofenac available without prescription.

254x190mm (300 x 300 DPI)

Page 39 of 41

BMJ Open

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Paragraph

Title & Abstract Pages 1-3

Abstract Pages 2-3

Introduction

Introduction

Page 5

Page 5

Methods Page 7

Methods Page 7

Methods Pages 7-8

Methods Pages 8-9

Methods

Pages 8-9

Methods Pages 7-8 Methods Page 7

Methods Pages 8-9 Statistical

Analysis paragraph pages 9-10 Statistical Analysis paragraph pages 9-10 Statistical Analysis paragraph pages 9-10

n/a

#

	Item No	Recommendation
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
Objectives	3	State specific objectives, including any prespecified hypotheses
Methods		
Study design	4	Present key elements of study design early in the paper
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up
		(<i>b</i>) For matched studies, give matching criteria and number of exposed and unexposed
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable
Data sources/	8*	For each variable of interest, give sources of data and details of
measurement		methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group
Bias	9	Describe any efforts to address potential sources of bias
Study size	10	Explain how the study size was arrived at
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding
		(b) Describe any methods used to examine subgroups and interactions
		(c) Explain how missing data were addressed
		(A) If applicable, explain how loss to follow up was addressed

STROBE Statement—	-Checklist of	items that	should b	be include	ed in re	eports of <i>co</i>	hort studies

(d) If applicable, explain how loss to follow-up was addressed n/a (e) Describe any sensitivity analyses n/a

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	Figure 1
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	Results Page 11
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical social) and information on exposures and potential	Table 1 Pages 29-31
		confounders	1 "gos _> •1
		(b) Indicate number of participants with missing data for each variable of interest	Table 1 Pages 29-31
		(c) Summarise follow-up time (eq. average and total amount)	n/9
Outcome data	15*	Report numbers of outcome events or summary measures over time	Tables 2 and
			Pages 32-35
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	Tables 2 and
	-	estimates and their precision (eg, 95% confidence interval). Make	3
		clear which confounders were adjusted for and why they were included	Pages 32-35
		(b) Report category boundaries when continuous variables were	Table 1
		categorized	Pages 29-31
		(c) If relevant, consider translating estimates of relative risk into	Tables 2 and
		absolute risk for a meaningful time period	3
		6.	Pages 32-35
Other analyses	17	Report other analyses done—eg analyses of subgroups and	n/a
		interactions, and sensitivity analyses	
Discussion		4	
Key results	18	Summarise key results with reference to study objectives	Discussion Pages 16-17
Limitations	19	Discuss limitations of the study, taking into account sources of	Discussion
		potential bias or imprecision. Discuss both direction and magnitude of any potential bias	Pages 16-18
Interpretation	20	Give a cautious overall interpretation of results considering	Discussion
		objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Pages 19-21
Generalisability	21	Discuss the generalisability (external validity) of the study results	Discussion Pages 20-21
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present	Manuscript pages 4 and

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely

available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

for peer terien ony

BMJ Open

Maternal over-the-counter analgesics use during pregnancy and adverse perinatal outcomes: Cohort study of 151,141 singleton pregnancies

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-048092.R1
Article Type:	Original research
Date Submitted by the Author:	12-Sep-2021
Complete List of Authors:	Zafeiri, Aikaterini; University of Aberdeen, School of Medicine, Medical Sciences and Nutrition Raja, Edwin Amalraj; University of Aberdeen, Medical Statistics Team Mitchell, Rod; The University of Edinburgh Hay, David ; University of Edinburgh Bhattacharya, Sohinee; University of Aberdeen Fowler, Paul ; University of Aberdeen
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Obstetrics and gynaecology
Keywords:	Epidemiology < INFECTIOUS DISEASES, OBSTETRICS, CLINICAL PHARMACOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Title: Maternal over-the-counter analgesics use during pregnancy and adverse
perinatal outcomes: Cohort study of 151,141 singleton pregnancies

Authors: ¹Aikaterini ZAFEIRI, MSci, Ms, ²Edwin A. RAJA, PhD, ³Rod T. MITCHELL, MBChB, PhD, ⁴David C. HAY, PhD, ⁵Sohinee BHATTACHARYA, MBBS, PhD, ¹Paul A. FOWLER, FRSB, PhD

¹Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom, ²Medical Statistics Team, Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom, ³MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4JT, UK, ⁴MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, UK, ⁵Aberdeen Centre for Women's Health Research, Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom, Corresponding Author: Aikaterini Zafeiri, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom, cell phone number: (+44)7713837285, email: r01az17@abdn.ac.uk

Running Title: Maternal over-the-counter analgesia and offspring outcomes

1		2
2 3	20	
4	20	ADSTRACT
5 6 7	21	OBJECTIVES
8 9 10	22	To identify any associations between in utero exposure to five over-the-counter (non-
11 12	23	prescription) analgesics (paracetamol, ibuprofen, aspirin, diclofenac, naproxen) and
13 14 15	24	adverse neonatal outcomes.
16 17 18	25	DESIGN
19 20 21	26	Retrospective cohort study using the Aberdeen Maternity and Neonatal Databank.
22 23 24	27	PARTICIPANTS
25 26 27	28	151,141 singleton pregnancies between 1985 and 2015.
28 29 30	29	MAIN OUTCOME MEASURES
31 32	30	Premature delivery (<37 weeks), stillbirth, neonatal death, birthweight, standardised
33 34 35	31	birthweight score, neonatal unit admission, APGAR score at 1 and 5 minutes, neural
36 37	32	tube and amniotic band defects, gastroschisis and, in males, cryptorchidism, and
38 39	33	hypospadias.
40 41 42 43	34	RESULTS
44 45	35	83.7% of women taking over-the-counter analgesics reported first trimester use
46 47 48	36	when specifically asked about use at their first antenatal clinic visit. Pregnancies
49 50	37	exposed to at least one of the five analgesics were significantly independently
51 52	38	associated with increased risks for premature delivery <37 weeks (aOR=1.50,
53 54 55	39	95%CI 1.43-1.58), stillbirth (aOR=1.33, 95%CI 1.15-1.54), neonatal death
56 57	40	(aOR=1.56, 95%Cl 1.27-1.93), birthweight <2,500g (aOR=1.28, 95%Cl 1.20-1.37),
58 59 60	41	birthweight >4,000g (aOR=1.09, 95%CI 1.05-1.13), admission to neonatal unit

Page 4 of 46

(aOR=1.57, 95%Cl 1.51-1.64), APGAR score <7 at 1 minute (aOR=1.18, 95%Cl
1.13-1.23) and 5 minutes (aOR=1.48, 95%Cl 1.35-1.62), neural tube defects
(aOR=1.64, 95%Cl 1.08-2.47) and hypospadias (aOR=1.27, 95%Cl 1.05-1.54 males
only). The overall prevalence of over-the-counter analgesics use during pregnancy
was 29.1%, however it rapidly increased over the 30-year study period, to include
over 60% of women in the last seven years of the study. This makes our findings
highly relevant to the wider pregnant population.

49 CONCLUSIONS

50 Over-the-counter (non-prescription) analgesics consumption during pregnancy was 51 associated with a substantially higher risk for adverse perinatal health outcomes in 52 the offspring. The use of paracetamol in combination with other non-steroidal anti-53 inflammatory drugs conferred the highest risk. The increased risks of adverse 54 neonatal outcomes associated with non-prescribed, over-the-counter, analgesics use 55 during pregnancy indicate that healthcare guidance for pregnant women regarding 56 analgesic use need urgent updating.

Funding Biotechnology and Biological Sciences Research council (BBSRC) funding
under the EASTBIO doctoral training programme (grant number 1942576) to AZ and
EU Horizon 2020 project FREIA (Grant Number 825100) to PAF. RTM is supported
by MRC Centre for Reproductive Health Grant MR/N022556/1.

Key words acetaminophen, aspirin, diclofenac, ibuprofen, *in utero* exposure,
naproxen, offspring outcomes, over-the-counter analgesics, offspring outcomes,
paracetamol, pregnancy

BMJ Open

6 Introduction

Globally 23-85% of women use one or more types of prescribed medications during pregnancy ^{1,2}. A similarly high proportion of expectant mothers self-medicate using non-prescription, "over-the-counter" (OTC) medicines ^{3,4} and use during pregnancy is becoming increasingly prevalent, especially in Western countries ⁵. While some analgesics e.g. paracetamol (acetaminophen) are considered safe to consume throughout pregnancy, use of non-steroidal anti-inflammatory drugs (NSAIDs) is not recommended in pregnancy unless on the advice of a medical specialist and should be avoided beyond gestational week 30 because of the risk of premature closure of the ductus arteriosus. However, current evidence is largely conflicting regarding the safety of gestational analgesic use both for the pregnancy and offspring health ⁶. Several studies have reported increased risks for multiple adverse outcomes including hypospadias, cryptorchidism, amniotic band defects and neural tube defects ^{7–11}, whilst others have not found significant associations ^{12–17}. Taken overall, this has led to significant concern that postnatal health is adversely affected by maternal analgesic use during pregnancy ¹⁸.

The use of small cohorts in the current epidemiological studies makes it difficult to draw firm conclusions and definite recommendations^{12,17,19,20}. There are other aspects of analgesic use that have to be taken into account. Firstly, due to their abundance, it is not always feasible to determine exact consumption rates and dosage. Secondly, even though the mechanisms of action for most of these compounds is not fully understood, most over-the-counter analgesics can diffuse through the placenta and reach the developing fetus ²¹. Thirdly, maternal pharmacokinetics during pregnancy are altered and there are limited pregnancy safety data for these compounds.

Given the diversity in study population, methodology, sample size and findings in the published studies, we conclude that more extensive data from larger cohorts are essential in order to understand the risks over-the-counter analgesic use during pregnancy pose to neonatal health and function. Here we address many limitations of previous studies by analysing one of the largest cohorts, widest range of health data and, pregnancy use of five over-the-counter analgesics consumed in combination or separately. We report on the prevalence of maternal consumption of five different over-the-counter analgesics during pregnancy and their associations with offspring neonatal outcomes using a large cohort of 151,141 singleton pregnancies spanning three decades of population-based data from a single maternity hospital serving the entire population of Aberdeenshire in the North East of Scotland.

Materials and Methods This retrospective cohort study utilised data collected in the Aberdeen Maternity and Neonatal Databank (AMND) in Aberdeen, UK on 151,141 pregnancies over a 30 year period (1985-2015). Details about AMND have been previously published ²². Data were collected from medical notes of women retrospectively after delivery. Women were specifically asked about their use of over-the-counter (non-prescription) analgesics at their first antenatal clinic. Data were entered by dedicated coding staff into a computerised database. Data validity was ensured via checking completeness of data entry against NHS (UK National Health Service) returns monthly and constant data cleaning and validation against case notes reported quarterly by the Data Management team to the AMND Steering Committee. A research protocol was submitted and approved by the AMND Steering Committee before data extraction. Approval was received on 6 June 2018. The dataset was fully anonymised, therefore there was no requirement for NHS ethics committee approval. There was no involvement of patients or the public in the design, or conduct, or reporting, or dissemination plans of our research. The main analysis considered consumption during pregnancy of at least one out of five different analgesics: paracetamol (no; yes), ibuprofen (no; yes), naproxen (no; yes), diclofenac (no; yes) or aspirin (no; yes) as the exposure group against no analgesic consumption as the unexposed group. Then, three sub-group analyses against the control group were performed using only paracetamol, only diclofenac, or at least one analgesic from aspirin/naproxen/ibuprofen as exposure groups, excluding pregnancies exposed to multiple analgesics at the same time (Figure 1). As 98.3% of pregnancies using diclofenac were between 2005 and 2015, diclofenac sub-group analysis only considered pregnancies during that time frame in order to

rule out any temporal effect. Analgesic consumption was not further assessed

analytically. The offspring outcomes compared between control and exposed groups were: gestation at delivery (preterm <37 gestation weeks, term >37 gestation weeks), pregnancy outcome (livebirth, stillbirth, neonatal death), baby weight (low birth weight (LBW) <2,499 g, high birth weight (HBW) >4,000 g, normal birth weight (NBW) 2,500g-3,999 g), standardised birthweight score was considered as a continuous variable as previously described by Campbell and colleagues²³, baby admission to neonatal unit (no; yes), APGAR score at one and five minutes (<7, >7), cryptorchidism (no; yes) (ICD-10 code Q53), neural tube defects (no; yes) (ICD-10 code Q00-07), amniotic band defects (no; yes) (ICD-10 codes Q70-74), hypospadias (no; yes) (ICD-10 code Q54), gastroschisis (no; yes) (ICD-10 code Q79.3). A composite outcome (presence of at least one congenital anomaly (no; yes)) was created using the variables neural tube defects, amniotic band defects, and gastroschisis and, in males, cryptorchidism and hypospadias. The baseline characteristics compared between exposed and unexposed pregnancies were (reference category first): year of delivery (1985-1994, 1995-2004, 2005-2015), maternal age at delivery (20-25, <20, 26-35, >35 years), previous pregnancy (no; yes), maternal body mass index (BMI) (normal weight 18.5-24.9 kg/m², underweight <18.5 kg/m², overweight 25-29.9 kg/m², obese >30 kg/m²), maternal first antenatal visit (1st, 2nd, 3rd trimester), maternal smoking status (non-smoker, smoker, ex-smoker), Scottish Index of Multiple Deprivation (SIMD) decile (1-6, 7-10, decreasing deprivation with increasing score), maternal hypertensive disorders (no disorder, gestational hypertension, preeclampsia, eclampsia), maternal antepartum haemorrhage (no haemorrhage, abruption, placental previa), type of

BMJ Open

8

2		
3 4	153	labour (spontaneous, elective caesarean section, induced), type of delivery
5 6	154	(spontaneous vaginal delivery, instrumental, caesarean section), analgesia during
7 8	155	labour (no; yes), baby presentation at delivery (occiput anterior, occiput posterior),
9 10 11	156	baby sex (female; male).
12 13 14	157	Patient and Public Involvement
15 16 17	158	This was a retrospective analysis of data on singleton pregnancies over a 30-year
18 19	159	period. Therefore, there was no involvement of patients or the public in the design,
20 21	160	conduct, reporting or any other aspect of the study.
22 23 24 25	161	
26 27 28	162	Statistical Analysis
29 30	163	Baseline characteristics were compared between exposed and unexposed
31 32 33	164	pregnancies to any analgesic using χ^2 test for categorical variables and t-test for
34 35	165	normally distributed continuous variables as appropriate. Relationships between
36 37	166	exposures and outcomes were examined by binary logistic regression for binary
38 39	167	outcome variables, multinomial logistic regression for nominal categorical outcome
40 41 42	168	variables, and multiple linear regression for continuous variables. The strength of
43 44	169	association was reported as odds ratios (ORs) with 95% confidence intervals (CI).
45 46	170	The socio-demographic characteristics that were likely to confound our exposure-to-
47 48	171	outcome path were identified using a directed acyclic graph (DAG) (Figure S1) ²⁴ .
49 50 51	172	Factors that were associated with consumption of over-the-counter analgesics during
52 53	173	pregnancy at 10% level of significance and deemed clinically relevant, were included
54 55	174	in the model as confounders. All outcomes were adjusted for year of delivery,
56 57	175	maternal age at delivery, SIMD and maternal first antenatal visit. In addition to these
59 60	176	confounders, individual outcomes were adjusted for relevant cofactors. Gestation at

2	
3 4	17
5 6	17
7 8	17
9 10 11	18
11 12 13	18
14 15	18
16 17	18
18 19 20	18
20 21 22	18
23 24	18
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	
47 48 49 50 51 52 53 54 55 56 57 58 59 60	

177	delivery and pregnancy outcome were both additionally adjusted for maternal
178	hypertensive disorders and antepartum haemorrhage. Weight of the baby, neonatal
179	unit admission, cryptorchidism, neural tube defects, amniotic band defects,
180	hypospadias and gastroschisis variables were also adjusted for gestation at delivery.
181	APGAR score at one and five minutes were adjusted for type of delivery. A p-value
182	of less than 0.05 was considered statistically significant. All statistical analyses were
183	carried out using IBM SPSS Statistics version 25.0 (Released 2017. IBM SPSS
184	Statistics for Windows, Armonk, NY: IBM Corp.). R version 3.6.2 was used to
185	generate Figure 2. Numbers needed to harm (NNH) were also calculated for each
186	outcome and are provided in Supplementary Tables 1 and 2.

BMJ Open

2 3 4	187	Results
6 7	188	83.7% of women taking over-the-counter analgesics reported first trimester use
8 9	189	when specifically asked about use at their first antenatal clinic. Overall, from the total
10 11 12	190	151,141 pregnancies across 30 years in 107,143 (70.9%) pregnancies, no over-the-
12 13 14	191	counter analgesic consumption was reported. At least one over-the-counter
15 16	192	analgesic was consumed in 43,998 (29.1%) pregnancies, whereas paracetamol use
17 18	193	alone was reported in 24,099 (18.4%) pregnancies. Diclofenac use was observed in
19 20 21	194	20.0% of pregnancies in the 10-year period when diclofenac was available over-the-
22 23	195	counter (without prescription). Finally, at least one out of three analgesics (naproxen,
24 25	196	ibuprofen, aspirin) was consumed in 762 (0.7%) pregnancies (Figure 1).
26 27 28	197	Prevalence of use for all five analgesics increased dramatically over the 30-year
29 30	198	study period (1985-2015) (Figure 2). Pregnancies with consumption of at least one
32 33	199	analgesic increased from 1.8% in 1985 to 70.6% in 2015. Pregnancies reporting
34 35	200	paracetamol use were 1.3% in 1985 and it continuously increased reaching 42.2%
36 37	201	in 2015. Naproxen, ibuprofen or aspirin consumption during pregnancy was less
38 39 40	202	prevalent (Figure 2A), however it also increased during the 30-year study period,
41 42	203	starting at 0.5% in 1985 and reaching 1.9% in 2015 (Figure 2B). Diclofenac was
43 44	204	consumed in very few pregnancies between 1985 (<0.01%) and 2005 (0.2%).
45 46 47	205	Percentage of consumption, however, dramatically increased during the next decade
48 49	206	following deregulation of diclofenac, reaching 25.0% in just one year (2006) and
50 51 52	207	45.6% of all pregnancies in 2015.
53 54	208	Table 1 compares the baseline characteristics between the unexposed group of
55 56 57	209	pregnancies where no analgesic was consumed and each of the exposure groups. In
57 58 59 60	210	most, but not all, comparisons across all four analyses, there was a statistically

1		
2 3 4	211	significant difference (p<0.001) for most variables. In the paracetamol sub-group
5 6	212	analysis, baby presentation at delivery (p=0.525) and sex of the baby (p=0.861) were
7 8 9	213	not significantly different between the groups. In the analysis considering
) 10 11	214	consumption of at least one analgesic from aspirin/naproxen/ibuprofen, again the
12 13	215	variables for baby presentation at delivery (p=0.093) and sex of the baby (p=0.732),
14 15	216	together with maternal smoking status (p=0.132) and maternal antepartum
16 17 18	217	haemorrhage (p=0.434) were not statistically different compared to the unexposed
19 20	218	group. All variables were statistically different between unexposed and exposed
21 22	219	groups for the main analysis and diclofenac sub-group analysis.
23 24	220	Table 2 summarises the comparison of neonatal outcomes between the unexposed
25 26	220	Table 2 summanses the compansion of neonatal outcomes between the unexposed
20 27 28	221	group (no analgesic at all) and the exposed groups of at least one analgesic, only
29 30	222	paracetamol and at least one out of aspirin/naproxen/ibuprofen. Comparison of
31 32	223	outcomes for the diclofenac sub-group analysis is shown in Table 3.
33 34 35	224	
37 38 39	225	All analgesics and neonatal outcomes
40 41	226	As shown in Table 2, compared to unexposed pregnancies in which women did not
42 43	227	use any analgesic, pregnancies with consumption of at least one analgesic
44 45 46	228	(paracetamol, diclofenac, aspirin, naproxen, ibuprofen) were independently
47 48	229	associated with significantly higher odds for premature delivery (aOR=1.50, 95%CI
49 50	230	1.43-1.58), stillbirth (aOR=1.33, 95%CI1.15-1.54), LBW (aOR=1.28, 95%CI 1.20-
51 52 53	231	1.37), HBW (aOR=1.09, 95%CI 1.05-1.13), baby admission to neonatal unit
54 55	232	(aOR=1.57, 95%CI 1.51-1.64), APGAR score <7 at five minutes (aOR=1.48, 95%CI
56 57	233	1.35-1.62), neural tube defects (aOR=1.64, 95%CI 1.08-2.47) and hypospadias
58 59 60	234	(aOR=1.27, 95%CI 1.05-1.54) in adjusted analyses. Significantly decreased odds for

Page 13 of 46

BMJ Open

1		12
2 3 4	235	APGAR score <7 at one minute were found in the crude analysis (cOR=0.96, 95%CI
5 6	236	0.92-0.99), however when adjusted for year of delivery, maternal age at delivery,
/ 8 9	237	SIMD, first gestational booking and type of delivery, the significance changed
10 11	238	direction showing significantly increased odds (aOR=1.18, 95%CI 1.13-1.23). A
12 13	239	significantly lower standardised birthweight score (p=0.046, 95%CI 0.032-0.059) was
14 15 16	240	found for the exposure group compared to no analgesic at all. Cryptorchidism
16 17 18	241	(aOR=0.92, 95%CI 0.77-1.11), amniotic band defects (aOR=1.02, 95%CI 0.71-1.47),
19 20	242	gastroschisis (aOR=1.10, 95%CI 0.56-2.20) and the composite outcome variable
21 22	243	(aOR=1.12, 95%CI 0.99-1.26), were all associated with increased odds in the
23 24 25	244	exposure group compared to not exposed, however the association was not
26 27	245	significant in the adjusted model. There was no significant association between
28 29	246	neonatal death and exposure to at least one analgesic in the crude analysis
30 31 32	247	(cOR=1.19, 95%CI 0.99-1.42), however there were significantly higher odds of
33 34	248	neonatal death in the adjusted analysis (aOR=1.56, 95%CI 1.27-1.93) in the
35 36	249	exposed group compared to control.
37 38	250	
39 40		
41 42	251	Paracetamol and neonatal outcomes
43 44 45	252	In the sub-group analysis considering only paracetamol consumption during
46 47	253	pregnancy as our exposure group, most of the associations reported in the main
48 49	254	analysis remained significant with the same direction of significance (Table 2). The
50 51 52	255	differences were: maternal paracetamol consumption during pregnancy was
53 54	256	associated with significantly decreased odds for offspring HBW (cOR=0.94, 95%CI
55 56	257	0.90-0.99) in the crude analysis however significance was lost in the adjusted model
57 58 59 60	258	(aOR=0.98, 95%CI 0.93-1.02), and there were no significant associations in the

