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Appendix Figure S1. Two-resource growth rates do not vary with resource supply
ratio. (A) Growth rates for Aci2 and Pa at nine different ratios of alanine and glutamate (total supply
constant at 0.1%w/v). Aci2’s growth rate fluctuates by ±0.01 hr−1 and Pa’s by ±0.03 hr−1 (standard
deviations of the nine growth rate fits), compared to uncertainties of approximately ±0.01 hr−1 on each
individual fit. (B) The Aci2 optical density data from Fig 2B in red with the Aci2 growth rates from
A in black. (C) The Pa optical density data from Fig 2E in blue with the Pa growth rates from A in
black.
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Appendix Figure S2. A quadratic growth rate recovery shape allows for more confident
lag time fits than a linear or a sharp recovery. (A) The equations governing three simple
empirical models for growth rate (and, after integration, population size) over time after a diauxic shift
that starts at time t = 0. The steady-state growth rate is gSS and the lag time is tlag. The prefactors in front
of tlag in the linear and sharp recovery shapes are included to have the population sizes from each shape
converge at time t � tlag. (B) The growth rates (bottom) and population sizes (top) derived from those
shapes. The top panel illustrates how the quadratic growth rate shape can be thought of as in between
the linear and sharp recovery shapes. (C – D) Lag time fits using the linear, quadratic, and sharp growth
rate recovery shapes. In all fits gSS = 0.88hr−1, so the only free parameter is tlag (fit independently for
each recovery shape). The Aci2 optical density data from Fig 2B and EV2A is in the red and the best fit is
in black. The quadratic fits in D are the same as Fig EV2A and reproduced here to facilitate comparison.
(C) The linear recovery shape allows for close, confident fits at large glutamate supply fractions (two
leftmost panels), but at more equal supply ratios (three center through rightmost panels) it is unclear
whether the most appropriate fit would be a long lag time fit that predicts population sizes close to the
experimental data before saturation is reached or a shorter lag time fit that would eventually converge
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towards an extrapolation of the experimental data if saturation were not reached. (E) Similarly, the sharp
recovery shape can be fit asymptotically at large glutamate supply fractions but becomes more uncertain
at more equal supply ratios. (F) Comparing the lag times fit using each recovery shape reinforces these
considerations. Using the linear recovery shape yields excessively long lag times, while the sharp recovery
shape yields lag time values similar to the quadratic model but that actually decrease at the 1:1 Ala:Glu
condition (relative to the 1:2 condition) due to the biases of using that recovery shape.

Appendix Figure S3. All Aci2 lag time fits. In all plots, the same data as in Fig 2B is shown in
red and the best-fit lag recoveries (from which the reported lag times in Fig 2H are extracted) are shown
in black.
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Appendix Figure S4. All Pa lag time fits. In all plots, the same data as in Fig 2E is shown in
blue and the best-fit lag recoveries (from which the reported lag times are extracted) are shown in black.
Sudden spikes in optical density when Pa undergoes a diauxic shift or saturates are visible in nearly all
these plots. Interpretation and handling of these artifacts is detailed in Appendix Fig S5.
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Appendix Figure S5. Small spikes in Pa’s optical density at the onset of its diauxic
shift and at saturation appear to be artifacts and can be easily accounted for in the
data analysis. Shown is an annotated growth curve for Pa growing in a 1:16 Ala:Glu environment
(dark) with a growth curve for Pa growing in a 1:1 environment shown for comparison (light and behind).
Periods of steady-state growth can be seen first in the two-resource environment and later on the remaining
glutamate. Pa’s steady-state growth rate on the remaining glutamate matches the value of 0.57hr−1 from
single-resource experiments (Fig EV1A). In addition to periods of steady growth, sudden spikes in optical
density are also clearly visible. If these spikes corresponded to ordinary growth (i.e. increase in biomass),
Pa’s growth rate would reach as high as 3.4hr−1 at the time of its diauxic shift. This is implausible,
so these spikes must be changes in per capita or per biomass optical density. We did not study these
spikes in optical density any further, but sudden increases of similar magnitude to the optical density
of Pseudomonas have been previously observed and linked to changes in cell morphology resulting from
environmental perturbations.1 For fitting Pa’s lag times, the time for Pa to reach its steady-state growth
rate (and not the time until the spike in optical density at saturation) is what’s relevant (Materials and
Methods). The greatest uncertainty in the Pa lag time fits comes from determining at what time and
optical density to define the onset of Pa’s diauxic shift. In the reported fits (Appendix Fig S4) we have
defined the onset such that we obtain lag time values in the middle of the possible range. Other choices
could have affected Pa’s lag times by up to ±20 minutes, but Pa’s lag times would still be very short
compared to Aci2’s and reasonably approximated by a constant value of 1 hour.