2		
3 4	259	adjusted models for neural tube defects (aOR=1.21, 95%CI 0.71-2.06) and
5 6 7	260	hypospadias (aOR=1.07, 95%Cl 0.84-1.37).
7 8 9 10	261	
11 12 13	262	Aspirin/naproxen/ibuprofen and neonatal outcomes
14 15	263	Consumption of at least one analgesic from aspirin, naproxen or ibuprofen during
16 17 18 19 20 21 22 22	264	pregnancy was compared against the same control group of pregnancies where no
	265	analgesic was used (Table 2). Again, when comparing associations between groups
	266	in this sub-group analysis and main analysis, fewer outcome variants showed similar
23 24 25	267	significance pattern. The only shared significant associations were for increased
25 26 27 28 29 30 31 32	268	odds for premature delivery (aOR=1.42, 95%CI 1.08-1.86), stillbirth (aOR=2.34,
	269	95%CI 1.29-4.25) and baby admission to neonatal unit (aOR=1.54, 95%CI 1.22-
	270	1.94) in the adjusted regression analyses.
32 33 34	271	
35 36 37 38	272	Diclofenac and neonatal outcomes
39 40	273	In the sub-group analysis of pregnancies coinciding with non-prescription, over-the-
41 42 42	274	
43 44	274	counter, availability of diclofenac (years 2005-2015) were considered, and outcomes
45	274	counter, availability of diclofenac (years 2005-2015) were considered, and outcomes compared between the diclofenac group and no analgesic consumption group (Table
45 46 47	274 275 276	 counter, availability of diclofenac (years 2005-2015) were considered, and outcomes compared between the diclofenac group and no analgesic consumption group (Table 3). Compared to the main analysis, diclofenac consumption during pregnancy was
45 46 47 48 49	274 275 276 277	counter, availability of diclofenac (years 2005-2015) were considered, and outcomes compared between the diclofenac group and no analgesic consumption group (Table 3). Compared to the main analysis, diclofenac consumption during pregnancy was not significantly associated with premature delivery (aOR=1.10, 95%Cl 0.99-1.22),
45 46 47 48 49 50 51 52	274 275 276 277 278	counter, availability of diclofenac (years 2005-2015) were considered, and outcomes compared between the diclofenac group and no analgesic consumption group (Table 3). Compared to the main analysis, diclofenac consumption during pregnancy was not significantly associated with premature delivery (aOR=1.10, 95%Cl 0.99-1.22), neonatal death (aOR=1.26, 95%Cl 0.73-2.15) and APGAR score <7 in one minute
45 46 47 48 49 50 51 52 53 54	274 275 276 277 278 279	counter, availability of diclofenac (years 2005-2015) were considered, and outcomes compared between the diclofenac group and no analgesic consumption group (Table 3). Compared to the main analysis, diclofenac consumption during pregnancy was not significantly associated with premature delivery (aOR=1.10, 95%CI 0.99-1.22), neonatal death (aOR=1.26, 95%CI 0.73-2.15) and APGAR score <7 in one minute (aOR=0.93, 95%CI 0.83-1.04) in the adjusted models. Associations with APGAR
45 46 47 48 49 50 51 52 53 54 55 56	274 275 276 277 278 279 280	counter, availability of diclofenac (years 2005-2015) were considered, and outcomes compared between the diclofenac group and no analgesic consumption group (Table 3). Compared to the main analysis, diclofenac consumption during pregnancy was not significantly associated with premature delivery (aOR=1.10, 95%CI 0.99-1.22), neonatal death (aOR=1.26, 95%CI 0.73-2.15) and APGAR score <7 in one minute (aOR=0.93, 95%CI 0.83-1.04) in the adjusted models. Associations with APGAR score <7 in five minutes (aOR=0.94, 95%CI 0.72-1.23), cryptorchidism (aOR=1.05,
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	274 275 276 277 278 279 280 281	counter, availability of diclofenac (years 2005-2015) were considered, and outcomes compared between the diclofenac group and no analgesic consumption group (Table 3). Compared to the main analysis, diclofenac consumption during pregnancy was not significantly associated with premature delivery (aOR=1.10, 95%CI 0.99-1.22), neonatal death (aOR=1.26, 95%CI 0.73-2.15) and APGAR score <7 in one minute (aOR=0.93, 95%CI 0.83-1.04) in the adjusted models. Associations with APGAR score <7 in five minutes (aOR=0.94, 95%CI 0.72-1.23), cryptorchidism (aOR=1.05, 95%CI 0.78-1.42), amniotic band defects (aOR=0.81, 95%CI 0.41-1.58) and

BMJ Open

and adjusted analyses. Maternal consumption of diclofenac was independently associated with a significant decrease in stillbirth (aOR=0.59, 95%CI 0.41-0.87). It is also interesting to note that diclofenac was the only sub-group analysis agreeing with the main analysis (exposure to at least one analgesic) on the significance of exposure association with increased incidence of neural tube defects (aOR=3.62, 95%CI 1.95-6.74) and hypospadias (aOR=1.49, 95%CI 1.09-2.03) compared to unexposed pregnancies in adjusted models. As most of the outcomes studied were relatively rare the numbers needed to harm were mostly more than 100. Preterm birth, low birthweight and admission to the neonatal unit were exceptions with NNH ranging from 15 to 38. (Tables S1 and S2).

Discussion

Main Findings

Consumption of paracetamol, ibuprofen, aspirin and naproxen during pregnancy, either in combination or separately, was significantly associated with increased premature delivery, stillbirth, neonatal death, LBW, abnormal standardised birthweight score and more frequent admission to neonatal unit. Consumption of paracetamol alone was further associated with higher odds for APGAR score <7 at one and five minutes both in crude and adjusted analyses. There was a dramatic increase in the frequency of over-the-counter (non-prescription) analgesic use in pregnancies between 1985 and 2015, reaching 70.5% of women using those compounds in the final decade of our study. This means that our findings are applicable far beyond the percentage (between 14% and 38%)²⁵ of pregnant women with underlying health deficits related to the adverse outcomes we report here.

Diclofenac use increased steeply from 2005 (Figure 2A), which reflects the change in Scottish legislation, leading to diclofenac becoming available without prescription in that year. Diclofenac use was associated with fewer adverse outcomes but showed increased risk of neural tube defects and hypospadias in male neonates. Furthermore, and surprisingly, exposure to diclofenac only was associated with significant decrease in the incidence of stillbirth. The reasons for such differences between the changes in neonatal outcomes following diclofenac consumption compared with those following use of the other NSAIDS are not clear. The proportion of women using diclofenac, especially in the last 7 years of our study makes it highly unlikely to be due to an underlying maternal condition and/or other compounds used

BMJ Open

in combination (e.g. prescriptions) by women taking diclofenac. It is possible that the drug could act directly on fetal development then this difference could also be due to structural and/or mechanistic differences of the compound compared to the other drugs. However, not enough is known about the specific mechanisms of action of the different analgesics studied to conclude further. Overall, comparing our main analysis with all three sub-analyses, it is evident that the most significant differences were observed when paracetamol was taken with at least one other analgesic. This is mostly due to the high number of pregnancies where paracetamol was used, comprising almost 55% of the exposed cases in the main analysis. Most numbers needed to harm for our outcomes (Tables S1 and S2) ranged between 1000 and 100, apart from preterm birth, low birth weight and baby admission to neonatal unit, which were 27, 38 and 15 respectively for our main analysis further strengthening ez.ez observed associations.

Strengths and Limitations

A major strength of the present study is the large cohort of 151,141 pregnancies over a 30-year study period from 1985 until 2015, using a robust data source AMND. This is one of the largest cohorts used in studies examining the effects of analgesic use during pregnancy. The dataset contains high quality and consistent data from the geographically defined area of Aberdeen and surrounding district, in the North East of Scotland, UK. In addition, as Aberdeen Maternity Hospital is the only maternity hospital serving the area, over 95% of pregnancies in the area are included in the dataset, considerably minimizing the risk for selection bias. We were able to analyse maternal consumption data of the five most commonly used analgesics available

Page 18 of 46

BMJ Open

over-the-counter in the UK and most countries, which is not matched in the current literature. The nature of our data allowed for the analysis of analgesics consumed alone or in combination, unlike most existing studies, and this gives our study the added strength of better reflecting real-life consumption patterns ^{26,27}. We were able to adjust for important confounding factors, relevant to each analysed outcome. Adjustment for maternal deprivation also allowed us to further account for potential unmeasured factors that can influence maternal and neonatal health, which is a major strength of our analysis compared to most studies. A potential concern was that women were probably using analgesics to treat some inherent medical condition which in turn could have been the mediating factor for adverse outcomes. However, since these medications are widely available without prescription, this is unlikely to be a factor that affects the findings of this study. This is especially the case during the "diclofenac analysis" covering 2005-2015, where this study presents results on multiple neonatal outcomes for the given cohort. In this way we offer a comprehensive approach to the exploration of associations with *in* utero analgesic exposure rather than only focusing on a single outcome of interest. Our data were based on medical notes; however, over-the-counter consumption is self-reported, and details on the timing, duration, dosage, product type (single-ingredient vs combination) and administration type were not available in the database. In addition, the group of pregnancies with aspirin consumption might include use of low-dose aspirin which is recommended to help reduce risk of some pregnancy complications and outcomes related to placental function. Most women had their first antenatal clinic visit during the 1st pregnancy trimester, which might imply our results were affected by primarily 1st trimester exposure, although analgesic use in first trimester is most likely replicated in the rest of pregnancy.

Complete case analyses were performed ignoring pregnancies with missing data in the covariates, however due to the low number of missing data there is little chance that this might have affected the validity of our results. Compared to our cohort size, there were, overall, very few cases of cryptorchidism, neural tube defects, amniotic band defects, hypospadias and gastroschisis, resulting in potentially underpowered statistical analyses to detect a difference for these outcomes. Our study only considered neonatal health outcomes and follow-up of the offspring was not available at this time.

Interpretation

Previous literature has considered fewer outcomes with fewer analgesic combinations compared to our study. Consistent with our results, increased risk of preterm birth and miscarriage has been associated with analgesic consumption during pregnancy ^{28–31}, while others reported no associations with miscarriage, stillbirth or preterm delivery ^{20,28,29,32}. Similarly, increased risk for offspring cryptorchidism, hypospadias, neural tube defects, amniotic band defects and gastroschisis have been shown by many studies ^{7–9,33–40}, although, again, a lack of associations with major birth defects have been reported ^{13–17,41,42}. Compared to our analysis, all these studies used a smaller cohort, considered a shorter study time and there was frequent disagreement with respect to the choices of adjusted confounding factors. Another difference is that maternal questionnaires/interviews were frequently the method of choice to evaluate maternal consumption. Some of the studies reported increased risks for specific pregnancy trimesters which is something our study could not evaluate. Differences in study design and adjustment

Page 20 of 46

for different confounders might also account for the disagreement of our results that provide a more accurate assessment. Our study is one of the largest in terms of cohort size, duration, number of analgesics and range of outcomes included which might also contribute to differences compared to other studies. The literature currently reports conflicting evidence, limiting our ability for definite decision-making. Over-the-counter analgesics are recommended to women by healthcare professionals in order to deal with pregnancy symptoms and other conditions. Policy-makers have taken a stand on the topic, either being reassuring about over-the-counter use during pregnancy or recommending caution when consumption is necessary ^{43–46}. Different compounds can affect the mother and the fetus in a different way, and their combined use might worsen the risk for offspring ill health. This study demonstrates the need for additional research, before the field can be confidently directed towards one direction or the other. Whether the associations we report result from flu, fever, rheumatological or inflammatory conditions, and/or combination with other prescribed medications or solely related to over-the-counter analgesics consumption is a matter of further research. Underlying health conditions could well influence the outcomes we see in this study, however, as these could be very different conditions it is biologically unlikely that they are responsible for the effects we observe here. Our study demonstrates an association of maternal over-the-counter analgesic consumption during pregnancy with adverse neonatal offspring outcomes. Future collaborative approaches such as an individual patient data meta-analysis that includes follow-up data on long-term outcomes during childhood and adulthood would significantly inform decision making. Going forward, uncovering the mechanisms of action and off target effects will also provide a solid foundation for the development of pregnancy-

Page 21 of 46

1

BMJ Open

2 3	415	safe compounds. Finally, the findings present here suggest that diclofenac is
4 5	416	associated with fewer changes in risk for the more frequent adverse outcomes
6 7	110	
8 9	417	although it is associated more with rarer, but severe, negative outcomes, including
10 11	418	neural tube defects. Diclofenac may have a lower risk for the main adverse neonatal
12 13	419	outcomes reported for paracetamol. However, it should be noted that our study is not
14 15 16	420	designed to specifically test differences in level of risk between the analgesics
17 18	421	included. Therefore, it should be emphasised that this does not mean that the
19 20 21	422	authors are stating that diclofenac is preferable to paracetamol.
22 23 24	423	
25 26 27	424	Conclusions
27 28 29	425	Pain control is currently a therapeutic priority during pregnancy. Our findings of
30 31	426	increased risk of adverse health outcomes for the offspring following at least first
32 33 34	427	trimester maternal use of readily available over-the-counter analgesics are crucial to
35 36 37	428	information for the management of pain during pregnancy.
38 39	429	
40 41 42 42	430	Acknowledgements: N/A
44 45	431	Disclosure of interests: Professor David Hay is a founder, director and shareholder
46 47 48	432	in Stemnovate Limited. The remaining authors have no interests to disclose.
49 50	433	Contribution to Authorship: AZ, SB and PAF contributed to the conception, design
51 52 53	434	and coordination of the research. EAR provided critical input in the design and
55 55	435	planning of statistical analysis. AZ conducted the statistical analysis and prepared
56 57	436	the manuscript, figures and tables. AZ, SB, PAF, RTM and DCH substantially
58 59 60	437	contributed to the analysis and interpretation of the work. All authors contributed to

1		21
2		
3 4	438	critical discussion of intellectual content, development and review/approval of the
5 6 7	439	final manuscript version.
8 9	440	Funding: This work is supported by the Biotechnology and Biological Sciences
10 11 12 13 14 15 16	441	Research council (BBSRC) funding the lead author under the EASTBIO doctoral
	442	training programme and to PAF, the EU Horizon 2020 project FREIA (Grant Number
	443	825100). RTM is supported by MRC Centre for Reproductive Health Grant
17 18 19	444	MR/N022556/1. The funders had no role in study design, data collection, data
20 21 22	445	analysis, decision to publish, or manuscript preparation.
22 23 24	446	Ethics Statement: The AMND dataset used in this study was fully anonymised,
25 26 27 28 29 30 31	447	therefore there was no requirement for ethical approval. The North of Scotland
	448	Research Ethics Service has devolved Caldicott approval to the Chair of the AMND
	449	steering committee. Approval to access and analyse data was obtained from the
32 33 34	450	AMND steering Committee (AMND 004/2018).
35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55 56 57 58	451	Data Availability Statement: No additional data available.
59 60		

2	2
Z	Z

1			
2 3 4	452	Refe	erences
5 6 7	453	1.	Gendron M-P, Martin B, Oraichi D, Berard A. Health care providers' requests
8 9	454		to Teratogen Information Services on medication use during pregnancy and
10 11 12	455		lactation. Eur J Clin Pharmacol. 2009;65(5):523-531.
13 14	456	2.	Mitchell AA, Gilboa SM, Werler MM, Kelley KE, Louik C, Hernández-Díaz S.
15 16 17	457		Medication use during pregnancy, with particular focus on prescription drugs:
18 19 20	458		1976-2008. Am J Obstet Gynecol. 2011;205(1):51.e1-51.e8.
21 22	459	3.	Werler MM, Mitchell AA, Hernandez-Diaz S, Honein MA. Use of over-the-
23 24	460		counter medications during pregnancy. Am J Obstet Gynecol.
25 26 27	461		2005;193(3):771-777.
28 29 30	462	4.	Glover DD, Amonkar M, Rybeck BF, Tracy TS. Prescription, over-the-counter,
31 32	463		and herbal medicine use in a rural, obstetric population. Am J Obstet Gynecol.
33 34 35	464		2003;188(4):1039-1045.
36 37	465	5.	Lupattelli A, Spigset O, Twigg MJ, et al. Medication use in pregnancy: A cross-
38 39 40	466		sectional, multinational web-based study. BMJ Open. 2014;4(2).
41 42	467	6.	Zafeiri A, Mitchell RT, Hay DC, Fowler PA. Over-the-counter analgesics during
43 44 45	468		pregnancy: a comprehensive review of global prevalence and offspring safety.
46 47 48	469		Hum Reprod Update. Published online October 29, 2020.
49 50	470	7.	Lynberg MC, Khoury MJ, Lu X, Cocian T. Maternal flu, fever, and the risk of
51 52	471		neural tube defects: A population-based case-control study. Am J Epidemiol.
53 54 55	472		1994;140(3):244-255.
56 57 58	473	8.	Werler MM, Louik C, Mitchell AA. Epidemiologic analysis of maternal factors
59 60	474		and amniotic band defects. Birth Defects Res Part A - Clin Mol Teratol.

Page 24 of 46

23

1			
2 3 4	475		2003;67(1):68-72.
5 6 7	476	9.	Snijder CA, Kortenkamp A, Steegers EAP, et al. Intrauterine exposure to mild
8 9 10	477		analgesics during pregnancy and the occurrence of cryptorchidism and
10 11 12	478		hypospadia in the offspring: The Generation R Study. Hum Reprod.
12 13 14 15	479		2012;27(4):1191-1201.
16 17	480	10.	Lind JN, Tinker SC, Broussard CS, et al. Maternal medication and herbal use
18 19	481		and risk for hypospadias: Data from the National Birth Defects Prevention
20 21 22	482		Study, 1997-2007. <i>Pharmacoepidemiol Drug Saf</i> . 2013;22(7):783-793.
23 24 25	483	11.	Interrante JD, Ailes EC, Lind JN, et al. Risk comparison for prenatal use of
25 26 27	484		analgesics and selected birth defects, National Birth Defects Prevention Study
28 29 30	485		1997–2011. Ann Epidemiol. 2017;27(10):645-653.e2.
31 32	486	12.	Philippat C, Gorgis-Allemand L, Chevrier C, et al. Analgesics during pregnancy
33 34 35	487		and undescended testis. <i>Epidemiology</i> . 2011;22(5):747-749.
36 37	488	13.	Hernandez RK, Werler MM, Romitti P, Sun L, Anderka M. Nonsteroidal
38 39 40	489		antiinflammatory drug use among women and the risk of birth defects. In:
41 42	490		American Journal of Obstetrics and Gynecology. Vol 206. Mosby Inc.;
42 43 44 45	491		2012:228.e1-228.e8.
46 47	492	14.	Cassina M, De Santis M, Cesari E, et al. First trimester diclofenac exposure
48 49 50	493		and pregnancy outcome. <i>Reprod Toxicol</i> . 2010;30(3):401-404.
51 52	494	15.	Padberg S, Tissen-Diabaté T, Dathe K, et al. Safety of diclofenac use during
53 54 55	495		early pregnancy: A prospective observational cohort study. Reprod Toxicol.
56 57 58	496		2018;77:122-129.
59 60	497	16.	van Gelder MMHJ, Roeleveld N, Nordeng H. Exposure to non-steroidal anti-

Page 25 of 46

BMJ Open

2	Л
~	4

1			24
2 3 4	498		inflammatory drugs during pregnancy and the risk of selected birth defects: A
5 6 7	499		prospective cohort study. PLoS One. 2011;6(7).
8 9	500	17.	Dathe K, Fietz AK, Pritchard LW, et al. No evidence of adverse pregnancy
10 11 12	501		outcome after exposure to ibuprofen in the first trimester – Evaluation of the
12 13 14	502		national Embryotox cohort. <i>Reprod Toxicol</i> . 2018;79:32-38.
15 16 17	503	18.	Pariente G, Leibson T, Carls A, Adams-Webber T, Ito S, Koren G. Pregnancy-
18 19	504		Associated Changes in Pharmacokinetics: A Systematic Review. Chappell LC,
20 21 22	505		ed. <i>PLoS Med</i> . 2016;13(11):e1002160.
23 24	506	19.	McElhatton PR, Sullivan FM, Volans GN. Paracetamol overdose in pregnancy
25 26 27	507		analysis of the outcomes of 300 cases referred to the teratology information
27 28 29 30	508		service. <i>Reprod Toxicol</i> . 1997;11(1):85-94.
30 31 32	509	20.	Kozer E, Costei AM, Boskovic R, Nulman I, Nikfar S, Koren G. Effects of
33 34	510		aspirin consumption during pregnancy on pregnancy outcomes: Meta-analysis.
35 36 37	511		Birth Defects Res Part B - Dev Reprod Toxicol. 2003;68(1):70-84.
38 39	512	21.	Nitsche JF, Patil AS, Langman LJ, et al. Transplacental Passage of
40 41 42	513		Acetaminophen in Term Pregnancy. Am J Perinatol. 2017;34(6):541-543.
43 44 45	514	22.	Ayorinde AA, Wilde K, Lemon J, Campbell D, Bhattacharya S. Data resource
46 47	515		profile: The Aberdeen Maternity and Neonatal Databank (AMND). Int J
48 49 50	516		<i>Epidemiol</i> . 2016;45(2):389-394.
51 52 53	517	23.	Campbell D, Hall M, Lemon J, Carr-Hill R, Pritchard C, Samphier M. Clinical
55 54 55	518		birthweight standards for a total population in the 1980s. BJOG An Int J Obstet
56 57 58	519		<i>Gynaecol</i> . 1993;100(5):436-445.
59 60	520	24.	Textor J, van der Zander B, Gilthorpe MS, Liśkiewicz M, Ellison GT. Robust

2 3 4	521		causal inference using directed acyclic graphs: The R package "dagitty." Int J
- 5 6 7	522		<i>Epidemiol</i> . 2016;45(6):1887-1894.
7 8 9	523	25.	Royal College of Obstetricians and Gynaecologists. RCOG review clarifies
10 11 12	524		pain relief options for women during pregnancy and breastfeeding. Published
12 13 14	525		2018. https://www.rcog.org.uk/en/news/new-rcog-review-clarifies-pain-relief-
15 16 17	526		options-for-women-during-pregnancy-and-breastfeeding/
18 19	527	26.	Sarganas G, Buttery AK, Zhuang W, et al. Prevalence, trends, patterns and
20 21	528		associations of analgesic use in Germany. BMC Pharmacol Toxicol.
22 23 24	529		2015;16(1).
25 26 27 28 29 30 31 32 33 34 35 36 37	530	27.	Hider-Mlynarz K, Cavalié P, Maison P. Trends in analgesic consumption in
	531		France over the last 10 years and comparison of patterns across Europe. Br J
	532		<i>Clin Pharmacol.</i> 2018;84(6):1324-1334.
	533	28.	Rebordosa C, Kogevinas M, Bech BH, Sørensen HT, Olsen J. Use of
	534		acetaminophen during pregnancy and risk of adverse pregnancy outcomes. Int
38 39	535		J Epidemiol. 2009;38(3):706-714.
39 40 41 42	536	29.	Nielsen GL, Sørensen HT, Larsen H, Pedersen L. Risk of adverse birth
43 44	537		outcome and miscarriage in pregnant users of non-steroidal anti-inflammatory
45 46	538		drugs: Population based observational study and case-control study. Br Med J.
47 48 49	539		2001;322(7281):266-270.
50 51 52	540	30.	Czeizel AE, Dudá I, Puhó E. Short-term paracetamol therapy during pregnancy
53 54	541		and a lower rate of preterm birth. Paediatr Perinat Epidemiol. 2005;19(2):106-
55 56 57	542		111.
58 59 60	543	31.	Li Z, Ren A, Liu J, et al. Maternal flu or fever, medication use, and neural tube

Page 27 of 46

1

BMJ Open

2			
3 4	544		defects: A population-based case-control study in northern China. Birth
5 6 7	545		Defects Res Part A - Clin Mol Teratol. 2007;79(4):295-300.
8 9	546	32.	Pastore LM, Hertz-Picciotto I, Beaumont JJ. Risk of stillbirth from medications,
10 11 12	547		illnesses and medical procedures. Paediatr Perinat Epidemiol. 1999;13(4):421-
12 13 14	548		430.
15 16 17	549	33.	Kozer E, Nikfar S, Costei A, Boskovic R, Nulman I, Koren G. Aspirin
18 19	550		consumption during the first trimester of pregnancy and congenital anomalies:
20 21 22	551		A meta-analysis. <i>Am J Obstet Gynecol.</i> 2002;187(6):1623-1630.
23 24	552	34.	Kristensen DM, Hass U, Lesn L, et al. Intrauterine exposure to mild analgesics
25 26 27	553		is a risk factor for development of male reproductive disorders in human and
28 29 20	554		rat. <i>Hum Reprod</i> . 2011;26(1):235-244.
31 32	555	35.	Jensen MS, Rebordosa C, Thulstrup AM, et al. Maternal use of
33 34	556		acetaminophen, ibuprofen, and acetylsalicylic acid during pregnancy and risk
35 36 27	557		of cryptorchidism. <i>Epidemiology</i> . 2010;21(6):779-785.
37 38 39	558	36.	Correy JF, Newman NM, Collins JA, Burrows EA, Burrows RF, Curran JT. Use
40 41 42	559		of prescription drugs in the first trimester and congenital malformations. Aust N
43 44 45	560		Z J Obs Gynaecol. 1991;31(4):340-344.
46 47	561	37.	Lind DV, Main KM, Kyhl HB, et al. Maternal use of mild analgesics during
48 49	562		pregnancy associated with reduced anogenital distance in sons: A cohort
50 51 52	563		study of 1027 mother-child pairs. Hum Reprod. 2017;32(1):223-231.
53 54	564	38.	Werler MM, Mitchell AA, Shapiro S. First trimester maternal medication use in
56 57	565		relation to gastroschisis. <i>Teratology</i> . 1992;45(4):361-367.
58 59 60	566	39.	Torfs CP, Katz EA, Bateson TF, Lam PK, Curry CJR. Maternal medications
2 3	567		and environmental exposures as risk factors for gastroschisis. <i>Teratology</i> .
----------------------------	-----	-----	--
4 5	568		1996:54(2):84-92
6 7	500		1000,04(2).04 02.
8 9	569	40.	M. Werler M, Sheehan JE, Mitchell AA. Maternal medication use and risks of
10 11 12	570		gastroschisis and small intestinal atresia. Am J Epidemiol. 2002;155(1):26-31.
13 14 15	571	41.	Slone D, Heinonen OP, Kaufman DW, Siskind V, Monson RR, Shapiro S.
16 17	572		ASPIRIN AND CONGENITAL MALFORMATIONS. Lancet.
18 19 20	573		1976;307(7974):1373-1375.
21 22	574	42.	Shaw GM, Todoroff K, Velie EM, Lammer EJ. Maternal illness, including fever,
23 24 25	575		and medication use as risk factors for neural tube defects. Teratology.
25 26 27	576		1998;57(1):1-7.
28 29 30	577	43.	Mosley II JF, Smith LL, Dezan MD. An overview of upcoming changes in
31 32	578		pregnancy and lactation labeling information. Pharm Pract (Granada).
33 34 35	579		2015;13(2):605.
36 37	580	44.	SMFM (Society for Maternal-Fetal Medicine Publications Committee). Prenatal
38 39	581		acetaminophen use and outcomes in children. Am J Obstet Gynecol.
40 41 42	582		2017;216(3):B14-B15.
43 44 45	583	45.	Bisson DL, Newell SD, Laxton C. Antenatal and Postnatal Analgesia: Scientific
46 47	584		Impact Paper No. 59. BJOG An Int J Obstet Gynaecol. 2018;(59).
48 49 50	585	46.	RCOG. RCOG review clarifies pain relief options for women during pregnancy
51 52	586		and breastfeeding. Published 2018. https://www.rcog.org.uk/en/news/new-
53 54 55	587		rcog-review-clarifies-pain-relief-options-for-women-during-pregnancy-and-
56 57 58 59 60	588		breastfeeding/

 For peer review only

Table 2. (omparison of offspri	ng outcomes betwee	en control (no analgési	c) and groups exposed	a to at least one and	algesic, only paraceta	mol, and at least one i	rom ibuproten,	aspirin, naproxen.	
Outcome	No analgesic s (n=107,143) n (%)	At least one analgesic (n=43,998) n (%)	Crude OR (CI 95%)	Adjusted OR (95% CI)	Paracetamol (n=24,099) n (%)	Crude OR (95% CI)	Adjusted OR (95% CI)	lbu/Asp/Na pr (n=762) n (%)	Crude OR (95% CI)	Adjusted OR (95% CI)
Gestation	at delivery (weeks)	1			T			1		
>=37	100,879 (94.2)	39,838 (90.5)	1.00	1.00	21,589 (89.6)	1.00	1.00	697 (91.5)	1.00	1.00
7 <37	6,264 (5.8)	4,160 (9.5)	1.68 (1.61-1.75)	1.50 (1.43-1.58) ^a	2,510 (10.4)	1.87 (1.78-1.97)	1.56 (1.48-1.65) ^a	65 (8.5)	1.50 (1.16-1.94)	1.42 (1.08-1.86) a
B Pregnanc	y outcome	•								
9 Livebirth	105,949 (98.9)	43,407 (98.7)	1.00	1.00	23,704 (98.4)	1.00	1.00	747 (98.0)	1.00	1.00
10 Stillbirth	803 (0.7)	405 (0.9)	1.23 (1.09-1.39)	1.33 (1.15-1.54) ^a	275 (1.1)	1.53 (1.33-1.76)	1.52 (1.30-1.77) ^a	13 (1.7)	2.30 (1.32-3.99)	2.34 (1.29-4.25) ^a
11 Neonatal 12 Death	373 (0.3)	182 (0.4)	1.19 (0.99-1.42)	1.56 (1.27-1.93) ª	117 (0.5)	1.40 (1.14-1.73)	1.56 (1.24-1.96) ª	2 (0.3)	0.76 (0.19-3.06)	0.93 (0.23-3.74) ª
13 Missing	18 (<0.1)	4 (<0.1)	n/a	n/a	3 (<0.1)	n/a	n/a	0 (0.0)	n/a	n/a
14 Weight o	baby (grams)	1		r	1	1 -	· ·			1 ·
15 NBW	87,966 (82.1)	34,555 (78.6)	1.00	1.00	19,163 (79.5)	1.00	1.00	605 (79.5)	1.00	1.00
16 LBW	5,910 (5.5)	3,571 (8.1)	1.54 (1.47-1.61)	1.28 (1.20-1.37) b	2,213 (9.2)	1.72 (1.63-1.81)	1.60 (1.51-1.69) b	59 (7.7)	1.45 (1.11-1.90)	1.29 (0.91-1.83) •
17 HBW	13,233 (12.4)	5,863 (13.3)	1.13 (1.09-1.17)	1.09 (1.05-1.13) b	2,720 (11.3)	0.94 (0.90-0.99)	0.98 (0.93-1.02) b	97 (12.7)	1.07 (0.86-1.32)	0.99 (0.80-1.24) b
18 Missing	34 (<0.1)	9 (<0.1)	n/a	n/a	3 (<0.1)	n/a	n/a	1 (0.1)	n/a	n/a
19 Standard	sed Birthweight Sco	re§	-				-			
20 Mean (SD) 0.001 (0.003)	-0.002 (0.065)	0.03 (0.02-0.04)	0.046 (0.032- 0.059) °	0.001 (0.991)	-0.04 (-0.058 0.029)	-0.014 (-0.029- 0.001) ^c	0.046 (0.038)	0.045 (-0.029- 0.119)	0.049 (-0.025- 0.123) °
Admitted	to neonatal unit								,	,
23 NO	62,378 (58.2)	32,391 (73.6)	1.00	1.00	16,342 (67.8)	1.00	1.00	480 (63.0)	1.00	1.00
Yes	11,011 (10.3)	7,448 (16.9)	1.30 (1.26-1.35)	1.57 (1.51-1.64) b	3,956 (16.4)	1.37 (1.32-1.43)	1.45 (1.38-1.53) b	117 (15.4)	1.38 (1.13-1.69)	1.54 (1.22-1.94)
24 25 Missing	33,754 (31.5)	4,159 (9.5)	n/a	n/a	3,801 (15.8)	n/a	n/a	762 (21.7)	n/a	n/a
APGAR so	ore at 1 min	1	·		1			1	· ·	
7 Normal	92,217 (86.1)	38,224 (86.9)	1.00	1.00	20,593 (85.5)	1.00	1.00	659 (86.5)	1.00	1.00
28 <7	14,335 (13.4)	5,674 (12.9)	0.96 (0.92-0.99)	1.18 (1.13-1.23) d	3,437(14.3)	1.07 (1.03-1.12)	1.23 (1.18-1.28) d	101 (13.3)	0.99 (0.80-1.22)	1.07 (0.86-1.32) d
29 Missing	591 (0.6)	100 (0.2)		n/a	69 (0.3)	n/a	n/a	2 (0.3)	n/a	n/a
30 APGAR so	ore at 5 min									
31 Normal	104,292 (97.3)	42,730 (97.1)	1.00	1.00	23,334 (96.8)	1.00	1.00	738 (96.9)	1.00	1.00
32 <7	2,216 (2.1)	1,163 (2.6)	1.28 (1.19-1.38)	1.48 (1.35-1.62) d	690 (2.9)	1.39 (1.28-1.52)	1.53 (1.40-1.68) ^d	21 (2.8)	1.34 (0.87-2.07)	1.52 (0.97-2.36) d
33 Missing	635 (0.6)	105 (0.2)	n/a	n/a	75 (0.3)	n/a	n/a	3 (0.4)	n/a	n/a
34 Cryptorch	idism (only males in	cluded)			1	1			1	
35 No	54,509 (99.3)	22,616 (99.0)	1.00	1.00	12,247 (99.1)	1.00	1.00	394 (99.4)	1.00	1.00
36 Yes	357 (0.7)	236 (1.0)	1.59 (1.35-1.88)	0.92 (0.77-1.11) ^b	107 (0.9)	1.33 (1.07-1.66)	0.87 (0.69-1.09) b	1 (0.3)	0.39 (0.05-2.77)	0.28 (0.04-1.98) •
Noural Tu	ha Dafacts	•	· · ·		•					

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

44 45 46 2.29 (0.56-9.37)^b

1.91 (0.78-4.68)^b

1.11 (0.55-2.23) ^b

1.00

n/a

1.00

1.00

1.00

n/a

1.00

3.13 (0.77-12.73)

2.70 (1.11-6.59)

1.45 (0.72-2.93)

2										
3	No	107,093 (99.9)	43,928 (99.8)	1.00	1.00	24,077 (99.9)	1.00	1.00	762 (100)	1.00
4	Yes	50 (0.1)	70 (0.2)	3.41 (2.37-4.91)	1.64 (1.08-2.47) b	22 (0.1)	1.96 (1.19-3.23)	1.21 (0.71-2.06) b	0 (0.0)	n/a
5	Amniotic B	and Defects				1				
6	No	107,053 (99.9)	43,936 (99.9)	1.00	1.00	24,070 (99.9)	1.00	1.00	760 (99.7)	1.00
7	Yes	90 (0.1)	62 (0.1)	1.68 (1.21-2.32)	1.02 (0.71-1.47) b	29 (0.1)	1.43 (0.94-2.18)	0.98 (0.63-1.52) b	2 (0.3)	3.13 (0.77-12.7
8	Hypospadia	as (only males inclu	ded)		_	-	_	_		
9	No	54,607 (99.5)	22,600 (98.9)	1.00	1.00	12,258 (99.2)	1.00	1.00	390 (98.7)	1.00
10	Yes	259 (0.3)	252 (1.1)	2.35 (1.98-2.80)	1.27 (1.05-1.54) ^b	96 (0.8)	1.65 (1.31-2.09)	1.07 (0.84-1.37) ^b	5 (1.3)	2.70 (1.11-6.59
11	Gastroschi	sis	1		1	T	1		T	
12	No	107,120 (99.9)	43,979 (99.9)	1.00	1.00	24,089 (99.9)	1.00	1.00	762(100)	1.00
13	Yes	23 (0.1)	19 (0.1)	2.01 (1.10-3.70)	1.10 (0.56-2.20) •	10 (0.1)	1.93 (0.92-4.06)	0.99 (0.45-2.21) •	0 (0.0)	n/a
14	At least on	e outcome*				1			1	1
15	No	106,367 (99.3%)	43,363 (98.6%)	1.00	1.00	23,835 (98.9%)	1.00	1.00	754 (99.0%)	1.00
16	Yes	776 (0.7%)	635 (1.4%)	2.01 (1.81-2.23)	1.12 (0.99-1.26) ^b	264 (1.1%)	1.52 (1.32-1.75)	0.97 (0.84-1.13) ^b	8 (1.0%)	1.45 (0.72-2.93
1/	591	n/a, not applic	able; n, number	of pregnancies						
18	592	^a Adjusted for	year of delivery,	maternal age at de	elivery, SIMD, first	gestational boo	oking, maternal h	ypertensive disord	lers, materna	l antepartum
19	593	haemorrhage								
20	594	^b Adjusted for	vear of delivery.	maternal age at de	elivery, SIMD, first	gestational bo	oking, gestation a	t deliverv		
21	505	Adjusted for	year of delivery,	maternal age at d	olivory SIMD first	gostational bo	oking	cuchicity		
22	595	Aujusteu Ion	year of delivery, i	inaternal age at ut	elivery, Shvid, first	gestational bot				
20	596	"Adjusted for y	year of delivery, i	maternal age at de	elivery, Slivid, first	gestational boo	oking, type of deli	very		
27	597	§ Linear regres	sion analysis rep	orting differences	with 95% Cl					
25	598	*Including cryp	otorchidism, neu	ral tube defects, a	mniotic band defe	ects, hypospadia	as, gastroschisis			
20										
28										
20										
30										
31										
32										
33										
34										
35										
36										
37										
38										
39										
40										
41										
42										
43								atala ta ang barant		
				For pe	er review only - http	o://bmjopen.bmj	.com/site/about/gi	uidelines.xhtml		

Table 3. Sub-group regression analysis comparing pregnancies unexposed to any analgesic and those exposed to diclofenac (vears 2005-2015).

Outcomes	No analgesic (n=20,544)	Diclofenac 2005-2015		
Cuttonico	n (%)	(n=10,291) n (%)	Crude OR (Cl 95%)	Adjusted OR (CI 95%)
Gestation at o	delivery (weeks)			
>=37	19,407 (94.5%)	9,640 (93.7%)	1.00	1.00
<37	1,137 (5.5%)	651 (6.3%)	1.15 (1.04, 1.27)	1.10 (0.99, 1.22) ^a
Pregnancy ou	tcome			
Livebirth	20,393 (99.3%)	10,227 (99.4%)	1.00	1.00
Stillbirth	116 (0.5%)	39 (0.4%)	0.67 (0.47, 0.96)	0.59 (0.41, 0.87) ^a
Neonatal	35 (0.2%)	25 (0.2%)	1.42 (0.85, 2.38)	1.26 (0.73, 2.15) ^a
Death				
Weight of bal	by (grams)			
NBW	16,869 (82.1%)	8,116 (78.9%)	1.00	1.00
LBW	965 (4.7%)	572 (5.6%)	1.23 (1.11, 1.37)	1.22 (1.07, 1.40) ^b
HBW	2,707 (13.2%)	1,600 (15.5%)	1.23 (1.15, 1.31)	1.21 (1.13, 1.29) ^b
Missing	3 (0.0%)	3 (0.0%)		
Standardised	Birthweight Score §	-		
	-0.039 (0.959)	0.132 (1.036)	0.171 (0.145, 0.197)	0.167 (0.141, 0.193) ^c
Admitted to r	neonatal unit			
No	18,224 (88.7%)	8,747 (85.0%)	1.00	1.00
Yes	2,175 (10.6%)	1,492 (14.5%)	1.43 (1.33, 1.53)	1.46 (1.35, 1.58) ^b
Missing	145 (0.7%)	52 (0.5%)		
APGAR score	at 1 min			
Normal	18,709 (91.1%)	9,350 (<mark>9</mark> 0.9%)	1.00	1.00
<7	1,658 (8.1%)	924 (9.0%)	1.12 (1.03, 1.21)	0.93 (0.83, 1.04) ^d
Missing	177 (0.9%)	17 (0.2%)		
APGAR score	at 5 min			
Normal	20,065 (97.7%)	10,096 (98.1%)	1.00	1.00
<7	302 (1.5%)	177 (1.7%)	0.86 (0.71, 1.04)	0.94 (0.72, 1.23) ^d
Missing	177 (0.9%)	18 (0.2%)		
Cryptorchidis	m (only males include	ed)		
No	10,284 (98.7%)	5,314 (98.7%)	1.00	1.00
Yes	133 (1.3%)	70 (1.3%)	1.02 (0.76, 1.36)	1.05 (0.78, 1.42) ^b
Neural Tube I	Defects			
No	20,527 (99.9%)	10,263 (99.7%)	1.00	1.00
Yes	17 (0.1%)	28 (0.3%)	3.29 (1.80, 6.02)	3.62 (1.95, 6.74) ^b
Amniotic Ban	d Defects			<u> </u>
No	20,514 (99.9%)	10,277 (99.9%)	1.00	1.00
Yes	30 (0.1%)	14 (0.1%)	0.93 (0.49, 1.76)	0.81 (0.41, 1.58) b
Hypospadias	(only males included)			
No	10,317 (99.0%)	5,308 (98.6%)	1.00	1.00
Yes	100 (1.0%)	76 (1.4%)	1.48 (1.09, 1.99)	1.49 (1.09, 2.03) ^b
Gastroschisis	1			1
No	20,538 (99.9%)	10,284 (99.9%)	1.00	1.00
Yes	6 (0.1%)	7 (0.1%)	2.33 (0.78, 6.94)	2.93 (0.97, 8.88) ^b
At least one o	outcome*	1		
No	20,258 (98.6%)	10,097 (98.1%)	1.00	1.00
Vac	286 (1.4%)	194 (1 9%)	1 36 (1 13 1 64)	1 38 (1 15 1 67) ^b

^a Adjusted for year of delivery, maternal age at delivery, SIMD, first gestational booking, maternal hypertensive disorders, maternal antepartum haemorrhage

^b Adjusted for year of delivery, maternal age at delivery, SIMD, first gestational booking, gestation at delivery

^c Adjusted for year of delivery, maternal age at delivery, SIMD, first gestational booking

 ⁴Adjusted for year of delivery, maternal age at delivery, SIMD, first gestational booking, type of delivery ⁵ Unear regression analysis reporting differences with 95% CI ⁸ Including cryptorchidism, neural tube defects, amniotic band defects, hypospadias, gastroschisis 	1		52
 Adjusted for year of delivery, maternal age at delivery, SIMD, first gestational booking, type of delivery 507 § Linear regression analysis reporting differences with 95% CI *Including cryptorchidism, neural tube defects, amniotic band defects, hypospadias, gastroschisis 	2		
606 delivery 907 § Linear regression analysis reporting differences with 95% CI 608 *Including cryptorchidism, neural tube defects, amniotic band defects, hypospadias, gastroschisis 709 *Including cryptorchidism, neural tube defects, amniotic band defects, hypospadias, gastroschisis 701 *Including cryptorchidism, neural tube defects, amniotic band defects, hypospadias, gastroschisis 701 *Including cryptorchidism, neural tube defects, amniotic band defects, hypospadias, gastroschisis 703 *Including cryptorchidism, neural tube defects, amniotic band defects, hypospadias, gastroschisis 701 *Including cryptorchidism, neural tube defects, amniotic band defects, hypospadias, gastroschisis 702 *Including cryptorchidism, neural tube defects, amniotic band defects, hypospadias, gastroschisis 703 *Including cryptorchidism, neural tube defects, amniotic band defects, hypospadias, gastroschisis 703 *Including cryptorchidism, neural tube defects, amniotic band defects, hypospadias, gastroschisis 703 *Including cryptorchidism, neural tube defects, amniotic band defects, hypospadias, gastroschisis 703 *Including cryptorchidism, neural tube defects, amniotic band defects, hypospadias, gastroschisis 703 *Including cryptorchidism, neural tube defects, hypospadias, gastroschisis 703 *Including cryptorchidism, ne	3	605	^d Adjusted for year of delivery, maternal age at delivery, SIMD, first gestational booking, type of
 § Linear regression analysis reporting differences with 95% Cl *Including cryptorchidism, neural tube defects, amniotic band defects, hypospadias, gastroschisis *Including cryptorchidism, neural tube defects, amniotic band defects, hypospadias, gastroschisis 	4	606	delivery
608 *Including cryptorchidism, neural tube defects, amniotic band defects, hypospadias, gastroschisis	5	607	δ Linear regression analysis reporting differences with 95% Cl
recound of the second secon	6	609	*Including cryptorchidicm, noural tubo defects, amniotic band defects, hyperpadias, gastroschicis
s 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 44 45 57 58 59 50 57 58 59 50 57 58 59 50 57 58 59 50 50 57 58 59 50 50 57 58 59 50 50 57 58 59 50 50 50 50 50 50 50 50 50 50	/	608	including cryptorchidism, neural tube delects, anniotic band delects, hypospadias, gastroschisis
	ð O		
	9 10		
	11		
	12		
	13		
	14		
	15		
	16		
	17		
	18 10		
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 55 56 57 58 59 60 60 60 60 77 78 78 78 78 78 78 78 78 78	20		
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 66 60	21		
23 24 24 25 26 27 28 29 30 31 31 32 32 34 33 34 34 35 36 37 37 38 38 39 40 36 41 37 42 36 43 36 44 36 45 37 46 37 47 38 48 49 50 56 51 56 52 56 56 56 57 58 58 59 59 56 59 56 50 56 57 56 58 56 59 56 50 56 57 56 58 56 <tr td=""> 57</tr>	22		
	23		
	24		
	25 26		
	20		
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 60	28		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 99 50 51 52 53 54 55 56 57 58 59 60	29		
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 57 58 56 57 58 59 60	30		
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	31		
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	33		
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	34		
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	35		
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	36		
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	37 38		
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	39		
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	40		
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	41		
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	42		
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	43		
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	44 45		
 47 48 49 50 51 52 53 54 55 56 57 58 59 60 	46		
 48 49 50 51 52 53 54 55 56 57 58 59 60 	47		
49 50 51 52 53 54 55 56 57 58 59 60	48		
50 51 52 53 54 55 56 57 58 59 60	49		
52 53 54 55 56 57 58 59 60	50 51		
53 54 55 56 57 58 59 60	57 52		
54 55 56 57 58 59 60	53		
55 56 57 58 59 60	54		
56 57 58 59 60	55		
57 58 59 60	56		
50 59 60	57		
60	58 59		
	60		

2 3	600	Figure 1 Flowchart of cohort selection and sub-group analyses n=number of
4 5	009	rigure 1. Howenant of conort selection and sub-group analyses. In-humber of
5 6 7	610	pregnancies in each analysis.*98.3% of pregnancies using only diclofenac occurred
7 8 9	611	during 2005-2015, therefore analysis was performed only on data from that decade
10 11 12 13	612	to rule out any temporal effect.
14 15 16 17 18		
19 20 21 22 23		
23 24 25 26		
27 28		
29 30		
31 32		
33		
34 35		
36 37		
38		
40		
41 42		
43		
44 45		
46 47		
48		
49 50		
51 52		
52 53		
54 55		
56		
57 58		
59 60		
00		

1 ว		
2 3 4	614	Figure 2. Prevalence of use during pregnancy for each analgesic sub-group over our
5 6	615	30-year study period. (A) Merge graph showing percentage of pregnancies using
/ 8 9	616	each analgesic group during pregnancy. (B) Percentage of use for at least one
10 11	617	analgesic out of ibuprofen, aspirin, naproxen. *In 2005 there was a change in
12 13	618	legislation making diclofenac available without prescription.
$\begin{array}{c} 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 546\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$	619	

Figure S1. Directed acyclic graph (DAG) of exposure to outcome path and relevant

measured and unmeasured biasing factors in our analysis.