1Bernheim “Factors which affect the size and optical density of Pseudomonas aeruginosa” J Gen Microbiol. 1964.
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Appendix Figure S6. Detail on Aci2’s post-shift growth rates. The same instantaneous
growth rates as in Fig 2D are plotted in an alternative manner to show additional detail. Labels show the
maximum instantaneous growth rates for each condition.
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Appendix Figure S7. Lag times fit using single-resource growth rates for post-shift
steady-state growth rates are similar to the lag times fit using the two-resource growth
rates. The lag times used in all Main Text modeling were fit using gSS (i.e. g(t � tlag)) values equal to
the species’ two-resource growth rates. This decision was made to maintain consistency with the modeling
having only a single growth rate for each species. The measured single-resource growth rates for each
species were, however, 15-25% slower than the two-resource growth rates (Fig EV1A). (A−B) Lag times
were refit using the species’ single-resource growth rates for their post-shift gSS. The same Aci2 and Pa
optical density data as in Fig 2B (and Appendix Fig 3 and 4) are shown in red and blue respectively, the
updated best-fit lag recoveries (from which the lag times are extracted) are shown in black. (C) Summary
of Aci2 (red) and Pa (blue) diauxic lag times as fit and modeled with in the Main Text narrative (light)
and as refit in A and B using the species’ single-resource growth rates (dark). Aci2’s lag times are on
average only 15% ±7% shorter. Pa’s lag times are on average 54% ±16% shorter, but, because Pa’s lag
times are already short, this is only 28 ±4 minutes shorter. Across the five conditions with lag times for
both Aci2 and Pa, the difference in lag times (i.e. tlag,Aci2 − tlag,Pa) decreases by just 13% ±2%. Results
from modeling with these updated lag times are provided in Appendix Fig S11. (Means and standard
errors reported.)
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Appendix Figure S8. Aci2’s lag times do not vary with initial dilution or time spent
growing pre-shift, but may be a function of the alanine supply or of Aci2’s population
size at the onset of its diauxic shift. (A) To further investigate with which parameters Aci2’s
lag time truly varies we repeated the monoculture lag time measurements (Fig 2B-C) at an expanded set
of conditions, defined by resource supply ratios of 1:16 through 2:1 Ala:Glu at 1x, 2x, and 3x the total
resource concentrations used in the Main Text and initial dilutions of 103, 104, and 105 from an overnight
starter culture. The plot indicates the alanine and glutamate supply combinations used. All 15 supplies
were tested at each of the three dilutions. (B) Extracted lag times vs each of the three directly controlled
parameters. Lag time appears to correlate well with alanine supply and notably has no variation with
initial dilution. That lag time does not vary with initial dilution justifies modeling Aci2’s lag time as a
function of resource supply but not dilution factor. (C) Extracted lag times vs time and population size
at the onset of the diauxic shift. Aci2’s lag time correlates well with its population size at the onset of
its diauxic shift but not with time spent growing on alanine before its diauxic shift. (D) Aci2’s lag time
correlates equally well to the alanine supply and to its population size at the onset of the diauxic shift
because in monoculture the alanine supply determines Aci2’s population size at the onset of its diauxic shift
(at which point Aci2shas consumed all the alanine and nothing else). This correlation meant we could not
rule out that Aci2’s lag time might truly be a function of its population size at the onset of its diauxic shift.
For simplicity the Main Text modeling assumes Aci2’s lag time varies with the experimentally controlled
parameter. Fig EV4 shows the results of instead modeling Aci2’s lag time as varying with its population
size at the onset of its diauxic shift.
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Appendix Figure S9. Aci2 vs Pa on alanine and/or glutamate competition data includ-
ing single-resource conditions. Same as Fig 5A but including the single-resource competitions in the
left-most and right-most columns. 146,566 colonies were counted to produce precise species fractions.
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Appendix Figure S10. Quantification of Aci2 and Pa on alanine and glutamate model
prediction vs experimentally observed outcome. (A) Steady-state predicted fraction Pa vs
experimentally observed fraction Pa for all resource supply ratios and dilution factors tested. (B) Observed
fraction Pa for all cases in which Pa is predicted to go extinct. Horizontal spacing is added to separate
the data points that are otherwise stacked (e.g. in the bottom left corner of A). (C) Residual plot of the
same data. Shaded gray regions are the disallowed regions that would require an observed fraction less
than zero or greater than one. (D) Histogram of the residuals. Dark horizontal line near center indicates
the mean residual, which is a species fraction of -0.02.
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Appendix Figure S11. Removing the assumption of equal pre- and post-shift growth
rates changes modeling predictions only slightly. (A) Same modeling prediction as the Main
Text (i.e. same as Fig 5B) reproduced here to facilitate comparison. This modeling used the species’
two-resource growth rates for both pre- and post-shift growth to have a single growth rate for each species
and used lag times fit with post-shift gSS fixed as the species’ two-resource growth rates for consistency.
(B) Same modeling repeated, still using two-resource growth rates pre- and post-shift, but now using the
lag time values fit using single-resource growth rates for post-shift gSS (Appendix Fig S7). (C) Modeling
repeated again using single-resource growth rates post-shift (such that each species now has three total
growth rate) as well as lag times fit using single-resource growth rates.