 BMJ Open

Baseline Characteristics	No analgesic (n=107,143) n (%)	At least one analgesic (n=43,998) n (%)	P value†	Paracetamol (n=24,099) n (%)	P value†	Ibuprofen/ Aspirin/ Naproxen (n=762) n (%)	P value†	No analgesic 2005-2015 (n=20,544) n (%)	Diclofenac 2005-2015 (n=10,291) n (%)	P value‡
Year of delivery			•		•					
1985-1994	50,152 (46.8)	5,737 (13.0)	<0.001	5,390 (22.4)	<0.001	213 (28.0)	<0.001	n/a	n/a	<0.001
1995-2004	36,447 (34.0)	7,263 (16.5)		6,571 (27.3)		321 (42.1)		n/a	n/a	
2005-2015 /	20,544 (19.2)	30,998 (70.5)		12,138 (50.4)		228 (29.9)		n/a	n/a	
2005-2009 *	n/a	n/a		n/a		n/a		11,105 (54.1)	4,021 (39.1)	
2010-2015 *	n/a	n/a		n/a		n/a		9,439 (45.9)	6,270 (60.9)	
Maternal age at del	ivery							•	•	
Younger than 20	9,236 (8.6)	3,834 (8.7)	<0.001	2,936 (12.2)	<0.001	34 (4.5)	<0.001	1,286 (6.3)	311 (3.0)	<0.001
20-25	24,249 (22.6)	8,700 (19.8)		5,932 (24.6)		113 (14.8)		3,436 (16.7)	1,152 (11.2)	
26-35	63,499 (59.3)	25,367 (57.7)		12,896 (53.5)		464 (60.9)		12,664 (61.1)	6,628 (64.4)	
Older than 35	10,159 (9.5)	6,097 (13.9)		2,335 (9.7)		151 (19.8)		3,158 (15.4)	2,200 (21.4)	
Previous Parity						1		•	•	
Nulliparity (0)	48,684 (45.4)	23,353 (53.1)	<0.001	12,510 (51.9)	<0.001	300 (39.4)	0.004	8,336 (40.6)	5,004 (48.6)	<0.001
Multiparity (1-11)	58,457 (54.6)	20,639 (46.9)		11,587 (48.1)		462 (60.6)		12,206 (59.4)	5,284 (51.4)	
Missing	2 (<0.1) §	6 (<0.1) §		2 (<0.1)§		0 (0.0)§		2 (<0.1)§	3 (<0.1) §	
Maternal BMI								•		
Underweight (<18.5)	1,998 (2.4)	869 (2.2)	<0.001	545 (2.6)	<0.001	10 (1.5)	0.007	492 (2.7)	174 (1.9)	<0.001
Normal weight (18.5-24.9)	50,127 (60.8)	18,958 (48.8)		10,486 (50.5)		361 (55.)		10,239 (55.2)	4,671 (50.0)	
Overweight (25.0-29.9)	20,500 (24.9)	10,960 (28.2)		5,733 (27.6)		192 (29.5)		4,930 (26.6)	2,630 (28.1)	
Obese (> 30.0)	9,773 (11.9)	8,046 (20.7)		3,995 (19.2)		88 (13.5)		2,881 (15.5)	1,871 (20.0)	
<u>Missing data</u>	24,745 (23,1) §	5.165 (11.7) §	1	3.340 (13.9) §	1	111 (14.6)	1	2.002 (9.7) §	945 (9,2) §	1

T. I.I. A ~ . . . r r . _

Page	38	of	46
· uge		۰.	

1 st Trimester	69,896 (65.4)	36,789 (83.7)	<0.001	19,075 (79.2)	<0.001	569 (75.0)	<0.001	18,155 (88.4)	9,185 (89.4)	0.036
2 nd Trimester	29,269 (27.4)	5,791 (13.2)		4,117 (17.1)		166 (21.9)		1,770 (8.6)	829 (8.1)	
3 rd Trimester	7,741 (7.2)	1,376 (3.1)		890 (3.7)		24 (3.2)		605 (2.9)	264 (2.6)	
Missing	237 (0.2) §	42 (0.1) §		17 (0.1) §		3 (0.4) §		14 (0.1) §	13 (0.1) §	
Maternal smoking S	Status		•		•		•			•
Unknown	6,505 (6.1) §	819 (1.9) §	<0.001	500 (2.1) §	<0.001	32 (4.2) §	0.132	448 (2.2) §	155 (1.5) §	<0.00
Ex-smoker	5,952 (5.6)	3,363 (7.6)		1,923 (8.1)		35 (4.8)		1,427 (7.1)	660 (6.5)	
Non-smoker	70,319 (69.9)	31,421 (72.8)		15,755 (66.8)		534 (73.2)		15,525 (77.3)	8,368 (82.6)	
Smoker	24,367 (24.2)	8,395 (19.4)		5,921 (25.1)		161 (22.2)		3,144 (15.6)	1,108 (10.9)	
Maternal SIMD Dec	ile		6					÷	·	•
Least Deprived	65,227 (61.8)	25,192 (57.9)	<0.001	12,807 (53.8)	<0.001	501 (66.3)	0.012	12,806 (62.9)	6,714 (66.1)	<0.00
(7-10)										
Most Deprived (1-6)	40,321 (38.2)	18,289 (42.1)		11,017 (46.2)		255 (33.7)		7,564 (37.1)	3,442 (33.9)	
Missing	1,595 (1.5) §	517 (1.2) §	-	275 (1.1) §		6 (0.8) §		174 (0.8) §	135 (1.3) §	
Maternal hypertens	sive disorders	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	I			()0			()0	
None	91,276 (85.2)	35,529 (80.8)	<0.001	18,635 (77.3)	<0.001	636 (83.5)	0.001	18,851 (91.8)	9,273 (90.1)	<0.00
Gestational	13,029 (12.2)	5,501 (12.5)		3,584 (14.9)		88 (11.5)		1,165 (5.7)	690 (6.7)	
Hypertension										
Preeclampsia	2,780 (2.6)	2,941 (6.7)		1,861 (7.7)		38 (5.0)		523 (2.5)	324 (3.1)	
Eclampsia	58 (0.1)	27 (0.1)		19 (0.1)		0 (0.0)		5 (<0.1)	4 (<0.1)	
Maternal antepartu	im haemorrhage	·						÷	·	
No haemorrhage	97,527 (91.0)	37,673 (85.6)	<0.001	20,306 (84.3)	<0.001	684 (89.8)	0.434	18,549 (90.3)	9,244 (89.8)	< 0.00
Abruption	697 (0.7)	468 (1.1)		221 (0.9)		8 (1.0)		103 (0.5)	106 (1.0)	
Placenta previa	308 (0.3)	368 (0.8)		152 (0.6)		2 (0.3)		23 (0.1)	114 (1.1)	
Unspecified	8,611 (8.0)	5,489 (12.5)		3,420 (14.2)		68 (8.9)		1,869 (9.1)	827 (8.0)	1
Type of labour	•	·						÷	·	
Elective Caesarean Section	5,967 (5.6)	6,925 (15.7)	<0.001	1,384 (5.7)	<0.001	67 (8.8)	<0.001	616 (3.0)	3,843 (37.3)	<0.00
Induced	24,120 (22.5)	16,276 (37.0)	-	10,067 (41.8)	-	228 (29.9)		3,895 (19.0)	1,998 (19.4)	1
		, , -7	1	· · /	-		-			-

 BMJ Open

Spontaneous vaginal delivery (SVD)	75,027 (70.1)	19,287 (43.8)	<0.001	15,983 (66.3)	<0.001	496 (65.2)	0.003	16,398 (79.8)	1,403 (13.6)	<0.0
Instrumental	15,409 (14.4)	8,107 (18.4)		4,043 (16.8)		120 (15.8)		2,546 (12.4)	1,927 (18.7)	
Caesarean Section	15,566 (14.5)	16,351 (37.2)		3,879 (16.1)		141 (18.5)		1,509 (7.3)	6,937 (67.4)	
Other	1,096 (1.0)	247 (0.6)		191 (0.8)	-	4 (0.5)		89 (0.4)	24 (0.2)	
Missing	45 (<0.1) §	6 (<0.1) §		3 (<0.1) §		1 (0.1) §		2 (<0.1) §	0 (0.0) §	
Analgesia during la	bour									
No	105,176 (98.2)	36,117 (82.1)	<0.001	20,974 (87.0)	<0.001	729 (95.7)	<0.001	19,915 (96.9)	8,235 (80.0)	<0.0
Yes	1,967 (1.8)	7,881 (17.9)	6	3,125 (13.0)		33 (4.3)		629 (3.1)	2,056 (20.0)	
Baby presentation	at delivery									
Occiput anterior	11,571 (10.8)	8,152 (18.6)	<0.001	2,636 (11.0)	0.525	68 (8.9)	0.093	1,401 (6.8)	2,967 (28.9)	<0.0
Occiput posterior	95,352 (89.2)	35,745 (81.4)		21,409 (89.0)		694 (91.1)		19,100 (93.2)	7,306 (71.1)	
Missing	220 (0.2) §	101 (0.2) §		54 (0.2) §		0 (0.0) §		43 (0.2) §	18 (0.2) §	
Sex of baby								•	·	
Female	52,265 (48.8)	21,139 (48.0)	0.010	11,739 (48.7)	0.861	367 (48.2)	0.732	10,124 (49.3)	4,907 (47.7)	0.00
Male	54,866 (51.2)	22,852 (51.9)		12,354 (51.3)		395 (51.8)		10,417 (50.7)	5,384 (52.3)	
Missing	12 (<0.1) §	7 (<0.1) §		6 (<0.1) §		0 (0.0)§		3 (<0.1)§	0 (0.0) §	

†p value in comparison to the first ("No analgesic") column

‡p value in comparison to "No analgesic 2005-2015" control column

§Percentage of missing data on total, not included in the analysis

Figure 1. Flowchart of cohort selection and sub-group analyses. n=number of pregnancies in each analysis.*98.3% of pregnancies using only diclofenac occurred during 2005-2015, therefore analysis was performed only on data from that decade to rule out any temporal effect.

338x190mm (300 x 300 DPI)

Page 41 of 46

Figure S1. Directed acyclic graph (DAG) of exposure to outcome path and relevant measured and unmeasured biasing factors in our analysis.

338x190mm (300 x 300 DPI)

Table S1. N	lumbers	needed	to ha	arm (I	NNH)	calcu	ulations

Outcomes	No analgesic (n=107,143)	At least one analgesic (n=43,998)		Paracetamol (n=24,099) n (%)		Ibu/Asp/Napr (n=762) n (%)	
	11 (70)	n (%)	NNH		NNH		NNF
Gestation a	t delivery (weeks)	1		1			
>=37	100,879 (94.2)	39,838 (90.5)		21,589 (89.6)		697 (91.5)	
<37	6,264 (5.8)	4,160 (9.5)	27	2,510 (10.4)	22	65 (8.5)	37
Pregnancy	outcome			1			
Livebirth	105,949 (98.9)	43,407 (98.7)		23,704 (98.4)		747 (98.0)	
Stillbirth	803 (0.7)	405 (0.9)	500	275 (1.1)	250	13 (1.7)	100
Neonatal	373 (0.3)	182 (0.4)	1000	117 (0.5)	500	2 (0.3)	n/a
Death							
Missing	18 (<0.1)	4 (<0.1)	n/a	3 (<0.1)	n/a	0 (0.0)	n/a
Weight of b	aby (grams)	1	r	1	r		
NBW	87,966 (82.1)	34,555 (78.6)		19,163 (79.5)		605 (79.5)	
LBW	5,910 (5.5)	3,571 (8.1)	38	2,213 (9.2)	39	59 (7.7)	46
HBW	13,233 (12.4)	5,863 (13.3)	111	2,720 (11.3)	n/a	97 (12.7)	333
Missing	34 (<0.1)	9 (<0.1)	n/a	3 (<0.1)	n/a	1 (0.1)	n/a
Admitted to	o neonatal unit						
No	62,378 (58.2)	32,391 (73.6)		16,342 (67.8)		480 (63.0)	
Yes	11,011 (10.3)	7,448 (16.9)	15	3,956 (16.4)	16	117 (15.4)	20
Missing	33,754 (31.5)	4,159 (9.5)	n/a	3,801 (15.8)	n/a	762 (21.7)	n/a
APGAR sco	re at 1 min						
Normal	92,217 (86.1)	38,224 (86.9)		20,593 (85.5)		659 (86.5)	
<7	14,335 (13.4)	5,674 (12.9)	n/a	3,437(14.3)	111	101 (13.3)	n/a
Missing	591 (0.6)	100 (0.2)		69 (0.3)	n/a	2 (0.3)	n/a
APGAR sco	re at 5 min			(/		()	
Normal	104.292 (97.3)	42.730 (97.1)		23.334 (96.8)		738 (96.9)	
<7	2.216 (2.1)	1.163 (2.6)	200	690 (2.9)	125	21 (2.8)	143
Missing	635 (0.6)	105 (0.2)	n/a	75 (0.3)	n/a	3 (0.4)	n/a
Cryptorchic	lism (only males in	cluded)				0 (01.1)	
No	54 509 (99 3)	22 616 (99 0)		12 247 (99 1)		394 (99 4)	
Yes	357 (0 7)	236 (1 0)	333	107 (0 9)	500	1 (0 3)	n/;
Neural Tub	e Defects	200 (1.0)	333	10, (0.5)	500	1 (0.0)	, 、
No	107 093 (99 9)	43 928 (99 8)	•	24 077 (99 9)		762 (100)	
Yes	50 (0 1)	70 (0 2)	1000	22 (0 1)	n/a	0 (0 0)	n/:
Amniotic B	and Defects	70 (0.2)	1000	22 (0.1)	nya	0 (0.0)	
No		13 936 (99 9)		24 070 (99 9)		760 (99 7)	
Vec	90 (0 1)	62 (0 1)	n/a	29(01)	n/a	2 (0 3)	500
Hypospadia	s (only males inclu	ded)	Π/a	25 (0.1)	Π/a	2 (0.5)	500
No	54 607 (00 5)			12 258 (00 2)		200 (08 7)	
Voc	259 (0 2)	22,000 (30.3)	125	96 (0.8)	200	5 (1 2)	100
Gastroschie	is	232 (1.1)	125	50 (0.0)	200	5 (1.5)	100
Mo		12 070 (00 0)		24.080 (00.0)		762(100)	
Voc	107,120 (99.9)	43,373 (33.3)	n/-	24,009 (99.9)	nla	702(100)	
Tes	23 (U.1)	19 (0.1)	n/a	10 (0.1)	n/a	0 (0.0)	n/a
At least one		42 262 (00 60/)				754 (00.00/)	
INO	(99.3%)	43,363 (98.6%)		23,835 (98.9%)		754 (99.0%)	
Yes	776 (0.7%)	635 (1.4%)	142	264 (1.1%)	250	8 (1.0%)	333

n/a, not applicable

Table S2. Numbers needed to harm (NNH) for exposure to

diclotenac (y	ears 2005-2015).		
	No analgesic	Diclofenac	
Outcomes	(n=20,544)	2005-2015	
outcomes	n (%)	(n=10,291)	
		n (%)	NNH
Gestation at o	delivery (weeks)		
>=37	19,407 (94.5%)	9,640 (93.7%)	
<37	1,137 (5.5%)	651 (6.3%)	125
Pregnancy ou	tcome		
Livebirth	20,393 (99.3%)	10,227 (99.4%)	
Stillbirth	116 (0.5%)	39 (0.4%)	n/a
Neonatal	35 (0.2%)	25 (0.2%)	n/a
Death	· · · ·	, , ,	
Weight of bal	ov (grams)		
NBW	16,869 (82.1%)	8,116 (78.9%)	
LBW	965 (4.7%)	572 (5.6%)	111
HBW	2 707 (13 2%)	1 600 (15 5%)	44
Missing	3 (0.0%)	3 (0.0%)	
Admitted to r	eonatal unit	5 (0.070)	L
No	18 224 (88 7%)	8 747 (85 0%)	
Voc	10,224 (00.770)	1,102 (14 E0/)	26
Missing	2,1/3 (10.0%)	1,452 (14.570)	20
	143(0.7%)	52 (0.5%)	L
APGAR SCORE		0.250 (00.00/)	
	18,709 (91.1%)	9,350 (90.9%)	
</td <td>1,658 (8.1%)</td> <td>924 (9.0%)</td> <td>111</td>	1,658 (8.1%)	924 (9.0%)	111
Missing	177 (0.9%)	17 (0.2%)	
APGAR score	at 5 min		r
Normal	20,065 (97.7%)	10,096 (98.1%)	
<7	302 (1.5%)	177 (1.7%)	500
Missing	177 (0.9%)	18 (0.2%)	
Cryptorchidis	m (only males incluc	led)	
No	10,284 (98.7%)	5,314 (98.7%)	
Yes	133 (1.3%)	70 (1.3%)	n/a
Neural Tube I	Defects		
No	20,527 (99.9%)	10,263 (99.7%)	
Yes	17 (0.1%)	28 (0.3%)	500
Amniotic Ban	d Defects	. ,	
No	20,514 (99.9%)	10,277 (99.9%)	
Yes	30 (0.1%)	14 (0.1%)	n/a
Hypospadias	(only males included		
No	10.317 (99.0%)	5.308 (98.6%)	
Yes	100 (1 0%)	76 (1 4%)	250
Gastroschicic	100 (1.0/0)	/0(1.7/0)	230
No	20 528 (00 0%)	10 284 (00 0%)	
Voc	20,338 (99.9%)	10,264 (99.9%)	r /-
res	0 (U.1%)	/ (U.1%)	n/a
At least one o			1
No	20,258 (98.6%)	10,097 (98.1%)	
Yes	286 (1.4%)	194 (1.9%)	200

n/a, not applicable

	Item		Paragraph
	NO	Recommendation	#
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title	Title &
		or the abstract	Abstract
			Pages 1-3
		(b) Provide in the abstract an informative and balanced summary of	Abstract
		what was done and what was found	Pages 2-3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation	Introductio
		being reported	Page 5
Objectives	3	State specific objectives, including any prespecified hypotheses	Introduction
			Page 5
Methods			
Study design	4	Present key elements of study design early in the paper	Methods
			Page 7
Setting	5	Describe the setting locations and relevant dates including periods	Methods
	U U	of recruitment exposure follow-up and data collection	Page 7
Particinants	6	(a) Give the eligibility criteria and the sources and methods of	Methods
i urticipunto	Ū	selection of participants. Describe methods of follow-up	Pages 7-8
		(b) For matched studies, give matching criteria and number of	n/a
		exposed and unexposed	11/ a
Variables	7	Clearly define all outcomes exposures predictors potential	Methods
v artables	,	confounders, and effect modifiers. Give diagnostic criteria if	Pages 8-9
		applicable	I ages 0 y
Data sources/	8*	For each variable of interest give sources of data and details of	Methods
measurement	0	methods of assessment (measurement). Describe comparability of	Pages 8-9
		assessment methods if there is more than one group	I uges o y
Bias	9	Describe any efforts to address potential sources of bias	Methods
Dius	,	Describe any errors to address potential sources of ones	Pages 7-8
Study size	10	Explain how the study size was arrived at	Methods
Study Size	10	Explain now the study size was unived at	Page 7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	Methods
Qualificative variables	11	applicable describe which groupings were chosen and why	Pages 8-9
Statistical methods	12	(a) Describe all statistical methods including those used to control	Statistical
Statistical methods	12	for confounding	Analysis
		ior contourienty	naragrant
			nages 9-10
		(b) Describe any methods used to examine subgroups and	Statistical
		interactions	Analysis
			paragrant
			pages 9-10
		(c) Explain how missing data were addressed	Statistical
			Analysis
			paragrant
			pages 9-10
		(d) If applicable, explain how loss to follow-up was addressed	n/a
		(e) Describe any sensitivity analyses	n/9
		(c) Describe any sensitivity analyses	11/ A

STROBE Statement—Checklist of items that should be included in reports of cohort studies

2
2
1
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
22
22
34
35
36
37
38
39
40
-10 // 1
41
42
43
44
45
46
47
48
40
49
50
51
52
53
54
55
56
50
5/
58
59
60

Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	Figure 1
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	Results
			Page 11
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic,	Table 1
		clinical, social) and information on exposures and potential confounders	Pages 29-31
		(b) Indicate number of participants with missing data for each	Table 1
		variable of interest	Pages 29-31
		(c) Summarise follow-up time (eg, average and total amount)	n/a
Outcome data	15*	Report numbers of outcome events or summary measures over time	Tables 2 and
			3
			Pages 32-35
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	Tables 2 and
		estimates and their precision (eg, 95% confidence interval). Make	3
		clear which confounders were adjusted for and why they were included	Pages 32-35
		(b) Report category boundaries when continuous variables were	Table 1
		categorized	Pages 29-31
		(c) If relevant, consider translating estimates of relative risk into	Tables 2 and
		absolute risk for a meaningful time period	3
			Pages 32-35
Other analyses	17	Report other analyses done—eg analyses of subgroups and	n/a
		interactions, and sensitivity analyses	
Discussion		4	
Key results	18	Summarise key results with reference to study objectives	Discussion
			Pages 16-17
Limitations	19	Discuss limitations of the study, taking into account sources of	Discussion
		potential bias or imprecision. Discuss both direction and magnitude	Pages 16-18
		of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering	Discussion
		objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Pages 19-21
Generalisability	21	Discuss the generalisability (external validity) of the study results	Discussion
Other information			1 ages 20-21
Funding	22	Give the source of funding and the role of the funders for the present	Manuscript
		study and, if applicable, for the original study on which the present	pages 4 and
		article is based	21

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely

BMJ Open

available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at
http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is
available at http://www.strobe-statement.org.

to beet terien only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Maternal over-the-counter analgesics use during pregnancy and adverse perinatal outcomes: Cohort study of 151,141 singleton pregnancies

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-048092.R2
Article Type:	Original research
Date Submitted by the Author:	07-Mar-2022
Complete List of Authors:	Zafeiri, Aikaterini; University of Aberdeen, School of Medicine, Medical Sciences and Nutrition Raja, Edwin Amalraj; University of Aberdeen, Medical Statistics Team Mitchell, Rod; The University of Edinburgh Hay, David ; University of Edinburgh Bhattacharya, Sohinee; University of Aberdeen Fowler, Paul ; University of Aberdeen
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Obstetrics and gynaecology
Keywords:	OBSTETRICS, CLINICAL PHARMACOLOGY, EPIDEMIOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Title: Maternal over-the-counter analgesics use during pregnancy and adverse
perinatal outcomes: Cohort study of 151,141 singleton pregnancies

Authors: ¹Aikaterini ZAFEIRI, MSci, Ms, ²Edwin A. RAJA, PhD, ³Rod T. MITCHELL, MBChB, PhD, ⁴David C. HAY, PhD, ⁵Sohinee BHATTACHARYA, MBBS, PhD, ¹Paul A. FOWLER, FRSB, PhD

¹Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom, ²Medical Statistics Team, Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom, ³MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4JT, UK, ⁴MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, UK, ⁵Aberdeen Centre for Women's Health Research, Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom, Corresponding Author: Aikaterini Zafeiri, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom, cell phone number: (+44)7713837285, email: r01az17@abdn.ac.uk

Running Title: Maternal over-the-counter analgesia and offspring outcomes

1		-
2		
3 4	20	Abstract
5		
6	21	OBJECTIVES
/		
9	22	To identify any associations between in utero exposure to five over-the-counter (non-
10		
11 12	23	prescription) analgesics (paracetamol, ibuprofen, aspirin, diclofenac, naproxen) and
13		
14 15	24	adverse neonatal outcomes.
16		
17	25	DESIGN
18 19		
20	26	Retrospective cohort study using the Aberdeen Maternity and Neonatal Databank.
21		
22 23	27	PARTICIPANTS
24		
25	28	151 141 singleton pregnancies between 1985 and 2015
20 27	20	
28	20	
29 30	29	MAIN OUTCOME MEASURES
31		
32	30	Premature delivery (<37 weeks), stillbirth, neonatal death, birthweight, standardised
33 34	31	birthweight score neonatal unit admission APGAR score at 1 and 5 minutes neural
35	51	
36	32	tube and amniotic band defects, gastroschisis and, in males, cryptorchidism, and
37		7
39	33	hypospadias.
40 41		
42	34	RESULTS
43		
44 45	35	83.7% of women taking over-the-counter analgesics reported first trimester use
46		
47	36	when specifically asked about use at their first antenatal clinic visit. Pregnancies
48 49	37	exposed to at least one of the five analgesics were significantly independently
50	57	
51 52	38	associated with increased risks for premature delivery <37 weeks (aOR=1.50,
53		
54	39	95%CI 1.43-1.58), stillbirth (aOR=1.33, 95%CI 1.15-1.54), neonatal death
55 56	40	(aOR=1.56_95%CI 1.27-1.93) birthweight <2.500g (aOR=1.28_95%CI 1.20-1.37)
57	10	
58 50	41	birthweight >4,000g (aOR=1.09, 95%CI 1.05-1.13), admission to neonatal unit
60		

(aOR=1.57, 95%CI 1.51-1.64), APGAR score <7 at 1 minute (aOR=1.18, 95%CI
1.13-1.23) and 5 minutes (aOR=1.48, 95%CI 1.35-1.62), neural tube defects
(aOR=1.64, 95%CI 1.08-2.47) and hypospadias (aOR=1.27, 95%CI 1.05-1.54 males
only). The overall prevalence of over-the-counter analgesics use during pregnancy
was 29.1%, however it rapidly increased over the 30-year study period, to include
over 60% of women in the last seven years of the study. This makes our findings
highly relevant to the wider pregnant population.

49 CONCLUSIONS

50 Over-the-counter (non-prescription) analgesics consumption during pregnancy was 51 associated with a substantially higher risk for adverse perinatal health outcomes in 52 the offspring. The use of paracetamol in combination with other non-steroidal anti-53 inflammatory drugs conferred the highest risk. The increased risks of adverse 54 neonatal outcomes associated with non-prescribed, over-the-counter, analgesics use 55 during pregnancy indicate that healthcare guidance for pregnant women regarding 56 analgesic use need urgent updating.

57 Strengths and limitations of this study

 This is one of the largest and most comprehensive studies of this type. It includes consumption of five different analgesics during pregnancy in a large cohort of singleton pregnancies. It examines associations with extensive range of offspring perinatal outcomes, while adjusting for important confounding factors.

 Analgesic consumption was analysed both as use of a single compound and in combinations of the five drugs considered in this study.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4	65	Details of the exact dose and timing of consumption during pregnancy were
5 6	66	not available within our dataset.
7 8 9	67	• Follow-up of the offspring health later in life was not available at this time.
10 11 12	68	
13 14 15	69	Funding Biotechnology and Biological Sciences Research council (BBSRC) funding
15 16 17	70	under the EASTBIO doctoral training programme (grant number 1942576) to AZ and
18 19	71	EU Horizon 2020 project FREIA (Grant Number 825100) to PAF. RTM is supported
20 21 22	72	by MRC Centre for Reproductive Health Grant MR/N022556/1.
23 24 25	73	Key words acetaminophen, aspirin, diclofenac, ibuprofen, in utero exposure,
25 26 27	74	naproxen, offspring outcomes, over-the-counter analgesics, offspring outcomes,
28 29	75	paracetamol, pregnancy
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 90 51 52 54 55 56 57 58	76	
59 60		

Introduction

Globally 23-85% of women use one or more types of prescribed medications during pregnancy ^{1,2}. A similarly high proportion of expectant mothers self-medicate using non-prescription, "over-the-counter" (OTC) medicines ^{3,4} and use during pregnancy is becoming increasingly prevalent, especially in Western countries ⁵. While some analgesics e.g. paracetamol (acetaminophen) are considered safe to consume throughout pregnancy, use of non-steroidal anti-inflammatory drugs (NSAIDs) is not recommended in pregnancy unless on the advice of a medical specialist and should be avoided beyond gestational week 30 because of the risk of premature closure of the ductus arteriosus. However, current evidence is largely conflicting regarding the safety of gestational analgesic use both for the pregnancy and offspring health ⁶. Several studies have reported increased risks for multiple adverse outcomes including hypospadias, cryptorchidism, amniotic band defects and neural tube defects ^{7–11}, whilst others have not found significant associations ^{12–17}. Taken overall, this has led to significant concern that postnatal health is adversely affected by maternal analgesic use during pregnancy ¹⁸.

The use of small cohorts in the current epidemiological studies makes it difficult to draw firm conclusions and definite recommendations^{12,17,19,20}. There are other aspects of analgesic use that must be considered. Firstly, due to their abundance, it is not always feasible to determine exact consumption rates and dosage. Secondly, even though the mechanisms of action for most of these compounds is not fully understood, most over-the-counter analgesics can diffuse through the placenta and reach the developing fetus ²¹. Thirdly, maternal pharmacokinetics during pregnancy are altered and there are limited pregnancy safety data for these compounds.

BMJ Open

Given the diversity in study population, methodology, sample size and findings in the published studies, we conclude that more extensive data from larger cohorts are essential in order to understand the risks over-the-counter analgesic use during pregnancy pose to neonatal health and function. Here we address many limitations -however, not all²² - of previous studies by analysing one of the largest cohorts, widest range of health data and, pregnancy use of five over-the-counter analgesics consumed in combination or separately. We report on the prevalence of maternal consumption of five different over-the-counter analgesics during pregnancy and their associations with offspring neonatal outcomes using a large cohort of 151,141 singleton pregnancies spanning three decades of population-based data from a single maternity hospital serving the entire population of Aberdeenshire in the Northeast of Scotland.

Page 8 of 69

113 Materials and Methods

This retrospective cohort study utilised data collected in the Aberdeen Maternity and Neonatal Databank (AMND) in Aberdeen, UK on 151,141 pregnancies over a 30-year period (1985-2015). Details about AMND have been previously published ²³. Data were collected from medical notes of women retrospectively after delivery. Women were specifically asked about their use of over-the-counter (non-prescription) analgesics at their first antenatal clinic. Data were entered by dedicated coding staff into a computerised database. Data validity was ensured via checking completeness of data entry against NHS (UK National Health Service) returns monthly and constant data cleaning and validation against case notes reported quarterly by the Data Management team to the AMND Steering Committee. A research protocol was submitted and approved by the AMND Steering Committee before data extraction. Approval was received on 6 June 2018. The dataset was fully anonymised, therefore there was no requirement for NHS ethics committee approval. There was no involvement of patients or the public in the design, or conduct, or reporting, or dissemination plans of our research. The main analysis considered consumption during pregnancy of at least one out of five different analgesics: paracetamol (no; yes), ibuprofen (no; yes), naproxen (no; yes), diclofenac (no; yes) or aspirin (no; yes) as the exposure group against no analgesic consumption as the unexposed group. Then, three sub-group analyses against the control group were performed using only paracetamol, only diclofenac, or at least one analgesic from aspirin/naproxen/ibuprofen as exposure groups,

excluding pregnancies exposed to multiple analgesics at the same time (Figure 1).

- As 98.3% of pregnancies using diclofenac were between 2005 and 2015, diclofenac
- ⁶⁰ 137 sub-group analysis only considered pregnancies during that time frame in order to

BMJ Open

2 3	138	rule out any temporal effect. Analgesic consumption was not further assessed
5 6 7	139	analytically.
7 8 9 10 11 12 13 14 15 16 17 18	140	The offspring outcomes compared between control and exposed groups were:
	141	gestation at delivery (preterm <37 gestation weeks, term \geq 37 gestation weeks),
	142	pregnancy outcome (livebirth, stillbirth, neonatal death), baby weight (low birth
	143	weight (LBW) \leq 2,499 g, high birth weight (HBW) \geq 4,000 g, normal birth weight
	144	(NBW) 2,500g-3,999 g), standardised birthweight score was considered as a
19 20 21	145	continuous variable as previously described by Campbell and colleagues ²⁴ , baby
21 22 23	146	admission to neonatal unit (no; yes), APGAR score at one and five minutes (<7, \geq 7),
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	147	cryptorchidism (no; yes) (ICD-10 code Q53), neural tube defects (no; yes) (ICD-10
	148	code Q00-07), amniotic band defects (no; yes) (ICD-10 codes Q70-74), hypospadias
	149	(no; yes) (ICD-10 code Q54), gastroschisis (no; yes) (ICD-10 code Q79.3). A
	150	composite outcome (presence of at least one congenital anomaly (no; yes)) was
	151	created using the variables neural tube defects, amniotic band defects, and
	152	gastroschisis and, in males, cryptorchidism and hypospadias.
38 39 40	153	The baseline characteristics compared between exposed and unexposed
41 42	154	pregnancies were (reference category first): year of delivery (1985-1994, 1995-2004,
43 44	155	2005-2015), maternal age at delivery (20-25, <20, 26-35, >35 years), previous
45 46 47	156	pregnancy (no; yes), maternal body mass index (BMI) (normal weight 18.5-24.9
47 48 49 50 51 52 53 54 55 56 57 58	157	kg/m², underweight <18.5 kg/m², overweight 25-29.9 kg/m², obese >30 kg/m²),
	158	maternal first antenatal visit (1st, 2nd, 3rd trimester), maternal smoking status (non-
	159	smoker, smoker, ex-smoker), Scottish Index of Multiple Deprivation (SIMD) decile (1-
	160	6, 7-10, decreasing deprivation with increasing score), maternal hypertensive
	161	disorders (no disorder, gestational hypertension, preeclampsia, eclampsia), maternal
59 60	162	antepartum haemorrhage (no haemorrhage, abruption, placental previa), type of

labour (spontaneous, elective caesarean section, induced), type of delivery
(spontaneous vaginal delivery, instrumental, caesarean section), analgesia during
labour (no; yes), baby presentation at delivery (occiput anterior, occiput posterior),
baby sex (female; male).

Patient and Public Involvement

This was a retrospective analysis of data on singleton pregnancies over a 30-year period. Therefore, there was no involvement of patients or the public in the design, conduct, reporting or any other aspect of the study.

172 Statistical Analysis

Baseline characteristics were compared between exposed and unexposed pregnancies to any analgesic using χ^2 test for categorical variables and t-test for normally distributed continuous variables as appropriate. Relationships between exposures and outcomes were examined by binary logistic regression for binary outcome variables, multinomial logistic regression for nominal categorical outcome variables, and multiple linear regression for continuous variables. The strength of association was reported as odds ratios (ORs) with 95% confidence intervals (CI). The socio-demographic characteristics that were likely to confound our exposure-to-outcome path were identified using directed acyclic graphs (DAG) (Supplementary figures S1-11)²⁵. Factors that were associated with consumption of over-the-counter analgesics during pregnancy at 10% level of significance and deemed clinically relevant, were included in the model as confounders. All outcomes were adjusted for year of delivery, maternal age at delivery, SIMD and maternal first antenatal visit. In addition to these confounders, individual outcomes were adjusted for relevant

BMJ Open

cofactors. Gestation at delivery and pregnancy outcome were both additionally adjusted for maternal hypertensive disorders and antepartum haemorrhage. Weight of the baby, neonatal unit admission, cryptorchidism, neural tube defects, amniotic band defects, hypospadias and gastroschisis variables were also adjusted for gestation at delivery. APGAR score at one and five minutes were adjusted for type of delivery. A p-value of less than 0.05 was considered statistically significant. All statistical analyses were carried out using IBM SPSS Statistics version 25.0 (Released 2017. IBM SPSS Statistics for Windows, Armonk, NY: IBM Corp.). R version 3.6.2 was used to generate Figure 2. Numbers needed to harm (NNH) were also calculated for each outcome and are provided in Supplementary Tables 1 and

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Results

Overall, from the total 151,141 pregnancies across 30 years in 107,143 (70.9%) pregnancies, no over-the-counter analgesic consumption was reported. At least one over-the-counter analgesic was consumed in 43,998 (29.1%) pregnancies, whereas paracetamol use alone was reported in 24,099 (18.4%) pregnancies. Diclofenac use was observed in 20.0% of pregnancies in the 10-year period when diclofenac was available over-the-counter (without prescription). Finally, at least one out of three analgesics (naproxen, ibuprofen, aspirin) was consumed in 762 (0.7%) pregnancies (Figure 1). At their first antenatal clinic visit, 83.7% of women taking over-the-counter analgesics reported use in the first trimester of pregnancy.

Prevalence of use for all five analgesics increased dramatically over the 30-year study period (1985-2015) (Figure 2). Pregnancies with consumption of at least one analgesic increased from 1.8% in 1985 to 70.6% in 2015. Pregnancies reporting paracetamol use were 1.3% in 1985 and it continuously increased reaching 42.2% in 2015. Naproxen, ibuprofen or aspirin consumption during pregnancy was less prevalent (Figure 2A), however it also increased during the 30-year study period, starting at 0.5% in 1985 and reaching 1.9% in 2015 (Figure 2B). Diclofenac was consumed in very few pregnancies between 1985 (<0.01%) and 2005 (0.2%). Percentage of consumption, however, dramatically increased during the next decade following deregulation of diclofenac, reaching 25.0% in just one year (2006) and 45.6% of all pregnancies in 2015.

Table 1 compares the baseline characteristics between the unexposed group of
 pregnancies where no analgesic was consumed and each of the exposure groups. In
 most, but not all, comparisons across all four analyses, there was a statistically

1		
2 3 4	222	significant difference (p<0.001) for most variables. In the paracetamol sub-group
5 6	223	analysis, baby presentation at delivery (p=0.525) and sex of the baby (p=0.861) were
7 8	224	not significantly different between the groups. In the analysis considering
9 10 11	225	consumption of at least one analgesic from aspirin/naproxen/ibuprofen, again the
12 13	226	variables for baby presentation at delivery (p=0.093) and sex of the baby (p=0.732),
14 15 16	227	together with maternal smoking status (p=0.132) and maternal antepartum
16 17 18	228	haemorrhage (p=0.434) were not statistically different compared to the unexposed
19 20	229	group. All variables were statistically different between unexposed and exposed
21 22 23	230	groups for the main analysis and diclofenac sub-group analysis.
24 25 26	231	Table 2 summarises the comparison of neonatal outcomes between the unexposed
26 27 28	232	group (no analgesic at all) and the exposed groups of at least one analgesic, only
29 30	233	paracetamol and at least one out of aspirin/naproxen/ibuprofen. Comparison of
31 32 33	234	outcomes for the diclofenac sub-group analysis is shown in Table 3.
34 35 36	235	
37 38 39	236	All analgesics and neonatal outcomes
40 41	237	As shown in Table 2, compared to unexposed pregnancies in which women did not
42 43	238	use any analgesic, pregnancies with consumption of at least one analgesic
44 45 46	239	(paracetamol, diclofenac, aspirin, naproxen, ibuprofen) were independently
47 48	240	associated with significantly higher odds for premature delivery (aOR=1.50, 95%CI
49 50	241	1.43-1.58), stillbirth (aOR=1.33, 95%Cl1.15-1.54), LBW (aOR=1.28, 95%Cl 1.20-
51 52 53	242	1.37), HBW (aOR=1.09, 95%CI 1.05-1.13), baby admission to neonatal unit
55 54 55	243	(aOR=1.57, 95%CI 1.51-1.64), APGAR score <7 at five minutes (aOR=1.48, 95%CI
56 57	244	1.35-1.62), neural tube defects (aOR=1.64, 95%CI 1.08-2.47) and hypospadias
58	245	(aOR=1.27, 95%CI 1.05-1.54) in adjusted analyses. Significantly decreased odds for

Page 14 of 69

BMJ Open

1

2 3	246	APGAR score <7 at one minute were found in the crude analysis (cOR=0.96, 95%CI
4 5 6	247	0.92-0.99), however when adjusted for year of delivery, maternal age at delivery,
7 8	248	SIMD, first gestational booking and type of delivery, the significance changed
9 10 11	249	direction showing significantly increased odds (aOR=1.18, 95%CI 1.13-1.23). A
12 13	250	significantly lower standardised birthweight score (p=0.046, 95%CI 0.032-0.059) was
14 15 16	251	found for the exposure group compared to no analgesic at all. Cryptorchidism
10 17 18	252	(aOR=0.92, 95%CI 0.77-1.11), amniotic band defects (aOR=1.02, 95%CI 0.71-1.47),
19 20	253	gastroschisis (aOR=1.10, 95%CI 0.56-2.20) and the composite outcome variable
21 22 23	254	(aOR=1.12, 95%CI 0.99-1.26), were all associated with increased odds in the
23 24 25	255	exposure group compared to not exposed, however the association was not
26 27	256	significant in the adjusted model. There was no significant association between
28 29 30	257	neonatal death and exposure to at least one analgesic in the crude analysis
31 32	258	(cOR=1.19, 95%CI 0.99-1.42), however there were significantly higher odds of
33 34	259	neonatal death in the adjusted analysis (aOR=1.56, 95%CI 1.27-1.93) in the
35 36 37	260	exposed group compared to control.
38 39	261	
40 41 42 43	262	Paracetamol and neonatal outcomes
44 45	263	In the sub-group analysis considering only paracetamol consumption during
46 47 48	264	pregnancy as our exposure group, most of the associations reported in the main
49 50	265	analysis remained significant with the same direction of significance (Table 2). The
51 52	266	differences were: maternal paracetamol consumption during pregnancy was
53 54 55	267	associated with significantly decreased odds for offspring HBW (cOR=0.94, 95%CI
55 56 57	268	0.90-0.99) in the crude analysis however significance was lost in the adjusted model
58 59 60	269	(aOR=0.98, 95%CI 0.93-1.02), and there were no significant associations in the

1	4
-	-

1		14
2 3 4	270	adjusted models for neural tube defects (aOR=1.21, 95%CI 0.71-2.06) and
5 6 7	271	hypospadias (aOR=1.07, 95%Cl 0.84-1.37).
7 8 9	272	
10 11 12	273	Aspirin/naproxen/ibuprofen and neonatal outcomes
13 14 15	274	Consumption of at least one analgesic from aspirin, naproxen or ibuprofen during
16 17	275	pregnancy was compared against the same control group of pregnancies where no
18 19 20 21 22 23 24 25 26 27 28 29 30 31	276	analgesic was used (Table 2). Again, when comparing associations between groups
	277	in this sub-group analysis and main analysis, fewer outcome variants showed similar
	278	significance pattern. The only shared significant associations were for increased
	279	odds for premature delivery (aOR=1.42, 95%CI 1.08-1.86), stillbirth (aOR=2.34,
	280	95%CI 1.29-4.25) and baby admission to neonatal unit (aOR=1.54, 95%CI 1.22-
	281	1.94) in the adjusted regression analyses.
32 33 34 25	282	
35 36 37 38	283	Diclofenac and neonatal outcomes
39 40	284	In the sub-group analysis of pregnancies coinciding with non-prescription, over-the-
41 42	285	counter, availability of diclofenac (years 2005-2015) were considered, and outcomes
43 44 45	286	compared between the diclofenac group and no analgesic consumption group (Table
46 47	287	3). Compared to the main analysis, diclofenac consumption during pregnancy was
48 49	288	not significantly associated with premature delivery (aOR=1.10, 95%CI 0.99-1.22),
50 51 52	289	neonatal death (aOR=1.26, 95%CI 0.73-2.15) and APGAR score <7 in one minute
53 54	290	(aOR=0.93, 95%CI 0.83-1.04) in the adjusted models. Associations with APGAR
55 56	291	score <7 in five minutes (aOR=0.94, 95%CI 0.72-1.23), cryptorchidism (aOR=1.05,
57 58	292	95%CI 0.78-1.42), amniotic band defects (aOR=0.81, 95%CI 0.41-1.58) and
59 60	293	gastroschisis (aOR=2.93, 95%CI 0.97-8.88) were no longer significant in both crude
and adjusted analyses. Maternal consumption of diclofenac was independently associated with a significant decrease in stillbirth (aOR=0.59, 95%CI 0.41-0.87). It is also interesting to note that diclofenac was the only sub-group analysis agreeing with the main analysis (exposure to at least one analgesic) on the significance of exposure association with increased incidence of neural tube defects (aOR=3.62, 95%CI 1.95-6.74) and hypospadias (aOR=1.49, 95%CI 1.09-2.03) compared to unexposed pregnancies in adjusted models. As most of the outcomes studied were relatively rare the numbers needed to harm were mostly more than 100. Preterm birth, low birthweight and admission to the neonatal unit were exceptions with NNH ranging from 15 to 38. (Tables S1 and S2).