Appendix Figure S12. Predicted competitive outcomes vary relatively little with Pa’s
resource preference. (A) Pa modeled as initally consuming only alanine (i.e. having the same resource
preference as Aci2). (B) Pa modeled as initially coutilizing with a 2:3 Ala:Glu uptake ratio. This is the
same prediction presented in Fig 5B and is reproduced here to facilitate comparison. (C) Pa modeled as
initially consuming only glutamate (i.e. having the opposite preference from Aci2). Across A−C, whether
Pa survives never depends on its resource preference because as Pa is driven extinct it has increasingly
little impact on the population’s overall resource consumption and therefore on the resource depletion
times and each species’ per-cycle growth. This conservation of Pa’s extinction or survival illustrates that
the slow-grower Pa’s ability to survive in coculture with the fast-grower Aci2 is not dependent on any
complimentarity of resource preferences (e.g. on Aci2 initially consuming only alanine while Pa initially
coutilizes with a larger uptake fraction of glutamate).
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Appendix Figure S13. Images of the colonies formed by each of the five species. The
color difference between Aci2 and Ka is becomes more apparent under a transmitted light microscope with
Aci2 being considerably more opaque than Ka.
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2. Modeling Comparison of Initial and Diauxic Lags

Blox Bloxham, Hyunseok Lee, Jeff Gore

In the Main Text we state that diauxic lags have a greater ability to support coexistence than
do initial lags because diauxic lags divide the growth phase into two subphases with their own
distinct dynamics whereas initial lags merely affect the dynamics of a single growth phase.
This modeling comparison is presented to support those claims. We begin by looking at the
simplest models of initial and diauxic lags under otherwise exponential growth and find that
diauxic lags support coexistence within simpler models than those necessary for initial lags to
produce coexistence. We specifically show that diauxic lags can support coexistence as the
result of a growth rate − lag time tradeoff whereas initial lags require a more complex growth
rate − lag time − yield tradeoff to produce coexistence. We also show that diauxic lags produce
coexistence in larger parameter regions, which implies greater stability against perturbations.
Finally, we sample random species in a scenario in which both initial and diauxic lags can
support the coexistence of two species and see coexistence occur more frequently when lags are
diauxic. These results lead us to conclude that from a variety of perspectives diauxic lags do
indeed support coexistence to a greater extent than initial lags.

2. Modeling Comparison of Initial and Diauxic Lags

2.1 Daily dilution competitions

All modeling presented in the Main Text and Appendix considers the case of two or three species competing
for one or two supplied resources under a daily dilution scheme. Our central question is determining which
species survive and at what (end-of-day) population sizes after a large number of dilution cycles (also
referred to as ‘days’). We begin by defining the basics of the daily dilution:

Resources are supplied at constant quantities {si} at the start of each day. Concentrations are {ci(t)}.

Species population sizes are {nµ(t)}, occasionally labeled as {n(day i)
µ (t)} when that clarity is needed. (The

time t is time-within-a-day.) Species begin each day at some population sizes {n(day i)
µ (0)} and grow until

all resources have been depleted (at tsat), at which point the coculture is saturated and population sizes
remain constant for the rest of the day.1

At the start of the next day, population sizes are diluted. There are two forms of dilution we will consider:
constant-factor dilutions and dilutions to a specific total population size.

1For clarity, throughout the Appendix, species will be α, β, and γ and indexed over with µ and ν, while resources will be
R1 and R2 and indexed with i and j.
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A constant-factor dilution obeys a simple form,

n(day i)
µ (0) =

1

DF
n(day i−1)
µ (tsat) (1)

where DF is the dilution factor and tsat is the time at which the population saturates (meaning {nµ(tsat)}
are the end-of-day population sizes). Under constant-factor dilution, the dilution of each species µ is
independent of the population sizes of any other species. This form of dilution captures the common
experimental daily dilution scheme in which a well-mixed coculture is diluted once per day by transferring
a small volume into fresh media.

A useful thing to know about a constant-factor dilution is the steady-state population sizes if total growth
over the course of a day is known. Derived using ys as the total growth or the course of a day (which will
often be something like yield times resource supply):∑

µ

nµ(tsat) =
∑
µ

nµ(0) + ys &
∑
µ

nµ(0) =
1

DF

∑
µ

nµ(tsat)

∑
µ

nµ(0) =
ys

DF− 1
&

∑
µ

nµ(tsat) =
DF ys

DF− 1
(2)

Equation (2) will later be referred to the correction for the day-to-day carryover.

An alternative modeling of a daily dilution is a dilution to a specific population size n0 while main-
taining constant species population fractions:

n
(day i)
µ (0)∑
ν n

(day i)
ν (0)

=
n

(day i−1)
µ (tsat)∑
ν n

(day i−1)
ν (tsat)

&
∑
µ

n(day i)
µ (0) = n0 (3)

Equation (3) is satisfied by

n(day i)
µ (0) =

n0∑
ν n

(day i−1)
ν (tsat)

n(day i−1)
µ (tsat) . (4)

So the effective dilution factor at the start of each day is

DFeff =

∑
µ nµ(tsat)

n0
. (5)

If the total end-of-day population size
∑

µ nµ(tsat) is known to be the same each day regardless of the specific
species fractions (e.g. if all yields are constant, as will be discussed later), then the two implementations
of dilution are equivalent. But, when DFeff varies with the population composition, the behavior of the
two implementations becomes much different, with a reset to a specific total population size acting like
another frequency-dependent selection phase that can allow for additional coexistence.