1		10
2 3 4 5	304	Discussion
6 7	305	Main Findings
8 9 10 11	306	Consumption of paracetamol, ibuprofen, aspirin and naproxen during pregnancy,
11 12	307	either in combination or separately, was significantly associated with increased
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	308	premature delivery, stillbirth, neonatal death, LBW, abnormal standardised
	309	birthweight score and more frequent admission to neonatal unit. Consumption of
	310	paracetamol alone was further associated with higher odds for APGAR score <7 at
	311	one and five minutes both in crude and adjusted analyses. There was a dramatic
	312	increase in the frequency of over-the-counter (non-prescription) analgesic use in
	313	pregnancies between 1985 and 2015, starting from only 10.3% of women using one
	314	or more of the compounds between 1985 and 1994, climbing to60.1% of women in
	315	the final decade of our study. This means that our findings are applicable far beyond
	316	the percentage (between 14% and 38%) ²⁶ of pregnant women with underlying
	317	health deficits related to the adverse outcomes we report here.
	318	
39 40 41	319	Diclofenac use increased steeply from 2005 (Figure 2A), which reflects the change in
42 43	320	Scottish legislation, leading to diclofenac becoming available without prescription in
44 45 46	321	that year. Diclofenac use was associated with fewer adverse outcomes but showed
40 47 48	322	increased risk of neural tube defects and hypospadias in male neonates.
49 50	323	Furthermore, and surprisingly, exposure to diclofenac only was associated with
51 52	324	significant decrease in the incidence of stillbirth. The reasons for such differences
54 55	325	between the changes in neonatal outcomes following diclofenac consumption
56 57	326	compared with those following use of the other NSAIDs are not clear. The proportion
58 59 60	327	of women using diclofenac, especially in the last 7 years of our study makes it highly

unlikely to be due to an underlying maternal condition and/or other compounds used in combination (e.g. prescriptions) by women taking diclofenac. It is possible that the drug could act directly on fetal development then this difference could also be due to structural and/or mechanistic differences of the compound compared to the other drugs. However, not enough is known about the specific mechanisms of action of the different analgesics studied to conclude further. Overall, comparing our main analysis with all three sub-analyses, it is evident that the most significant differences were observed when paracetamol was taken with at least one other analgesic. This is mostly due to the high number of pregnancies where paracetamol was used, comprising almost 55% of the exposed cases in the main analysis. Most numbers needed to harm for our outcomes (Tables S1 and S2) ranged between 1000 and 100, apart from preterm birth, low birth weight and baby admission to neonatal unit, which were 27, 38 and 15 respectively for our main analysis further strengthening ien observed associations.

Strengths and Limitations

A major strength of the present study is the large cohort of 151,141 pregnancies over a 30-year study period from 1985 until 2015, using a robust data source AMND. This is one of the largest cohorts used in studies examining the effects of analgesic use during pregnancy. The dataset contains high quality and consistent data from the geographically defined area of Aberdeen and surrounding district, in the North East of Scotland, UK. In addition, as Aberdeen Maternity Hospital is the only maternity hospital serving the area, over 95% of pregnancies in the area are included in the dataset, considerably minimizing the risk for selection bias. We were able to analyse

Page 19 of 69

BMJ Open

1		
2 3 4	352	maternal consumption data of the five most commonly used analgesics available
5 6 7 8 9 10 11	353	over-the-counter in the UK and most countries, which is not matched in the current
	354	literature. The nature of our data allowed for the analysis of analgesics consumed
	355	alone or in combination, unlike most existing studies, and this gives our study the
12 13	356	added strength of better reflecting real-life consumption patterns ^{27,28} . We were able
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	357	to adjust for important confounding factors, relevant to each analysed outcome.
	358	Adjustment for maternal deprivation also allowed us to further account for potential
	359	unmeasured factors that can influence maternal and neonatal health, which is a
	360	major strength of our analysis compared to most studies.
	361	A potential concern was that women were probably using analgesics to treat some
	362	inherent medical condition which in turn could have been the mediating factor for
	363	adverse outcomes. Data on indication for use were not available in the database.
	364	However, since these medications are widely available without prescription, this is
	365	unlikely to be a factor that affects the findings of this study. This is especially the
	366	case during the "diclofenac analysis" covering 2005-2015, where
38 39 40	367	this study presents results on multiple neonatal outcomes for the given cohort. In this
41 42	368	way we offer a comprehensive approach to the exploration of associations with in
43 44	369	utero analgesic exposure rather than only focusing on a single outcome of interest.
45 46 47	370	Our data were based on medical notes; however, over-the-counter consumption is
48 49	371	self-reported, and details on the timing, duration, dosage, product type (single-
50 51	372	ingredient vs combination) and administration type were not available in the
52 53	373	database. In addition, the group of pregnancies with aspirin consumption might
54 55 56	374	include use of low-dose aspirin which is recommended to help reduce risk of some
57 58	375	pregnancy complications and outcomes related to placental function. Genetic factors
59 60	376	potentially relating to the emergence of offspring health outcomes was an

unmeasured variable in our analysis. This study does not include a quantitative bias analysis to identify potential distort of results presented here. Most women had their first antenatal clinic visit during the 1st pregnancy trimester, which might imply our results were affected by primarily 1st trimester exposure, although analgesic use in first trimester is most likely replicated in the rest of pregnancy. Complete case analyses were performed ignoring pregnancies with missing data in the covariates, however due to the low number of missing data there is little chance that this might have affected the validity of our results. Compared to our cohort size, there were, overall, very few cases of cryptorchidism, neural tube defects, amniotic band defects, hypospadias and gastroschisis, resulting in potentially underpowered statistical analyses to detect a difference for these outcomes. Our study only considered neonatal health outcomes and follow-up of the offspring was not available at this eziez time.

Interpretation

Previous literature has considered fewer outcomes with fewer analgesic combinations compared to our study. Consistent with our results, increased risk of preterm birth and miscarriage has been associated with analgesic consumption during pregnancy ^{29–32}, while others reported no associations with miscarriage, stillbirth or preterm delivery ^{20,29,30,33}. Similarly, increased risk for offspring cryptorchidism, hypospadias, neural tube defects, amniotic band defects and gastroschisis have been shown by many studies ^{7,8,9,34–41}, although, again, a lack of associations with major birth defects have been reported ^{13–17,42,43}. Compared to our analysis, all these studies used a smaller cohort, considered a shorter study time

Page 21 of 69

BMJ Open

and there was frequent disagreement with respect to the choices of adjusted confounding factors. Another difference is that maternal guestionnaires/interviews were frequently the method of choice to evaluate maternal consumption. Some of the studies reported increased risks for specific pregnancy trimesters which is something our study could not evaluate. Differences in study design and adjustment for different confounders might also account for the disagreement of our results that provide a more accurate assessment. Our study is one of the largest in terms of cohort size, duration, number of analgesics and range of outcomes included which might also contribute to differences compared to other studies. Another study with a large sample size (98,190 pregnancies) and a 7 year study time from Rebordosa and colleagues²⁹, also reported an increased risk of preterm birth following paracetamol use during pregnancy, which was increased in mothers with pre-eclampsia. Our results showed a significant association of the adjusted ORs following adjustment for maternal hypertensive disorders. In addition, they did not find a significant association with stillbirth, or low birth weight as we report here. This disagreement could be due to dataset differences including the information about use in each pregnancy trimester, but also methodological differences such as the use of questionnaires versus medical notes or adjustment for different confounders. The literature currently reports conflicting evidence, limiting our ability for definite decision-making. Over-the-counter analgesics are recommended to women by healthcare professionals in order to deal with pregnancy symptoms and other conditions. Policy-makers have taken a stand on the topic, either being reassuring about over-the-counter use during pregnancy or recommending caution when consumption is necessary ^{44–47}. Different compounds can affect the mother and the fetus in a different way, and their combined use might worsen the risk for offspring ill

Page 22 of 69

health. This study demonstrates the need for additional research before the field can
be confidently directed towards one direction or the other.

Whether the associations we report result from flu, fever, rheumatological or inflammatory conditions, and/or combination with other prescribed medications or solely related to over-the-counter analgesics consumption is a matter of further research. Underlying health conditions could well influence the outcomes we see in this study, however, as these could be very different conditions it is biologically unlikely that they are responsible for the effects we observe here. Our study demonstrates an association of maternal over-the-counter analgesic consumption during pregnancy with adverse neonatal offspring outcomes. Future collaborative approaches such as an individual patient data meta-analysis that includes follow-up data on long-term outcomes during childhood and adulthood would significantly inform decision making. Going forward, uncovering the mechanisms of action and off target effects will also provide a solid foundation for the development of pregnancysafe compounds. Finally, the findings present here suggest that diclofenac is associated with fewer changes in risk for the more frequent adverse outcomes although it is associated more with rarer, but severe, negative outcomes, including neural tube defects. Diclofenac may have a lower risk for the main adverse neonatal outcomes reported for paracetamol. However, it should be noted that our study is not designed to specifically test differences in level of risk between the analgesics included. Therefore, it should be emphasised that this does not mean that the authors are stating that diclofenac is preferable to paracetamol.

449 Conclusions

-	2
,	,
~	~

1		
2 3 4	450	Pain control is currently a therapeutic priority during pregnancy. Our findings of
5 6	451	increased risk of adverse health outcomes for the offspring following at least first
7 8	452	trimester maternal use of readily available over-the-counter analgesics are crucial to
9 10 11 12	453	information for the management of pain during pregnancy.
12 13 14	454	
15 16 17	455	Acknowledgements: N/A
18 19 20	456	Disclosure of interests: Professor David Hay is a founder, director and shareholder
21 22 22	457	in Stemnovate Limited. The remaining authors have no interests to disclose.
23 24 25	458	Contribution to Authorship: AZ, SB and PAF contributed to the conception, design
26 27 28 29 30 31 32 33 34 35 36 37	459	and coordination of the research. EAR provided critical input in the design and
	460	planning of statistical analysis. AZ conducted the statistical analysis and prepared
	461	the manuscript, figures and tables. AZ, SB, PAF, RTM and DCH substantially
	462	contributed to the analysis and interpretation of the work. All authors contributed to
	463	critical discussion of intellectual content, development and review/approval of the
38 39	464	final manuscript version.
40 41 42	465	Funding: This work is supported by the Biotechnology and Biological Sciences
43 44	466	Research council (BBSRC) funding the lead author under the EASTBIO doctoral
45 46	467	training programme and to PAF, the EU Horizon 2020 project FREIA (Grant Number
47 48 49	468	825100). RTM is supported by MRC Centre for Reproductive Health Grant
50 51	469	MR/N022556/1. The funders had no role in study design, data collection, data
52 53 54	470	analysis, decision to publish, or manuscript preparation.
55 56	471	Ethics Statement: The AMND dataset used in this study was fully anonymised,
57 58 59	472	therefore there was no requirement for ethical approval. The North of Scotland
60	473	Research Ethics Service has devolved Caldicott approval to the Chair of the AMND

- steering committee. Approval to access and analyse data was obtained from the
 - AMND steering Committee (AMND 004/2018).

Data Availability Statement: No additional data available.

1			27
2 3 4	477	Refe	erences
5 6 7	478	1.	Gendron M-P, Martin B, Oraichi D, Berard A. Health care providers' requests
8 9	479		to Teratogen Information Services on medication use during pregnancy and
10 11 12	480		lactation. Eur J Clin Pharmacol. 2009;65(5):523-531. doi:10.1007/s00228-008-
13 14	481		0611-6
15 16 17	482	2.	Mitchell AA, Gilboa SM, Werler MM, Kelley KE, Louik C, Hernández-Díaz S.
18 19	483		Medication use during pregnancy, with particular focus on prescription drugs:
20 21 22	484		1976-2008. Am J Obstet Gynecol. 2011;205(1):51.e1-51.e8.
22 23 24	485		doi:10.1016/j.ajog.2011.02.029
25 26 27	486	3.	Werler MM, Mitchell AA, Hernandez-Diaz S, Honein MA. Use of over-the-
28 29	487		counter medications during pregnancy. Am J Obstet Gynecol.
30 31 32	488		2005;193(3):771-777. doi:10.1016/j.ajog.2005.02.100
33 34	489	4.	Glover DD, Amonkar M, Rybeck BF, Tracy TS. Prescription, over-the-counter,
35 36 37	490		and herbal medicine use in a rural, obstetric population. Am J Obstet Gynecol.
38 39	491		2003;188(4):1039-1045. doi:10.1067/mob.2003.223
40 41 42	492	5.	Lupattelli A, Spigset O, Twigg MJ, et al. Medication use in pregnancy: A cross-
43 44	493		sectional, multinational web-based study. BMJ Open. 2014;4(2).
45 46 47	494		doi:10.1136/bmjopen-2013-004365
48 49	495	6.	Zafeiri A, Mitchell RT, Hay DC, Fowler PA. Over-the-counter analgesics during
50 51 52	496		pregnancy: a comprehensive review of global prevalence and offspring safety.
53 54	497		Hum Reprod Update. Published online October 29, 2020.
55 56 57	498		doi:10.1093/humupd/dmaa042
58 59 60	499	7.	Lynberg MC, Khoury MJ, Lu X, Cocian T. Maternal flu, fever, and the risk of

Page 26 of 69

BMJ Open

1

2			
3 4	500		neural tube defects: A population-based case-control study. Am J Epidemiol.
5 6 7	501		1994;140(3):244-255. doi:10.1093/oxfordjournals.aje.a117243
8 9	502	8.	Werler MM, Louik C, Mitchell AA. Epidemiologic analysis of maternal factors
10 11 12	503		and amniotic band defects. Birth Defects Res Part A - Clin Mol Teratol.
12 13 14 15	504		2003;67(1):68-72. doi:10.1002/bdra.10001
16 17	505	9.	Snijder CA, Kortenkamp A, Steegers EAP, et al. Intrauterine exposure to mild
18 19	506		analgesics during pregnancy and the occurrence of cryptorchidism and
20 21	507		hypospadia in the offspring: The Generation R Study. Hum Reprod.
22 23 24	508		2012;27(4):1191-1201. doi:10.1093/humrep/der474
25 26 27	509	10.	Lind JN, Tinker SC, Broussard CS, et al. Maternal medication and herbal use
28 29	510		and risk for hypospadias: Data from the National Birth Defects Prevention
30 31	511		Study, 1997-2007. Pharmacoepidemiol Drug Saf. 2013;22(7):783-793.
32 33 34	512		doi:10.1002/pds.3448
35 36 27	513	11.	Interrante JD, Ailes EC, Lind JN, et al. Risk comparison for prenatal use of
37 38 39	514		analgesics and selected birth defects, National Birth Defects Prevention Study
40 41	515		1997–2011. Ann Epidemiol. 2017;27(10):645-653.e2.
42 43 44	516		doi:10.1016/j.annepidem.2017.09.003
45 46	517	12.	Philippat C, Gorgis-Allemand L, Chevrier C, et al. Analgesics during pregnancy
47 48	518		and undescended testis. Epidemiology. 2011;22(5):747-749.
49 50 51	519		doi:10.1097/EDE.0b013e318225bf33
52 53 54	520	13.	Hernandez RK, Werler MM, Romitti P, Sun L, Anderka M. Nonsteroidal
55 56	521		antiinflammatory drug use among women and the risk of birth defects. In:
57 58	522		American Journal of Obstetrics and Gynecology. Vol 206. Mosby Inc.;
59 60	523		2012:228.e1-228.e8. doi:10.1016/j.ajog.2011.11.019

Page 27 of 69

BMJ Open

1			
2 3 4	524	14.	Cassina M, De Santis M, Cesari E, et al. First trimester diclofenac exposure
5 6	525		and pregnancy outcome. Reprod Toxicol. 2010;30(3):401-404.
7 8 9 10	526		doi:10.1016/j.reprotox.2010.04.010
10 11 12	527	15.	Padberg S, Tissen-Diabaté T, Dathe K, et al. Safety of diclofenac use during
13 14	528		early pregnancy: A prospective observational cohort study. Reprod Toxicol.
15 16 17	529		2018;77:122-129. doi:10.1016/j.reprotox.2018.02.007
18 19 20	530	16.	van Gelder MMHJ, Roeleveld N, Nordeng H. Exposure to non-steroidal anti-
20 21 22	531		inflammatory drugs during pregnancy and the risk of selected birth defects: A
22 23 24	532		prospective cohort study. PLoS One. 2011;6(7).
25 26 27	533		doi:10.1371/journal.pone.0022174
28 29	534	17.	Dathe K, Fietz AK, Pritchard LW, et al. No evidence of adverse pregnancy
30 31	535		outcome after exposure to ibuprofen in the first trimester – Evaluation of the
32 33	536		national Embryotox cohort. Reprod Toxicol. 2018;79:32-38.
34 35 36	537		doi:10.1016/j.reprotox.2018.05.003
37 38 39	538	18.	Pariente G, Leibson T, Carls A, Adams-Webber T, Ito S, Koren G. Pregnancy-
40 41	539		Associated Changes in Pharmacokinetics: A Systematic Review. Chappell LC,
42 43 44	540		ed. <i>PLoS Med</i> . 2016;13(11):e1002160. doi:10.1371/journal.pmed.1002160
45 46	541	19.	McElhatton PR, Sullivan FM, Volans GN. Paracetamol overdose in pregnancy
47 48	542		analysis of the outcomes of 300 cases referred to the teratology information
49 50 51	543		service. Reprod Toxicol. 1997;11(1):85-94. doi:10.1016/S0890-
52 53 54	544		6238(96)00200-6
55 56	545	20.	Kozer E, Costei AM, Boskovic R, Nulman I, Nikfar S, Koren G. Effects of
57 58	546		aspirin consumption during pregnancy on pregnancy outcomes: Meta-analysis.
59 60	547		Birth Defects Res Part B - Dev Reprod Toxicol. 2003;68(1):70-84.

Page 28 of 69

2 3 4	548		doi:10.1002/bdrb.10002
5 6 7	549	21.	Nitsche JF, Patil AS, Langman LJ, et al. Transplacental Passage of
, 8 9	550		Acetaminophen in Term Pregnancy. Am J Perinatol. 2017;34(6):541-543.
10 11 12	551		doi:10.1055/s-0036-1593845
13 14 15	552	22.	Bauer AZ, Swan SH, Kriebel D, et al. Paracetamol use during pregnancy — a
16 17	553		call for precautionary action. Nat Rev Endocrinol. 2021;17(12):757-766.
18 19 20	554		doi:10.1038/s41574-021-00553-7
21 22	555	23.	Ayorinde AA, Wilde K, Lemon J, Campbell D, Bhattacharya S. Data resource
23 24	556		profile: The Aberdeen Maternity and Neonatal Databank (AMND). Int J
25 26 27 28 29 30 31 32 33 34 35	557		<i>Epidemiol</i> . 2016;45(2):389-394. doi:10.1093/ije/dyv356
	558	24.	Campbell D, Hall M, Lemon J, Carr-Hill R, Pritchard C, Samphier M. Clinical
	559		birthweight standards for a total population in the 1980s. BJOG An Int J Obstet
	560		<i>Gynaecol</i> . 1993;100(5):436-445. doi:10.1111/j.1471-0528.1993.tb15268.x
36 37	561	25.	Textor J, van der Zander B, Gilthorpe MS, Liśkiewicz M, Ellison GT. Robust
38 39 40	562		causal inference using directed acyclic graphs: The R package "dagitty." Int J
41 42 43	563		<i>Epidemiol</i> . 2016;45(6):1887-1894. doi:10.1093/ije/dyw341
44 45	564	26.	Royal College of Obstetricians and Gynaecologists. RCOG review clarifies
46 47	565		pain relief options for women during pregnancy and breastfeeding. Published
48 49 50 51 52	566		2018. Accessed November 20, 2020. https://www.rcog.org.uk/en/news/new-
	567		rcog-review-clarifies-pain-relief-options-for-women-during-pregnancy-and-
53 54 55	568		breastfeeding/
56 57	569	27.	Sarganas G, Buttery AK, Zhuang W, et al. Prevalence, trends, patterns and
58 59 60	570		associations of analgesic use in Germany. BMC Pharmacol Toxicol.

2	o
	x
-	0

1				20
2 3 4	571		2015;16(1). doi:10.1186/s40360-015-0028-7	
5 6 7	572	28.	Hider-Mlynarz K, Cavalié P, Maison P. Trends in analgesic consumption in	
8 9	573		France over the last 10 years and comparison of patterns across Europe. Br	J
10 11 12	574		<i>Clin Pharmacol</i> . 2018;84(6):1324-1334. doi:10.1111/bcp.13564	
13 14 15	575	29.	Rebordosa C, Kogevinas M, Bech BH, Sørensen HT, Olsen J. Use of	
16 17	576		acetaminophen during pregnancy and risk of adverse pregnancy outcomes.	Int
18 19 20	577		<i>J Epidemiol</i> . 2009;38(3):706-714. doi:10.1093/ije/dyp151	
21 22	578	30.	Nielsen GL, Sørensen HT, Larsen H, Pedersen L. Risk of adverse birth	
23 24 25	579		outcome and miscarriage in pregnant users of non-steroidal anti-inflammator	у
25 26 27	580		drugs: Population based observational study and case-control study. Br Med	IJ.
28 29 30	581		2001;322(7281):266-270. doi:10.1136/bmj.322.7281.266	
31 32	582	31.	Czeizel AE, Dudá I, Puhó E. Short-term paracetamol therapy during pregnan	ю
33 34 35	583		and a lower rate of preterm birth. Paediatr Perinat Epidemiol. 2005;19(2):106)-
35 36 37	584		111. doi:10.1111/j.1365-3016.2005.00631.x	
38 39 40	585	32.	Li Z, Ren A, Liu J, et al. Maternal flu or fever, medication use, and neural tub	е
41 42	586		defects: A population-based case-control study in northern China. Birth	
43 44	587		Defects Res Part A - Clin Mol Teratol. 2007;79(4):295-300.	
45 46 47	588		doi:10.1002/bdra.20342	
48 49 50	589	33.	Pastore LM, Hertz-Picciotto I, Beaumont JJ. Risk of stillbirth from medication	S,
50 51 52	590		illnesses and medical procedures. Paediatr Perinat Epidemiol. 1999;13(4):42	21-
53 54 55	591		430. doi:10.1046/j.1365-3016.1999.00196.x	
56 57	592	34.	Kristensen DM, Hass U, Lesn L, et al. Intrauterine exposure to mild analgesic	CS
58 59 60	593		is a risk factor for development of male reproductive disorders in human and	

1			25
2 3 4	594		rat. <i>Hum Reprod</i> . 2011;26(1):235-244. doi:10.1093/humrep/deq323
5 6 7 8 9 10	595	35.	Jensen MS, Rebordosa C, Thulstrup AM, et al. Maternal use of
	596		acetaminophen, ibuprofen, and acetylsalicylic acid during pregnancy and risk
10 11 12	597		of cryptorchidism. <i>Epidemiology</i> . 2010;21(6):779-785.
13 14 15	598		doi:10.1097/EDE.0b013e3181f20bed
16 17	599	36.	Correy JF, Newman NM, Collins JA, Burrows EA, Burrows RF, Curran JT. Use
18 19 20	600		of prescription drugs in the first trimester and congenital malformations. Aust N
20 21	601		Z J Obs Gynaecol. 1991;31(4):340-344.
22 23 24	602		http://www.ncbi.nlm.nih.gov/pubmed/1799347
25 26 27 28 29 30 31 32 33 34 35 36 37	603	37.	Lind DV, Main KM, Kyhl HB, et al. Maternal use of mild analgesics during
	604		pregnancy associated with reduced anogenital distance in sons: A cohort
	605		study of 1027 mother-child pairs. <i>Hum Reprod</i> . 2017;32(1):223-231.
	606		doi:10.1093/humrep/dew285
	607	38.	Werler MM, Mitchell AA, Shapiro S. First trimester maternal medication use in
38 39	608		relation to gastroschisis. <i>Teratology</i> . 1992;45(4):361-367.
40 41 42	609		doi:10.1002/tera.1420450407
43 44	610	39.	Torfs CP, Katz EA, Bateson TF, Lam PK, Curry CJR. Maternal medications
45 46	611		and environmental exposures as risk factors for gastroschisis. Teratology.
47 48 49	612		1996;54(2):84-92. doi:10.1002/(SICI)1096-9926(199606)54:2<84::AID-
50 51 52	613		TERA4>3.0.CO;2-4
53 54	614	40.	M. Werler M, Sheehan JE, Mitchell AA. Maternal medication use and risks of
55 56	615		gastroschisis and small intestinal atresia. Am J Epidemiol. 2002;155(1):26-31.
57 58 59 60	616		doi:10.1093/aje/155.1.26