It certain contexts, the dilution to a specific population size can be thought of as a frequency-dependent
dilution. For example, at fixed point two species (α and β) with yields yα and yβ growing on a resource
supplied in quantity s on each day obey

nα(0) =
nα(tsat)

DFeff
& nβ(0) =

nβ(tsat)

DFeff
&

nα(tsat)− nα(0)

yα
+
nβ(tsat)− nβ(0)

yβ
= s1 . (6)
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Equation (6) along with nα(0) + nβ(0) = n0 can be solved for DFeff to get

DFeff = 1 +
yαyβ(s/n0)

yβ + (yα − yβ)fβ
, (7)

where fβ ≡ nβ(0)/(nα(0) + nβ(0)) is the frequency or population fraction of species β. As DFeff is now
written as a function of fβ, the dilution to a specific population size can (with certain other assumptions)
be thought of as having a frequency-dependent dilution factor.

The ability of the population composition to modulate DFeff is important because, if some species do better
in competition at small DFeff and others at large DFeff, then DFeff can be the environmental parameter that
mediates a negative frequency-dependent selection and stabilizes coexistence. This occurs in the growth
rate – initial lag – yield tradeoff in section 2.3.

2.2 Exponential growth with diauxic lags

In the simplest diauxie model coexistence occurs in an unbounded region of large growth
rate and lag time differences. We begin by studying the simplest case of diauxic lags and show that
coexistence is readily possible in even the simplest model. We define this simplest case as two species with
the same resource preference and the same growth rate for each resource. Specifically:

• Two species, α and β, compete for two resources, R1 and R2, supplied at concentrations s1 + s2 = 1.

• Each species has the same growth rate on each resource (gα1 = gα2 and gβ1 = gβ2).

• Each species consumes entirely R1 then R2.

• All yields are equal (yµi = 1).

• Diauxic lags are sharp (defined below).

• Dilutions are constant-factor dilutions by DF.

The two species grow at rates gα and gβ, consuming one dimensionless unit of R1 per dimensionless unit
of biomass gained until R1 has been depleted (∆nα + ∆nβ = s1). At this point the species experience
diauxic lags with no growth for tlagα and tlagβ and then grow until R2 has also been depleted. At this point
populations are divided by DF, resource concentrations are reset to s1 and s2, and the cycle repeats. This
model is essentially the Main Text model except species are purely diauxic (no coutilization) and lags are
‘sharp’ (no growth for tlagµ instead of a quadratic growth rate recovery).

The growth dynamics for species µ growing on Ri then Rj with a sharp diauxic lag of length tlagµ (and no
initial lag) are defined by

dnµ
dt

= g̃µ(t)nµ(t) with g̃µ(t) =


gµi if 0 < t < tdepi

0 if tdepi < t < (tdepi + tlagµ)

gµj if (tdepi + tlagµ) < t < tdepj

, (8)

where g̃µ(t) has been introduced as the instantaneous growth rate of species µ and tdepi is the time at
which resource Ri runs out (i.e. ci(t) = 0 based on equation (10) defined below). This definition means
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that species grow at a constant rate all the way until resource depletion, have no growth for the duration
of their lag, then resume growing at their new maximum growth rate.

In the simple case being considered for now, the instantaneous growth rate can be simplified to

g̃µ(t) =


gµ if 0 < t < tdep1

0 if tdep1 < t < (tdep1 + tlagµ)

gµ if (tdep1 + tlagµ) < t < tdep2

, (9)

because species have only a single growth rate gµ and will always be switching from R1 to R2.

Meanwhile, the dynamic equations for the resource concentrations are

dc1

dt
=

{
−
∑

µ
dnµ
dt if 0 < t < tdep1

0 else
and

dc2

dt
=

{
−
∑

µ
dnµ
dt if tdep1 < t < tdep2

0 else
, (10)

because both species are consuming R1 then R2 with all yields equal to one.

We can determine whether species coexist using fixed point analysis. On each cycle species grow
by

∆ log nµ ≡ log

(
nµ(tsat)

nµ(0)

)
=

{
gµ(tdep2 − tlagµ) if tlagµ < (tdep2 − tdep1)

gµ(tdep1) else
. (11)

With a constant factor dilution, a fixed point is defined by

∆ log nα = ∆ log nβ = log DF , (12)

which is a simple statement that species’ growth during each day is by exactly the same factor as they are
then diluted by between days.

Equations (11) and (12) combine with an important consequence: No fixed point exists in which both
species finish their diauxic lags. If tlagα < (tdep2 − tdep1) and tlagβ < (tdep2 − tdep1) then solving equation
(12) requires,

gα(tdep2 − tlagα) = log DF & gβ(tdep2 − tlagβ) = log DF ,

which cannot be satisfied by any value of tdep2.

The case in which α does not finish its lag but β does can be solved:

gα(tdep1) = log DF & gβ(tdep2 − tlagβ) = log DF

tdep1 =
log DF

gα
& tdep2 =

log DF

gβ
+ tlagβ (13)

For this solution to exist the following must be satisfied:

tlagβ < (tdep2 − tdep1) < tlagα

tlagβ <

(
log DF

gβ
+ tlagβ −

log DF

gα

)
< tlagα
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Appendix Figure S14: Simplest diauxie model supports two-species coexistence over a broad parameter range. (A)
Species fractions plotted as a function of growth rate ratio and lag time difference for dilution factor DF = 10
and a balanced resource supply s1 = s2. The fast-grower α has an increasing growth advantage to the right while
the fast-switcher β has an increasing lag time advantage upwards. The region of the fast-grower α excluding the
slow-grower β is shown in red, and the region of the fast-switcher β excluding the slow-switcher α is shown in blue.
The boundaries between coexistence and exclusion correspond to equations (14) and (16). (B) Varying the relative
supplies of R1 and R2. (C) Varying the dilution factor DF. Same colormap applies to all subplots.

tlagα − tlagβ

gα − gβ
>

log DF

gαgβ
(14)

Equation (14) is a statement that in order for the species to coexist, the difference in lag times relative to
the difference in growth rates must be sufficiently large (or else both species would finish their lags at the
fixed point). This is a necessary but not sufficient condition; the rest is below.

Equation (13) defines the unique pair of resource depletion times that can correspond to a fixed point. It
can be further shown that only a single population composition can produce these resource depletion times
by looking at the condition that the species with the shorter lag time (assumed to be β) exactly finishes
the supply of the second resource with the necessary timings:

nβ(tdep2) = nβ(tdep1 + tlagβ) + s2

nβ(tsat) = nβ(tsat) exp [−gβ (tdep2 − tdep1 − tlagβ)] + s2

nβ(tsat) =
s2

1−DF(gβ/gα−1)
(15)

We can check equation (15) specifies a realizable population size (i.e. 0 < nβ(tsat) <
DF

DF−1 as specified
by equation (2)). First, 0 < nβ(tsat) is given by gα > gβ, which is already necessary to satisfy equation
(14) if tlagα > tlagβ (i.e. the slow-grower needs to the be fast-switcher in order to survive). And, second,
nβ(tsat) < DF

DF−1 can be manipulated into a requirement on the ratio between the two growth rates,
gα/gβ:

s2

1−DF(gβ/gα−1)
<

DF

DF− 1

gα
gβ

>
log [DF]

log [DF− s2 (DF− 1)]
(16)

If equations (14) and (16) are satisfied (enforcing that the difference in lag times and the difference in
growth rates are both sufficiently large), a fixed point exists. Invasibility requirements (whether α grows
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Appendix Figure S15: Many features of the Main Text model prediction are already present in the simplest diauxie
model. (A) Main Text model prediction for fraction Pa as a function of dilution factor and resource supply ratio (e.g.
Fig 5B) calculated at a denser array of points. (B) Predicted species fractions under the simplest diauxie model using
gAci2 = 0.88hr−1, gPa = 0.67hr−1, tlag,Aci2 = 5.33hr−1, tlag,Pa = 0.67hr−1, and Pa having the same alanine preference
as Aci2. There is a factor of 2

3 difference between how lag times are defined in the Main Text and this section of the
Appendix (by comparison of equation (8) to formulae given in the Materials and Methods and Appendix Fig S2), so
this lag time values are comparable to tlag,Aci2 = 8hr−1 and tlag,Pa = 1hr−1 using the Main Text quadratic growth
rate recovery shape (Fig EV3B).

by at least DF when invading β’s steady state, and vice versa) can be used as a coherence check and to
demonstrate that this fixed point is stable.2

In Appendix Fig S14A, population size is plotted as a function of the growth rate ratio gα/gβ and the
normalized difference in lag times gβ(tlagα − tlagβ) in the quadrant in which α is the fast grower while β is
the fast-switcher. One striking feature of this plot is the sharp boundary between a region of roughly 50:50

coexistence and a region of α excluding β. This boundary occurs at gβ(tlagα − tlagβ) =
(

1− gβ
gα

)
log DF,

which is a rearrangement of equation (14), the condition for whether or not β can finish R2 before α finishes
its lag. If α cannot finish its lag then β consumes all of s2 and must have a population fraction of at least
s2/(s1 + s2). If α does finish its lag then it excludes β. This creates a sharp boundary.