Page 31 of 69

1

2			
3 4	617	41.	Kozer E, Nikfar S, Costei A, Boskovic R, Nulman I, Koren G. Aspirin
5 6	618		consumption during the first trimester of pregnancy and congenital anomalies:
7 8	619		A meta-analysis. Am J Obstet Gynecol. 2002;187(6):1623-1630.
9 10 11 12	620		doi:10.1067/mob.2002.127376
13 14	621	42.	Slone D, Heinonen OP, Kaufman DW, Siskind V, Monson RR, Shapiro S.
15 16	622		ASPIRIN AND CONGENITAL MALFORMATIONS. Lancet.
17 18 19	623		1976;307(7974):1373-1375. doi:10.1016/S0140-6736(76)93025-7
20 21	624	43.	Shaw GM, Todoroff K, Velie EM, Lammer EJ. Maternal illness, including fever,
22 23 24	625		and medication use as risk factors for neural tube defects. Teratology.
25 26	626		1998;57(1):1-7. doi:10.1002/(SICI)1096-9926(199801)57:1<1::AID-
27 28 29	627		TERA1>3.0.CO;2-6
30 31	628	44.	Mosley II JF, Smith LL, Dezan MD. An overview of upcoming changes in
32 33 34	629		pregnancy and lactation labeling information. Pharm Pract (Granada).
35 36	630		2015;13(2):605. doi:10.18549/pharmpract.2015.02.605
37 38 39	631	45.	SMFM (Society for Maternal-Fetal Medicine Publications Committee). Prenatal
40 41	632		acetaminophen use and outcomes in children. Am J Obstet Gynecol.
42 43 44	633		2017;216(3):B14-B15. doi:10.1016/j.ajog.2017.01.021
45 46	634	46.	Bisson DL, Newell SD, Laxton C. Antenatal and Postnatal Analgesia: Scientific
47 48	635		Impact Paper No. 59. BJOG An Int J Obstet Gynaecol. 2018;(59).
49 50 51	636		doi:10.1111/1471-0528.15510
52 53 54	637	47.	RCOG. RCOG review clarifies pain relief options for women during pregnancy
55 56	638		and breastfeeding. Published 2018. Accessed November 1, 2019.
57 58	639		https://www.rcog.org.uk/en/news/new-rcog-review-clarifies-pain-relief-options-
60	640		for-women-during-pregnancy-and-breastfeeding/

8 9 10 11 12 13 14		
15 16 17 18 19 20 21		
22 23 24 25 26 27		
28 29 30 31 32 33 34		
35 36 37 38 39 40		
41 42 43 44 45 46 47		
48 49 50 51 52 53		
54 55 56 57 58		

Baseline Characteristics	No analgesic (n=107,143) n (%)	At least one analgesic (n=43,998) n (%)	P value†	Paracetamol only (n=24,099) n (%)	P value†	Ibuprofen/ Aspirin/ Naproxen (n=762) n (%)	P value†	No analgesic 2005-2015 (n=20,544) n (%)	Diclofenac only 2005-2015 (n=10,291) n (%)	P value‡
Year of delivery									-	
1985-1994	50,152 (46.8)	5,737 (13.0)	<0.001	5,390 (22.4)	<0.001	213 (28.0)	<0.001	n/a	n/a	<0.001
1995-2004	36,447 (34.0)	7,263 (16.5)		6,571 (27.3)		321 (42.1)		n/a	n/a	
2005-2015 /	20,544 (19.2)	30,998 (70.5)		12,138 (50.4)		228 (29.9)		n/a	n/a	
2005-2009 *	n/a	n/a		n/a		n/a		11,105 (54.1)	4,021 (39.1)	
2010-2015 *	n/a	n/a		n/a		n/a		9,439 (45.9)	6,270 (60.9)	
Maternal age at del	ivery									
Younger than 20	9,236 (8.6)	3,834 (8.7)	<0.001	2,936 (12.2)	<0.001	34 (4.5)	<0.001	1,286 (6.3)	311 (3.0)	<0.001
20-25	24,249 (22.6)	8,700 (19.8)		5,932 (24.6)		113 (14.8)		3,436 (16.7)	1,152 (11.2)	
26-35	63,499 (59.3)	25,367 (57.7)		12,896 (53.5)		464 (60.9)		12,664 (61.1)	6,628 (64.4)	
Older than 35	10,159 (9.5)	6,097 (13.9)		2,335 (9.7)		151 (19.8)		3,158 (15.4)	2,200 (21.4)	
Previous Parity										
Nulliparity (0)	48,684 (45.4)	23,353 (53.1)	<0.001	12,510 (51.9)	<0.001	300 (39.4)	0.004	8,336 (40.6)	5,004 (48.6)	<0.001
Multiparity (1-11)	58,457 (54.6)	20,639 (46.9)		11,587 (48.1)		462 (60.6)		12,206 (59.4)	5,284 (51.4)	
Missing	2 (<0.1) §	6 (<0.1) §		2 (<0.1) §		0 (0.0) §		2 (<0.1) §	3 (<0.1) §	
Maternal BMI										
Underweight (<18.5)	1,998 (2.4)	869 (2.2)	<0.001	545 (2.6)	<0.001	10 (1.5)	0.007	492 (2.7)	174 (1.9)	<0.001
Normal weight (18.5-24.9)	50,127 (60.8)	18,958 (48.8)		10,486 (50.5)		361 (55.)		10,239 (55.2)	4,671 (50.0)	
Overweight (25.0-29.9)	20,500 (24.9)	10,960 (28.2)		5,733 (27.6)		192 (29.5)		4,930 (26.6)	2,630 (28.1)	
Obese (> 30.0)	9,773 (11.9)	8,046 (20.7)		3,995 (19.2)		88 (13.5)		2,881 (15.5)	1,871 (20.0)	
Missing data	24,745 (23.1) §	5,165 (11.7)8		3,340 (13.9)	1	111 (14.6) §	1	2.002 (9.7)§	945 (9.2) §	1

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Gestation weeks at	earliest antenata	al visit								
1 st Trimester	69,896 (65.4)	36,789 (83.7)	<0.001	19,075 (79.2)	<0.001	569 (75.0)	<0.001	18,155 (88.4)	9,185 (89.4)	0.036
2 nd Trimester	29,269 (27.4)	5,791 (13.2)	1	4,117 (17.1)		166 (21.9)		1,770 (8.6)	829 (8.1)	
3 rd Trimester	7,741 (7.2)	1,376 (3.1)	1	890 (3.7)		24 (3.2)		605 (2.9)	264 (2.6)	
Missing	237 (0.2) §	42 (0.1)§		17 (0.1) §		3 (0.4) §		14 (0.1) §	13 (0.1) §	
Maternal smoking	Status						-			
Unknown	6,505 (6.1) §	819 (1.9) §	<0.001	500 (2.1) §	<0.001	32 (4.2) §	0.132	448 (2.2) §	155 (1.5) §	<0.001
Ex-smoker	5,952 (5.6)	3,363 (7.6)		1,923 (8.1)		35 (4.8)		1,427 (7.1)	660 (6.5)	
Non-smoker	70,319 (69.9)	31,421 (72.8)		15,755 (66.8)		534 (73.2)		15,525 (77.3)	8,368 (82.6)	
Smoker	24,367 (24.2)	8,395 (19.4)		5,921 (25.1)		161 (22.2)		3,144 (15.6)	1,108 (10.9)	
Maternal SIMD Dec	ile		6		•		•			•
Least Deprived (7-10)	65,227 (61.8)	25,192 (57.9)	<0.001	12,807 (53.8)	<0.001	501 (66.3)	0.012	12,806 (62.9)	6,714 (66.1)	<0.001
Most Deprived (1-6)	40,321 (38.2)	18,289 (42.1)		11,017 (46.2)		255 (33.7)		7,564 (37.1)	3,442 (33.9)	
Missing	1,595 (1.5) §	517 (1.2) §		275 (1.1)§		6 (0.8) §	-	174 (0.8) §	135 (1.3) §	
Maternal hyperten	sive disorders		1				-1			1
None	91,276 (85.2)	35,529 (80.8)	<0.001	18,635 (77.3)	<0.001	636 (83.5)	0.001	18,851 (91.8)	9,273 (90.1)	<0.001
Gestational	13,029 (12.2)	5,501 (12.5)		3,584 (14.9)		88 (11.5)		1,165 (5.7)	690 (6.7)	
Hypertension										
Preeclampsia	2,780 (2.6)	2,941 (6.7)	1	1,861 (7.7)		38 (5.0)		523 (2.5)	324 (3.1)	
Eclampsia	58 (0.1)	27 (0.1)		19 (0.1)		0 (0.0)		5 (<0.1)	4 (<0.1)	
Maternal antepartu	im haemorrhage	•			•					
No haemorrhage	97,527 (91.0)	37,673 (85.6)	<0.001	20,306 (84.3)	<0.001	684 (89.8)	0.434	18,549 (90.3)	9,244 (89.8)	< 0.001
Abruption	697 (0.7)	468 (1.1)	1	221 (0.9)		8 (1.0)		103 (0.5)	106 (1.0)	
Placenta previa	308 (0.3)	368 (0.8)		152 (0.6)		2 (0.3)		23 (0.1)	114 (1.1)	_
Unspecified	8,611 (8.0)	5,489 (12.5)	1	3,420 (14.2)		68 (8.9)		1,869 (9.1)	827 (8.0)	
Type of labour	·			•						•
Elective Caesarean Section	5,967 (5.6)	6,925 (15.7)	<0.001	1,384 (5.7)	<0.001	67 (8.8)	<0.001	616 (3.0)	3,843 (37.3)	<0.001
Induced	24,120 (22.5)	16,276 (37.0)	1	10,067 (41.8)	1	228 (29.9)	1	3,895 (19.0)	1,998 (19.4)	1
Spontaneous	77,056 (71.9)	20,797 (47.3)	1	12,648 (52.5)	1	467 (61.3)	1	16,033 (78.0)	4,450 (43.2)	1

										-
Type of delivery										
Spontaneous vaginal delivery (SVD)	75,027 (70.1)	19,287 (43.8)	<0.001	15,983 (66.3)	<0.001	496 (65.2)	0.003	16,398 (79.8)	1,403 (13.6)	<0.
Instrumental	15,409 (14.4)	8,107 (18.4)		4,043 (16.8)		120 (15.8)		2,546 (12.4)	1,927 (18.7)	1
Caesarean Section	15,566 (14.5)	16,351 (37.2)		3,879 (16.1)		141 (18.5)		1,509 (7.3)	6,937 (67.4)	1
Other	1,096 (1.0)	247 (0.6)		191 (0.8)		4 (0.5)		89 (0.4)	24 (0.2)	1
Missing	45 (<0.1) §	6 (<0.1)§		3 (<0.1) §		1 (0.1)§		2 (<0.1)§	0 (0.0) §	1
Analgesia during la	bour		1		1		-			
No	105,176 (98.2)	36,117 (82.1)	<0.001	20,974 (87.0)	<0.001	729 (95.7)	<0.001	19,915 (96.9)	8,235 (80.0)	<0.
Yes	1,967 (1.8)	7,881 (17.9)		3,125 (13.0)	_	33 (4.3)		629 (3.1)	2,056 (20.0)	1
Baby presentation	at delivery				1					
Occiput posterior	11,571 (10.8)	8,152 (18.6)	<0.001	2,636 (11.0)	0.525	68 (8.9)	0.093	1,401 (6.8)	2,967 (28.9)	<0.
Occiput anterior	95,352 (89.2)	35,745 (81.4)		21,409 (89.0)		694 (91.1)		19,100 (93.2)	7,306 (71.1)	
Missing	220 (0.2) §	101 (0.2) §		54 (0.2) §	-	0 (0.0) §	_	43 (0.2) §	18 (0.2) §	1
Sex of baby							1			
Female	52,265 (48.8)	21,139 (48.0)	0.010	11,739 (48.7)	0.861	367 (48.2)	0.732	10,124 (49.3)	4,907 (47.7)	0.008
Male	54,866 (51.2)	22,852 (51.9)		12,354 (51.3)		395 (51.8)		10,417 (50.7)	5,384 (52.3)	1
Missing	12 (<0.1)§	7 (<0.1)§		6 (<0.1)§		0 (0.0)§		3 (<0.1)§	0 (0.0)§	1
 *Only applicable *Only applicable *p value in complete *p va	e to Diclofenac 200 parison to the first parison to "No ana missing data on tot	5-2015 analysis ("No analgesic") Igesic 2005-2015 al, not included	column 5" control in the ana	column Iysis						
647 § Percentage of π 648	nissing data on tot	al, not included	in the ana	lysis						
		For peer	review only	y - http://bmjopen.l	bmj.com/sit	e/about/guideli	nes.xhtml			

Table 2. Regression analysis of offspring outcomes between control (no analgesic) and groups exposed to at least one analgesic, only paracetamol, and at least one from ibuprofen, aspirin, naproxen.

1 _[Deve enternal					
2		No analgesic	At least one			Paracetamol			ibu/Asp/Na		
3	Outcomes	(n=107.143)	analgesic			only			pr		
1		n (%)	(n=43,998)	Crude	Adjusted	(n=24,099)	Crude	Adjusted	(n=762)	Crude	Adjusted
┇			n (%)	OR (CI 95%)	OR (95% CI)	n (%)	OR (95% CI)	OR (95% CI)	n (%)	OR (95% CI)	OR (95% CI)
	Gestation at delivery (weeks)										
b	>=37	100,879 (94.2)	39,838 (90.5)	1.00	1.00	21,589 (89.6)	1.00	1.00	697 (91.5)	1.00	1.00
/ [<37	6,264 (5.8)	4,160 (9.5)	1.68 (1.61-1.75)	1.50 (1.43-1.58) ^a	2,510 (10.4)	1.87 (1.78-1.97)	1.56 (1.48-1.65) ^a	65 (8.5)	1.50 (1.16-1.94)	1.42 (1.08-1.86) ^a
8	Pregnancy outcome										
9	Livebirth	105,949 (98.9)	43,407 (98.7)	1.00	1.00	23,704 (98.4)	1.00	1.00	747 (98.0)	1.00	1.00
10	Stillbirth	803 (0.7)	405 (0.9)	1.23 (1.09-1.39)	1.33 (1.15-1.54) ^a	275 (1.1)	1.53 (1.33-1.76)	1.52 (1.30-1.77) ^a	13 (1.7)	2.30 (1.32-3.99)	2.34 (1.29-4.25) ^a
11	Neonatal	373 (0.3)	182 (0.4)	1.19 (0.99-1.42)	1.56 (1.27-1.93) ^a	117 (0.5)	1.40 (1.14-1.73)	1.56 (1.24-1.96) ^a	2 (0.3)	0.76 (0.19-3.06)	0.93 (0.23-3.74) ^a
12	Death										
13	Missing	18 (<0.1)	4 (<0.1)	n/a	n/a	3 (<0.1)	n/a	n/a	0 (0.0)	n/a	n/a
14	Weight of b	baby (grams)						1 -			
15	NBW	87,966 (82.1)	34,555 (78.6)	1.00	1.00	19,163 (79.5)	1.00	1.00	605 (79.5)	1.00	1.00
16	LBW	5,910 (5.5)	3,571 (8.1)	1.54 (1.47-1.61)	1.28 (1.20-1.37) b	2,213 (9.2)	1.72 (1.63-1.81)	1.60 (1.51-1.69) ^b	59 (7.7)	1.45 (1.11-1.90)	1.29 (0.91-1.83) b
17	HBW	13,233 (12.4)	5,863 (13.3)	1.13 (1.09-1.17)	1.09 (1.05-1.13) b	2,720 (11.3)	0.94 (0.90-0.99)	0.98 (0.93-1.02) b	97 (12.7)	1.07 (0.86-1.32)	0.99 (0.80-1.24) b
18	Missing	34 (<0.1)	9 (<0.1)	n/a	n/a	3 (<0.1)	n/a	n/a	1 (0.1)	n/a	n/a
19	Standardise	ed Birthweight Scor	e	,					1	,	,
20	Mean (SD)	0.001 (0.003)	-0.002 (0.065)	0.03 (0.02-0.04)	0.046 (0.032-	0.001 (0.991)	-0.04 (-0.058	-0.014 (-0.029-	0.046	0.045 (-0.029-	0.049 (-0.025-
21					0.059) c		0.029)	0.001) ^c	(0.038)	0.119)	0.123) ^c
22	Admitted to	o neonatal unit	1	-	-					-	-
23	No	62,378 (58.2)	32,391 (73.6)	1.00	1.00	16,342 (67.8) 🦊	1.00	1.00	480 (63.0)	1.00	1.00
24	Yes	11,011 (10.3)	7,448 (16.9)	1.30 (1.26-1.35)	1.57 (1.51-1.64) ^b	3,956 (16.4)	1.37 (1.32-1.43)	1.45 (1.38-1.53) ^b	117 (15.4)	1.38 (1.13-1.69)	1.54 (1.22-1.94) ^b
25	Missing	33,754 (31.5)	4,159 (9.5)	n/a	n/a	3,801 (15.8)	n/a	n/a	762 (21.7)	n/a	n/a
26	APGAR scor	re at 1 min							1		
27	Normal	92,217 (86.1)	38,224 (86.9)	1.00	1.00	20,593 (85.5)	1.00	1.00	659 (86.5)	1.00	1.00
28	<7	14,335 (13.4)	5,674 (12.9)	0.96 (0.92-0.99)	1.18 (1.13-1.23) d	3,437(14.3)	1.07 (1.03-1.12)	1.23 (1.18-1.28) d	101 (13.3)	0.99 (0.80-1.22)	1.07 (0.86-1.32) d
29	Missing	591 (0.6)	100 (0.2)		n/a	69 (0.3)	n/a	n/a	2 (0.3)	n/a	n/a
30	APGAR scor	re at 5 min					1 -				
31	Normal	104,292 (97.3)	42,730 (97.1)	1.00	1.00	23,334 (96.8)	1.00	1.00	738 (96.9)	1.00	1.00
32	<7	2,216 (2.1)	1,163 (2.6)	1.28 (1.19-1.38)	1.48 (1.35-1.62) d	690 (2.9)	1.39 (1.28-1.52)	1.53 (1.40-1.68) ^d	21 (2.8)	1.34 (0.87-2.07)	1.52 (0.97-2.36) ^d
33	Missing	635 (0.6)	105 (0.2)	n/a	n/a	75 (0.3)	n/a	n/a	3 (0.4)	n/a	n/a
34	Cryptorchid	lism (only males ind	luded)	1 .	1 -	1	1	1	1	1	
35	No	54,509 (99.3)	22,616 (99.0)	1.00	1.00	12,247 (99.1)	1.00	1.00	394 (99.4)	1.00	1.00
36	Yes	357 (0.7)	236 (1.0)	1.59 (1.35-1.88)	0.92 (0.77-1.11) ^b	107 (0.9)	1.33 (1.07-1.66)	0.87 (0.69-1.09) ^b	1 (0.3)	0.39 (0.05-2.77)	0.28 (0.04-1.98) b
C	Neural Tube	e Defects									

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1										50
1 2										
3		42.028 (00.8)	1.00	1.00	24.077 (00.0)	1.00	1.00	762 (100)	1.00	1.00
4 Voc	107,093 (99.9) E0 (0.1)	43,928 (99.8)		1.00	24,077 (99.9)	1.00	1.00	762 (100)	1.00	1.00
5	<u></u>								n/a	
6 Amn	iotic Band Defects			1.00		1.00			1.00	
	107,053 (99.9)	43,936 (99.9)	1.00	1.00	24,070 (99.9)	1.00	1.00	760 (99.7)	1.00	1.00
8 Yes	90 (0.1)	<u>90 (0.1)</u> <u>62 (0.1)</u> <u>1.68 (1.21-2.32)</u> <u>1.02 (0.71-1.47)[®] 29 (0.1)</u> <u>1.43 (0.94-2.18)</u> <u>0.98 (0.63-1.52)[®] 2 (0.3)</u> <u>3.13 (0.77-12.73)</u> <u>2.29</u>								2.29 (0.56-9.37)
	Spacias (only males included) 1 00									
	54,607 (99.5)	22,600 (98.9)	1.00	1.00	12,258 (99.2)	1.00	1.00	390 (98.7)	1.00	1.00
11 Cost	259 (0.3)	252 (1.1)	2.35 (1.98-2.80)	1.27 (1.05-1.54)*	96 (0.8)	1.65 (1.31-2.09)	1.07 (0.84-1.37)*	5 (1.3)	2.70 (1.11-6.59)	1.91 (0.78-4.68)
		42.070 (00.0)	1.00	1.00	24.080 (00.0)	1.00	1.00	762(100)	1.00	1.00
12 NO		43,979 (99.9)		1.00	24,089 (99.9)	1.00		762(100)	1.00	1.00
14	25 (0.1)	19 (0.1)	2.01 (1.10-3.70)	1.10 (0.50-2.20)*	10 (0.1)	1.95 (0.92-4.00)	0.99 (0.45-2.21)	0 (0.0)	n/a	n/a
14 At le	ast one outcome*					1				1
IS NO	106,367 (99.3%)	43,363 (98.6%)	1.00	1.00	23,835 (98.9%)	1.00	1.00	754 (99.0%)	1.00	1.00
16 Yes	776 (0.7%)	635 (1.4%)	2.01 (1.81-2.23)	1.12 (0.99-1.26) *	264 (1.1%)	1.52 (1.32-1.75)	0.97 (0.84-1.13) •	8 (1.0%)	1.45 (0.72-2.93)	1.11 (0.55-2.23) •
17	n/a, not applic	able; n, number	of pregnancies							
18	a Adjusted for	year of delivery,	maternal age at de	elivery, SIMD, first	t gestational boo	oking, maternal hy	ypertensive disord	lers, materna	al antepartum	
19	haemorrhage									
20	A diustod for	voar of dolivory	maternal ago at d	olivory SIMD first	t gostational boy	king gostation a	t dolivory			
21	Aujusteu Ioi	* Adjusted for year of delivery, maternal age at delivery, SIVID, first gestational booking, gestation at delivery								
22	^c Adjusted for	^c Adjusted for year of delivery, maternal age at delivery, SIMD, first gestational booking								
23	^d Adjusted for	^d Adjusted for year of delivery, maternal age at delivery, SIMD, first gestational booking, type of delivery								
24	*Including cry	ptorchidism, neu	ral tube defects, a	mniotic band defe	ects, hypospadia	s, gastroschisis				
25	0 /									
26										
27										
28										
29										
30										
31										
32										
33										
34										
35										
36										
37										
38										
39										
40										
41										
42										
43			For po	or roview only - http	n·//hmionon.hmi	com/site/about/a	uidalinas yhtml			
44			roi pe	er review only - http	p.//binjopen.binj	.com/site/about/gt				
45										

BMJ Open

Table 3. Sub-group regression analysis between control pregnancies and exposed to diclofenac.