The most relevant feature of the Appendix Fig S14A is, however, the broad and unbounded region of
coexistence. If the growth rate ratio and difference in lag times are large enough then the species coexist,
with the fast-grower initially dominating before tdep1 and the fast-switcher dominating after. The breadth
of this region also implies significant stability of the coexistence state against perturbations to species’
growth rates and lag times. Appendix Fig S14B-C explore to the sensitivity to changes to the environmental
parameters. If the resource supply consists mostly of the second resource then the fast-switcher β gains
a significant advantage because tdep1 occurs earlier and the period of time when it dominates lengthens.
Conversely, if the dilution factor is increased then the fast-grower α gains an advantage because tdep1 occurs
later and the period of time when it dominates lengthens. Nevertheless, the region of coexistence remains
large under moderate environmental perturbations.

When species have opposite preferences, coexistence occurs in an unbounded region of large
lag times but does not require any difference in lag times. If species have opposite preferences,
only one species (whichever finishes its preferred resource first) experiences its lag. If this species finishes
its lag then a fixed point is not possible for the same reason a fixed point was not possible with both species
finishing their diauxic lags in the previous model. Specifically, assuming α prefers R1 and β prefers R2 and

2Not provided here for the sake of brevity, so left as an exercise to the reader or available in the Supplementary Material
for the 2021 bioRxiv version of this paper (Bloxham, Lee, Gore “Diauxic Lags Explain Coexistence” BioRxiv 2021.).
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that α is the species that experienced and finished its lag, a fixed point requires

gα (tdep2 − tlagα) = gβtdep2 = log DF , (17)

which cannot be solved for any value of tdep2.

Working with the knowledge that the first species to finish its resource cannot finish its diauxic lag at any
fixed point and following analysis similar to the case of both species having the same preference, it can be
shown that coexistence occurs iff

tlagα >
gα − gβ
gαgβ

log DF & tlagβ >
gβ − gα
gαgβ

log DF . (18)

Notably, equation (18) depends only on the magnitudes of the lags and not on the difference between them
and is satisfied in the large lag limit. So, if species have opposite resource preferences and diauxic lags
are assumed to be large, coexistence is expected. It is even possible for a slow-grower that is also the
slow-switcher to survive if both species have sufficiently long lag times.

2.3 Exponential growth with initial lags

With all yields equal, initial lags do not allow for coexistence. As previously noted, with all yields
equal the two forms of daily dilution are equivalent. Therefore, at a fixed point equation (12) still holds
and two species can only coexist if

gα(tsat − tlagα) = log DF & gβ(tsat − tlagβ) = log DF , (19)

which, with a fixed value of DF, cannot be solved for any value of tsat.

This is an important point because it is a direct comparison between initial and diauxic lags that concludes
that diauxic lags have a robust ability to produce coexistence in the simplest case while initial cannot
produce coexistence. This is illustrated in Appendix Fig S16.

Initial-lag coexistence requires disequal yields and dilutions to a total population size and
occurs only in a narrow parameter region. Initial lags have been shown to be a source of stable
coexistence34, which is in seeming contradiction to our previous conclusion. The difference between these
analyses is the form of daily dilution that is used. With a dilution by a constant factor, initial lags
and exponential growth on a single resource cannot produce stable coexistence. But, with a dilution to a
constant population size and the slow-grower/fast-switcher having a higher yield than the fast-grower/slow-
switcher, initial lags can lead to coexistence.

The following repeats analysis in Manhart 2018a,b but with a choice of variables that matches the previous
diauxic lag calculations.

3Manhart, Adkar, and Shakhnovich “Trade-offs between microbial growth phases” Proc Royal Soc B. 2018.
4Manhart and Shakhnovich “Growth tradeoffs produce complex microbial communities” Nat Commun. 2018.

21



Appendix Figure S16: In simplest model, diauxic lags allow for coexistence whereas initial lags do not. (A) Same
phase space as in Appendix Fig S14A. (B) Same phase space when species have initial lags and dilutions are still
constant-factor dilutions by DF = 10 (same as A). The broad region of coexistence has been replaced by a region of
the fast-switcher excluding the slow-switcher.

With DF replaced by DFeff, where DFeff is now an environmental variable that can be affected by the
population composition, equation (19) can now be solved by

tsat =
gαtlagα − gβtlagβ

gα − gβ
& log DFeff =

gαgβ(tlagα − tlagβ)

gα − gβ
, (20)

which by linearity of equation (19) is the unique solution.

Population sizes can be calculated from knowing the total population at the start of the start of the day
and that the resource supply is totally consumed after both species have grown by a factor of DFeff:

nα(0) + nβ(0) = n0 &
nα(0)(DFeff − 1)

yα
+
nα(0)(DFeff − 1)

yα
= s

nα(0) =
yαn0

yα − yβ
−

yαyβs

(DFeff − 1)(yα − yβ)
& nβ(0) =

yβn0

yβ − yα
+

yαyβs

(DFeff − 1)(yα − yβ)
, (21)

which is again a unique solution by linearity.

To find constraints on when this fixed point can exist, we solve for the condition nµ(0) > 0:

yαn0

yα − yβ
−

yαyβs

(DFeff − 1)(yα − yβ)
> 0 &

yβn0

yβ − yα
+

yαyβs

(DFeff − 1)(yα − yβ)
> 0

After some simplification and handling of which yield is larger, we find that in order for the fixed point to
exist, it must be the case that

ymins

n0
+ 1 < log DFeff <

ymaxs

n0
+ 1 , (22)

where ymin is the smaller of the two yields (i.e. min(yα, yβ)) and ymax the larger.