				h9							
		No analgesic	Diclofenac only								
Ou	tcomes	(n=20,544)	2005-2015								
		n (%)	(n=10,291)	Crude	Adjusted						
			n (%)	OR (CI 95%)	OR (CI 95%)						
Gest	Gestation at delivery (weeks) >-27 10.407 (04.5%) 0.640 (02.7%) 1.00 1.00										
>=37	7	19,407 (94.5%)	9,640 (93.7%)	1.00	1.00						
<37		1,137 (5.5%)	651 (6.3%)	1.15 (1.04, 1.27)	1.10 (0.99, 1.22) ª						
Preg	Pregnancy outcome										
Live	birth	20,393 (99.3%)	10,227 (99.4%)	1.00	1.00						
Still	oirth	116 (0.5%)	39 (0.4%)	0.67 (0.47, 0.96)	0.59 (0.41, 0.87) ^a						
Neo	natal	35 (0.2%)	25 (0.2%)	1.42 (0.85, 2.38)	1.26 (0.73, 2.15) ª						
Deat	th										
Wei	Weight of baby (grams)										
NBV	V	16,869 (82.1%)	8,116 (78.9%)	1.00	1.00						
LBW	/	965 (4.7%)	572 (5.6%)	1.23 (1.11, 1.37)	1.22 (1.07, 1.40) ^b						
HBW	V	2,707 (13.2%)	1,600 (15.5%)	1.23 (1.15, 1.31)	1.21 (1.13, 1.29) ^b						
Miss	sing	3 (0.0%)	3 (0.0%)								
Stan	dardised	Birthweight Score									
		-0.039 (0.959)	0.132 (1.036)	0.171 (0.145, 0.197)	0.167 (0.141, 0.193) ^c						
Adm	Admitted to neonatal unit										
No		18,224 (88.7%)	8,747 (85.0%)	1.00	1.00						
Yes		2,175 (10.6%)	1,492 (14.5%)	1.43 (1.33, 1.53)	1.46 (1.35, 1.58) ^b						
Miss	sing	145 (0.7%)	52 (0.5%)								
APG	APGAR score at 1 min										
Norr	mal	18,709 (91.1%)	9,350 (90.9%)	1.00	1.00						
<7		1,658 (8.1%)	924 (9.0%)	1.12 (1.03, 1.21)	0.93 (0.83, 1.04) ^d						
Miss	sing	177 (0.9%)	17 (0.2%)								
APG	APGAR score at 5 min										
Norr	mal	20,065 (97.7%)	10,096 (98.1%)	1.00	1.00						
<7		302 (1.5%)	177 (1.7%)	0.86 (0.71, 1.04)	0.94 (0.72, 1.23) ^d						
Miss	sing	177 (0.9%)	18 (0.2%)								
Crvp	Cryptorchidism (only males included)										
No		10.284 (98.7%)	5.314 (98.7%)	1.00	1.00						
Yes		133 (1.3%)	70 (1.3%)	1.02 (0.76, 1.36)	1.05 (0.78, 1.42) b						
Neu	ral Tube D)efects	10 (21070)	1.01 (0.00) 1.00)	1.00 (0.70) 1.12)						
No		20 527 (99 9%)	10 263 (99 7%)	1.00	1 00						
Yes		17 (0.1%)	28 (0 3%)	3.29 (1.80, 6.02)	3.62 (1.95, 6.74) ^b						
Amr	niotic Ban	d Defects	20 (01070)								
No		20 514 (99 9%)	10 277 (99 9%)	1 00	1 00						
Yes		30 (0.1%)	14 (0 1%)	0.93 (0.49, 1.76)	0.81 (0.41 1.58)						
Hyp	osnadias (only males included)	11 (011/0)		0.01 (0.11) 1.00)						
No	ospaalas	10 317 (99 0%)	5 308 (98 6%)	1.00	1.00						
Voc		100 (1 0%)	76 (1 4%)		1.00						
Gad	Tes 100 (1.0%) 76 (1.4%) 1.48 (1.09, 1.99) 1.49 (1.09, 2.03) Costroschicis										
No		20 538 (00 0%)	10 284 (00 0%)	1.00	1.00						
Voc		6 (0 1%)	7 (0 1%)	2 22 (0 78 6 04)	1.00 2 02 (0 07 0 00\b						
105	act and -	U (U.1/0)	/ (0.1/0)	2.33 (0.70, 0.94)	2.33 (0.37, 0.00)-						
	east one o		10 007 (00 10()	1.00	1.00						
INO		20,258 (98.6%)	10,097 (98.1%)	1.00							
Yes		286 (1.4%)	194 (1.9%)	1.36 (1.13 <i>,</i> 1.64)	1.38 (1.15 <i>,</i> 1.67) ^v						

1		
2 3 4 5	651 652	^a Adjusted for year of delivery, maternal age at delivery, SIMD, first gestational booking, maternal hypertensive disorders, maternal antepartum haemorrhage
6 7	653	^b Adjusted for year of delivery, maternal age at delivery, SIMD, first gestational booking, gestation at
8 9 10 11	654 655 656 657	delivery ^c Adjusted for year of delivery, maternal age at delivery, SIMD, first gestational booking ^d Adjusted for year of delivery, maternal age at delivery, SIMD, first gestational booking, type of delivery
$\begin{array}{c} 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 9\\ 20\\ 22\\ 23\\ 4\\ 25\\ 26\\ 27\\ 28\\ 29\\ 31\\ 32\\ 33\\ 4\\ 35\\ 36\\ 37\\ 38\\ 9\\ 41\\ 42\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 51\\ 51\\ 51\\ 51\\ 51\\ 51\\ 51\\ 51\\ 51\\ 51$	656 657 658	⁴ Adjusted for year of delivery, maternal age at delivery, SIMD, first gestational booking, type of delivery *Including cryptorchidism, neural tube defects, amniotic band defects, hypospadias, gastroschisis
52 53		
54 55 56		
57 58		
59 60		

Figure 1. Flowchart of cohort selection and sub-group analyses. n=number of pregnancies in each analysis.*98.3% of pregnancies using only diclofenac occurred , is it is i during 2005-2015, therefore analysis was performed only on data from that decade to rule out any temporal effect.

BMJ Open

Figure 2. Prevalence of use during pregnancy for each analgesic sub-group over our 30-year study period. (A) Merge graph showing percentage of pregnancies using <text> each analgesic group during pregnancy. (B) Percentage of use for at least one analgesic out of ibuprofen, aspirin, naproxen. *In 2005 there was a change in legislation making diclofenac available without prescription.

2 3 4	670	Figure S1. Directed acyclic graph (DAG) of analgesics use to amniotic band defects
5 6	671	outcome path and relevant measured and unmeasured biasing factors in our
7 8	672	analysis.
8 9 10 11 12 13 14 15 16 7 18 19 20 22 23 24 25 26 27 8 29 30 132 33 45 36 37 38 39 0 41 23 44 56 57 58 56 57 58 56 57 58 56 57 58 56 57 58 56 57 58 56 57 58 56 57 58 56 57 58 56 57 58 56 57 58 56 57 58 56 57 58 57 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 57 58 57 57 57 57 57 57 57 57 57 57 57 57 57	672	analysis.

1 2		
2 3 4	674	Figure S2. Directed acyclic graph (DAG) of analgesics use to APGAR score
5 6	675	outcome path and relevant measured and unmeasured biasing factors in our
7 8	676	analysis.
, 8 9 10 11 12 13 14 5 16 7 18 9 21 22 22 22 22 22 22 22 22 22 22 22 22	676	analysis.

2 3 4	678	Figure S3. Directed acyclic graph (DAG) of analgesics use to cryptorchidism
5 6	679	outcome path and relevant measured and unmeasured biasing factors in our
7 8	680	analysis.
9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 4 25 26 27 28 29 30 31 32 33 45 36 37 38 9 40 41 42 43 44 45 46 47 48 49 50 51 52 53 45 56 57 58 59 60	681	

1 ว		
2 3 4	682	Figure S4. Directed acyclic graph (DAG) of analgesics use to gastroschisis outcome
5 6 7	683	path and relevant measured and unmeasured biasing factors in our analysis.
7 8 9	684	
10 11		
12 13		
14 15 16		
17 18		
19 20		
21 22 23		
24 25		
26 27		
28 29 30		
31 32		
33 34		
35 36 37		
38 39		
40 41 42		
42 43 44		
45 46		
47 48 40		
49 50 51		
52 53		
54 55		
50 57 58		
59 60		

1		
2 3 4	685	Figure S5. Directed acyclic graph (DAG) of analgesics use to gestation at delivery
5 6	686	outcome path and relevant measured and unmeasured biasing factors in our
7 8 9	687	analysis.
9 10 11 12 13 14 15 16 17 18 9 21 22 23 24 26 27 28 29 30 12 33 34 35 36 37 89 04 142 34 45 67 55 56 57 59 06	688	

1		4
2 3 4	689	Figure S6. Directed acyclic graph (DAG) of analgesics use to hypospadias outcome
5 6	690	path and relevant measured and unmeasured biasing factors in our analysis.
7 8 9 10 11 21 21 22 22 22 22 22 22 22 22 22 22	691	

1		+.
2 3 4	692	Figure S7. Directed acyclic graph (DAG) of analgesics use to admission to neonatal
5 6	693	unit outcome path and relevant measured and unmeasured biasing factors in our
/ 8 9	694	analysis.
9 10 11 23 14 15 16 7 8 9 21 22 23 24 25 67 28 9 31 23 34 56 78 90 41 23 44 56 78 90 21 22 22 24 25 67 28 93 31 23 34 56 78 90 41 23 44 56 75 55 57 58 90 60 10 10 10 10 10 10 10 10 10 10 10 10 10	695	

1 2		
2 3 4	696	Figure S8. Directed acyclic graph (DAG) of analgesics use to neural tube defects
5 6	697	outcome path and relevant measured and unmeasured biasing factors in our
7 8	698	analysis.
, 8 9 10 11 2 13 14 5 16 7 18 9 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 1 3 2 3 3 4 5 16 7 18 9 2 1 2 2 3 2 2 2 2 2 2 2 2 3 3 1 3 2 3 3 4 5 16 7 18 9 2 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 2 3 3 3 3 5 16 4 2 3 4 4 5 16 7 18 9 2 1 2 2 3 4 5 16 7 18 9 2 1 2 2 3 4 5 16 7 18 9 2 1 2 2 3 4 5 16 7 18 9 2 1 2 2 3 4 5 16 7 18 9 2 1 2 2 3 4 5 16 7 18 9 2 1 2 2 3 4 5 16 7 18 9 2 1 2 2 3 4 5 16 7 18 9 2 1 2 2 3 4 5 16 7 18 9 2 1 2 2 3 4 5 16 7 18 9 2 1 2 2 3 4 5 16 7 18 9 2 1 2 2 3 4 5 16 7 18 9 2 1 2 2 3 4 5 16 7 18 9 2 1 2 2 3 4 5 16 7 18 9 2 1 2 2 3 4 5 16 7 18 9 2 1 2 2 3 4 5 16 7 18 9 2 1 2 2 3 4 5 16 7 18 9 2 1 2 2 3 4 5 16 7 18 9 2 1 2 3 4 5 16 7 18 1 10 10 10 10 10 10 10 10 10 10 10 10 1	698	analysis.

700	Figure S9. Directed acyclic graph (DAG) of analgesics use to pregnancy outcom	ne
-----	---	----

for oper terien only

path and relevant measured and unmeasured biasing factors in our analysis.

1		
2 3 4	703	Figure S10. Directed acyclic graph (DAG) of analgesics use to standardised
5 6	704	birthweight score outcome path and relevant measured and unmeasured biasing
/ 8 9	705	factors in our analysis.
9 10 11 12 3 4 5 6 7 8 9 0 1 22 23 24 25 6 7 8 9 0 1 23 33 4 5 6 7 8 9 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	706	
1 2		
--	-----	--
2 3 4	707	Figure S11. Directed acyclic graph (DAG) of analgesics use to weight of baby
5 6	708	outcome path and relevant measured and unmeasured biasing factors in our
7 8	709	analysis.
9 10 11	710	
4 5 6 7 8 9 10 11 23 14 5 16 7 8 9 10 11 23 22 23 24 25 27 28 9 30 31 23 34 5 36 7 8 9 0 11 23 44 5 6 7 8 9 10 11 23 45 22 22 22 22 22 22 22 22 23 24 25 26 27 8 9 30 31 22 23 24 25 26 27 8 9 30 31 32 33 45 36 37 38 9 0 11 22 34 25 26 27 8 9 30 31 32 33 45 36 37 38 9 0 11 22 23 24 25 26 27 8 9 30 31 23 34 5 36 37 38 9 0 11 22 34 25 26 27 8 9 30 31 32 33 34 5 36 37 38 9 0 11 22 34 25 26 27 8 9 30 31 32 33 34 5 36 37 38 9 0 11 22 34 25 26 27 8 9 30 31 32 33 34 5 36 37 38 9 0 11 23 34 5 36 37 38 9 0 11 23 34 5 36 37 38 9 0 11 23 24 25 26 27 8 9 30 31 32 33 33 33 35 36 37 38 9 0 12 33 34 5 36 37 37 37 37 37 37 37 37 37 37 37 37 37	710	
42 43		
 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 		

Table S1. Numbers needed to harm (NNH) calculations

Outcomes (n=107,143) analgesic (n=24,099) (n=762) n (%) n (%) n (%) n (%) n (%)	
n (%) (n=43,998) n (%) n (%) n (%) (%)	
n (%) NNH NNH	
Contation at delivery (weeks)	NNH
>=37 100,879 (94.2) 39,838 (90.5) 21,589 (89.6) 697 (91.5) -27 -26,064 (5.0) -27 25,10 (10.4) -22 -65 (0.5)	27
<37 6,264 (5.8) 4,160 (9.5) 27 2,510 (10.4) 22 65 (8.5) Preserver subserve	37
Pregnancy outcome	
Livebirtin 105,949 (98.9) 43,407 (98.7) 23,704 (98.4) 747 (98.0)	100
Stilloirth 803 (0.7) 405 (0.9) 500 275 (1.1) 250 13 (1.7)	100
Neonatal 373 (0.3) 182 (0.4) 1000 117 (0.5) 500 2 (0.3)	n/a
$\frac{\text{Deal}(1)}{\text{Missing}} = \frac{18}{(201)} + \frac{4}{(201)} = \frac{16}{(201)} + \frac{16}{(201)} = \frac{16}{($	
Missing 18 (<0.1) 4 (<0.1) n/a 3 (<0.1) n/a 0 (0.0)	n/a
INDW 67,300 (82.1) 34,555 (78.0) 19,103 (79.5) 605 (79.5) LDW 5.010 (5.5) 2.571 (8.1) 2.9 2.212 (0.2) 2.0 50 (7.7.7)	46
LDW 2,222 (12, 4) 59 (7.7) 38 2,213 (9.2) 39 59 (7.7)	40
TBVV 15,235 (12.4) 5,805 (15.5) 111 2,720 (11.3) n/a 97 (12.7) Missing 2.4 (x0.1) 0.6 (x0.1) 111 2,720 (11.3) n/a 97 (12.7)	333
viissing 34 (<0.1) 9 (<0.1) n/a 3 (<0.1) n/a 1 (0.1)	n/a
NO 62,378 (58.2) 32,391 (73.6) 16,342 (67.8) 480 (63.0) V 44.044 (40.2) 7.449 (45.0) 45 2.055 (45.4) 460 (63.0)	
Yes 11,011 (10.3) 7,448 (16.9) 15 3,956 (16.4) 16 117 (15.4)	20
Missing 33,754 (31.5) 4,159 (9.5) n/a 3,801 (15.8) n/a 762 (21.7)	n/a
Normal 92,217 (86.1) 38,224 (86.9) 20,593 (85.5) 659 (86.5)	
14,335 (13.4) 5,674 (12.9) n/a 3,437 (14.3) 111 101 (13.3)</td <td>n/a</td>	n/a
Missing 591 (0.6) 100 (0.2) 69 (0.3) n/a 2 (0.3)	n/a
APGAR score at 5 min	
Normal 104,292 (97.3) 42,730 (97.1) 23,334 (96.8) 738 (96.9)	
<7 2,216 (2.1) 1,163 (2.6) 200 690 (2.9) 125 21 (2.8)	143
Missing 635 (0.6) 105 (0.2) n/a 75 (0.3) n/a 3 (0.4)	n/a
Cryptorchidism (only males included)	
No 54,509 (99.3) 22,616 (99.0) 12,247 (99.1) 394 (99.4)	
Yes 357 (0.7) 236 (1.0) 333 107 (0.9) 500 1 (0.3)	n/a
Neural Tube Defects	
No 107,093 (99.9) 43,928 (99.8) 24,077 (99.9) 762 (100)	
Yes 50 (0.1) 70 (0.2) 1000 22 (0.1) n/a 0 (0.0)	n/a
Amniotic Band Defects	
No 107,053 (99.9) 43,936 (99.9) 24,070 (99.9) 760 (99.7)	
Yes 90 (0.1) 62 (0.1) n/a 29 (0.1) n/a 2 (0.3)	500
Hypospadias (only males included)	
No 54,607 (99.5) 22,600 (98.9) 12,258 (99.2) 390 (98.7)	
Yes 259 (0.3) 252 (1.1) 125 96 (0.8) 200 5 (1.3)	100
Gastroschisis	
No 107,120 (99.9) 43,979 (99.9) 24,089 (99.9) 762(100)	
Yes 23 (0.1) 19 (0.1) n/a 10 (0.1) n/a 0 (0.0)	n/a
At least one outcome*	
No 106,367 43,363 (98.6%) 23,835 (98.9%) 754 (99.0%)	
(99.3%)	

n/a, not applicable

Table S2. Numbers needed to harm (NNH) for exposure to

diciotenac (y	ears 2005-2015).	D :14	1
	No analgesic	Diclotenac	
Outcomes	(n=20,544)	2005-2015	
	n (%)	(n=10,291)	
<u> </u>		n (%)	NNH
Gestation at o	delivery (weeks)		
>=37	19,407 (94.5%)	9,640 (93.7%)	
<37	1,137 (5.5%)	651 (6.3%)	125
Pregnancy ou	tcome		1
Livebirth	20,393 (99.3%)	10,227 (99.4%)	
Stillbirth	116 (0.5%)	39 (0.4%)	n/a
Neonatal	35 (0.2%)	25 (0.2%)	n/a
Death			
Weight of bal	by (grams)		
NBW	16,869 (82.1%)	8,116 (78.9%)	
LBW	965 (4.7%)	572 (5.6%)	111
HBW	2,707 (13.2%)	1,600 (15.5%)	44
Missing	3 (0.0%)	3 (0.0%)	1
Admitted to r	neonatal unit		1
No	18 224 (88 7%)	8 747 (85 0%)	
Ves	2 175 (10 6%)	1 492 (14 5%)	26
Missing	1/15 (0 7%)	52 (0 50/)	20
	$1^{143}(0.770)$	52 (0.5%)	1
APGAR SLUFE			
	10,709 (91.1%)	9,350 (90.9%)	114
</td <td>1,658 (8.1%)</td> <td>924 (9.0%)</td> <td>111</td>	1,658 (8.1%)	924 (9.0%)	111
Missing	177 (0.9%)	17 (0.2%)	
APGAR score	at 5 min		
Normal	20,065 (97.7%)	10,096 (98.1%)	
<7	302 (1.5%)	177 (1.7%)	500
Missing	177 (0.9%)	18 (0.2%)	
Cryptorchidis	m (only males includ	led)	
No	10,284 (98.7%)	5,314 (98.7%)	
Yes	133 (1.3%)	70 (1.3%)	n/a
Neural Tube I	Defects		
No	20,527 (99.9%)	10,263 (99.7%)	
Yes	17 (0.1%)	28 (0.3%)	500
Amniotic Ban	d Defects	(, .,	
No	20 514 (99 9%)	10 277 (99 9%)	
Voc	20,314 (33.370)	1/ (0 1%)	n/2
ICS	 	1) 14 (U.1%)	11/d
INO No.	10,317 (99.0%)	5,308 (98.6%)	250
Yes	100 (1.0%)	76 (1.4%)	250
Gastroschisis	1		
No	20,538 (99.9%)	10,284 (99.9%)	
Yes	6 (0.1%)	7 (0.1%)	n/a
At least one o	outcome*		
No	20,258 (98.6%)	10,097 (98.1%)	
Yes	286 (1.4%)	194 (1.9%)	200
	((,,,,	

n/a, not applicable

Page 59 of 69

Page 61 of 69

Page 63 of 69

2
2
3
Λ
-
5
6
7
/
8
9
10
10
11
12
12
15
14
15
16
10
17
18
10
19
20
21
22
23
24
25
25
26
27
20
20
29
30
21
21
32
33
24
54
35
36
27
57
38
39
10
40
41
42
4٦
44
45
46
47
4/
48
49
50
50
51
52
52
53
54
55
55
56
57
58
50
59

60

1

STROBE Statement—Checklist of items that should be included in reports of *cohort studies*

	Item		Paragraph
	No	Recommendation	#
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	Title & Abstract Pages 1-3
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	Abstract Pages 2-3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Introduction Page 5
Objectives	3	State specific objectives, including any prespecified hypotheses	Introduction Page 5
Methods			
Study design	4	Present key elements of study design early in the paper	Methods Page 7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Methods Page 7
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	Methods Pages 7-8
		(b) For matched studies, give matching criteria and number of exposed and unexposed	n/a
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Methods Pages 8-9
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Methods Pages 8-9
Bias	9	Describe any efforts to address potential sources of bias	Methods Pages 7-8
Study size	10	Explain how the study size was arrived at	Methods Page 7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Methods Pages 8-9
Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions		Statistical Analysis paragraph pages 9-10	
		Statistical Analysis paragraph pages 9-10	
		(c) Explain how missing data were addressed	Statistical Analysis paragraph pages 9-10
		(d) If applicable, explain how loss to follow-up was addressed	n/a
		(\underline{e}) Describe any sensitivity analyses	n/a

Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg	Figure 1
		numbers potentially eligible, examined for eligibility, confirmed	
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	Results
			Page 11
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic,	Table 1
		clinical, social) and information on exposures and potential confounders	Pages 29-31
		(b) Indicate number of participants with missing data for each	Table 1
		variable of interest	Pages 29-31
		(c) Summarise follow-up time (eg, average and total amount)	n/a
Outcome data	15*	Report numbers of outcome events or summary measures over time	Tables 2 and
			3
			Pages 32-35
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	Tables 2 and
		estimates and their precision (eg, 95% confidence interval). Make	3
		clear which confounders were adjusted for and why they were	Pages 32-35
		included	
		(b) Report category boundaries when continuous variables were	Table 1
		categorized	Pages 29-31
		(c) If relevant, consider translating estimates of relative risk into	Tables 2 and
		absolute risk for a meaningful time period	3
		6.	Pages 32-35
Other analyses	17	Report other analyses done—eg analyses of subgroups and	n/a
		interactions, and sensitivity analyses	
Discussion		4	
Key results	Key results 18 Summarise key results with reference to study objectives		Discussion
			Pages 16-17
Limitations	19	Discuss limitations of the study, taking into account sources of	Discussion
		potential bias or imprecision. Discuss both direction and magnitude	Pages 16-18
		of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering	Discussion
		objectives, limitations, multiplicity of analyses, results from similar	Pages 19-21
		studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	Discussion
			Pages 20-21
Other information			
Funding	22	Give the source of funding and the role of the funders for the present	Manuscript
		study and, if applicable, for the original study on which the present	pages 4 and
		article is based	21

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely

available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

for peer terien ony