Equation (23) is also equivalent to

DFeff,min < DFeff < DFeff,max, (23)

where DFeff,min is the effective dilution factor for a monoculture of the species with the lowest yield and
DFeff,max is the effective dilution factor for a monoculture of the species with the largest yield.
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Plugging equation (20) into equation (23) yields

log

(
ymin

n0/s
+ 1

)
<

tlagα − tlagβ

(gα − gβ)/gαgβ
< log

(
ymax

n0/s
+ 1

)
. (24)

If equation (24) is satisfied a fixed point will exist. Manhart 2018a,b previously showed that the fixed
point will be stable and the species will coexist if and only if the species with the higher yield is the
slow-grower/fast-switcher. (Otherwise the fixed point will be the separatix of a bistability.)

Important to note in equation (24) is that while a sufficiently large difference in lag times |tlagα − tlagβ|
is necessary for coexistence, if the difference becomes too large the species will no longer coexist. This is
in contrast to the previously explored case of diauxic lags, in which a larger difference in lag times can
only ever benefit coexistence. In this way, initial lags as a source of coexistence, while producing genuinely
stable (non-neutral) coexistence, only do so in a narrow parameter region and the resulting state will likely
be more fragile against environmental perturbations, compared diauxic lags as a source of coexistence
occurring in a larger, more robust parameter region. The width of the region of coexistence is also directly
limited by the ratio between the yields ymax/ymin because

log

(
ymax

n0/s
+ 1

)
− log

(
ymin

n0/s
+ 1

)
< log

(
ymax

ymin

)
. (25)

Yields are an essential part of the tradeoff that stabilizes coexistence in this model. That one species is the
fast-grower and the fast-starter means the curves ∆ log nµ = gµ(tsat−tlagµ) cross at some point (t∗sat,DF∗eff).
But for this point to correspond to stable coexistence, there needs to be a feedback mechanism between
the population sizes and the environmental parameters tsat and DFeff.

Assuming species α has the faster growth rate, longer lag time, and lower yield compared to β (i.e. gα > gβ,
tlagα > tlagβ, and yα < yβ): If α’s population size is above its equilibrium value, then because α has the
smaller yield the overall population size must be smaller. A smaller total population size means the effective
dilution DFeff is smaller than at equilibrium. A smaller DFeff means the population needs to grow for less
time to return to saturation (i.e. tsat occurs earlier than at equilibrium). If tsat < t∗sat then ∆ log nα and
∆ log nβ never cross. Because α is the slow-starter and fast-grower, α’s population size declines relative to
β if tsat < t∗sat. This completes a negative feedback loop that stabilizes the coexistence state. The relative
growth rates, lag times, and yields and the species’ ability to affect both tsat and DFeff are all essential parts
of the negative frequency-dependent interaction between α and β and the fixed point’s stability.

Equations (20) and (21) can be combined to calculate species fractions

fβ =
yβ

yα − yβ

 yα(s/n0)

exp

[
gαgβ(tlagα−tlagβ)

gα−gβ

]
− 1

− 1

 , (26)

which are plotted as a function of the various parameters in Appendix Fig S17.

For further discussion of coexistence within this initial lag model see Manhart 2018a,b.
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Appendix Figure S17: Initial lags produce coexistence but only in a much narrower parameter region. (A) Species
fractions plotted as a function of growth rate ratio and lag time difference for n0 = 0.1 and s = 1. The values
yα = 0.5 and yβ = 4.5 are chosen such that if fβ = 0.5 then DFeff = 10 (for comparability to Appendix Fig S14A,B
and S16). It is noted that in contrast to coexistence produced by diauxic lags, there now exists an upper bound (in
terms of gβ(tlagα − tlagβ)) on the region in which coexistence can be achieved. (B) As yields are made more similar
the region of coexistence shrinks. Both panels continue to use n0 = 0.1 and the values yα = 0.7 and yβ = 4.5 are
chosen to again have DFeff = 10 when fβ = 0.5. The lower bound varies with yα

n0/s
and the upper bound varies with

yβ
n0/s

, so if n0 or s were changed both bounds would move up to down and any coexistence point would quickly end

up in one of the exclusion regions. (C) If the yields are equal there is no region of coexistence, and if the yields are
flipped the region of coexistence becomes a region of bistability in which one species will exclude the other depending
on initial fractions. (D) Across all four quadrants (i.e. allowing lag and growth rate ordering to switch), only a
small region of one quadrant allows for coexistence. This highlights how the necessary tradeoff must involve growth
rates, lag times, and yields in order for coexistence to be realized. This is in contrast to diauxic lags as a source
of coexistence, with which yields are not a necessary part of the tradeoff and both the top right and the lower left
quadrants would include large regions of coexistence.

2.4 Three species on two resources with either initial or diauxic lags

Up to three species can coexist on two resources with diauxic lags and dilutions to a total
population size. Because the dilution implementation made a difference as to whether one or two species
could survive with initial lags, it is reasonable to ask whether it will make the difference between two or
three species surviving with diauxic lags. The answer turns out to be yes: three species can survive on two
resources with diauxic lags (and only a single growth rate for each species) if dilutions are implemented as
being to a constant population size.

The first question to answer is how many species finish their diauxic lag at a three-species fixed point. At
least one must because otherwise the second resource wouldn’t get eaten. If only one finishes, we end up
with an equation such as gαtdep1 = gβtdep1, which can’t be solved. And if all species finish their diauxic
lags, we end up with the equation gα(tdep2− tlagα) = gβ(tdep2− tlagβ) = gγ(tdep2− tlagγ), which also can’t be
solved. Therefore, we know that if there is a fixed point with three species surviving, exactly two of those
species (which we’ll assume are β and γ) must finish their diauxic lags, while the third (α) does not.

For simplicity, we will assume that each species has only a single yield (i.e. yµ1 = yµ2).

Proceeding with fixed point analysis, equation (12) requires

∆ log nα = ∆ log nβ = ∆ log nγ = log DFeff .
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Beginning with ∆ log nβ = ∆ log nγ and then moving towards log DFeff and ∆ log nα:

gβ(tdep2 − tlagβ) = gγ(tdep2 − tlagγ)

tdep2 =
gβtlagβ − gγtlagγ

gβ − gγ
(27)

log DFeff =
gβgγ(tlagβ − tlagγ)

gβ − gγ
(28)

tdep1 =
gβgγ(tlagβ − tlagγ)

gα(gβ − gγ)
(29)

A quick check can show that 0 < tdep1 < tdep2 is true if gα > gβ and gα > gγ and either gβ > gγ and
tlagβ > tlagγ or gγ > gβ and tlagγ > tlagβ, which were all already logistically necessary conditions. Important
to note is that these are the unique {tdep1, tdep2,DFeff} that allow all three species to grow by the same
factor as each other and on each day.

We can now set up a system of three linear equations for {nα(0), nβ(0), nγ(0)}: one from initial population
sizes summing to n0, one from exact consumption of R1 at tdep1, and one from exact consumption of R2

at tdep2. 
1 1 1

e
gαtdep1−1

yα
e
gβtdep1−1

yβ
e
gγtdep1−1

yγ

0 e
gβ(tdep2−tlagβ)−egβtdep1

yβ
e
gγ (tdep2−tlagγ )−egγtdep1

yγ

 ·
 nα(0)

nβ(0)
nγ(0)

 =

 n0

s1

s2

 (30)

The analytic solution to equation (30) is too messy to be printed here, but the linear nature of the equation
does mean any solution for {nµ(0)} will be unique. Furthermore, there are parameter regions in which
solutions with nµ(0) > 0 exist. For example, when the parameters

gα = 0.3 hr−1 yα = 0.15 tlagα = 13 hr n0 = 0.075
gβ = 0.14 hr−1 yβ = 0.2 tlagβ = 5 hr s1 = 0.5
gγ = 0.1 hr−1 yγ = 0.7 tlagγ = 0.5 hr s2 = 0.5

(31)

are used, equation (30) is solved by
nα(0) = 0.013
nβ(0) = 0.024
nγ(0) = 0.038 .

Analytically determining the stability of this fixed point would be cumbersome, so we instead simulate the
community and plot the results. The parameters presented as equation (31) produce a stable fixed point
that is a universal attractor. This demonstrates that three species can stably coexist on two resources with
diauxic lags and dilutions to a specific population size.

This is a rich situation because there is simultaneously a growth rate − lag time tradeoff and a growth
rate − yield tradeoff. A dedicated study of this model may be warranted by future research. The basic
interactions are:

• Species β and γ both finish their lags, so they are unaffected by changes to tdep1, each growing by
∆ log nµ = gµ(tdep2 − tlagµ). Of the two, β is the fast-grower so it benefits from a later tdep2.
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• Species β has a smaller yield than γ, so increasing β’s population fraction relative to γ will result in
smaller end-of-day populations and smaller effective dilution factors DFeff = (nα + nβ + nγ)/n0.

• A smaller effective dilution will result in earlier resource depletion times, which increase γ’s growth
relative to β. This establishes a negative frequency-dependent selection between β and γ.

• Meanwhile, α is the fast-grower and, near the fixed point, does not finish its lag, so it’s growth is
entirely determined by tdep1. Increasing α’s population fraction will tend to move tdep1 earlier because
it’s the species that consumes R1 the fastest. An earlier tdep1 decreases α’s growth, so a negative
frequency-dependent selection between α and the other two species is established.

• Thus, β and γ’s negative frequency-dependent interaction holds tdep2 and DFeff at the fixed point
values, while α holds tdep1 at its fixed point value.

These are complicated dynamics, but the key feature is that

∆ log nα(tdep1, tdep2) = ∆ log nβ(tdep1, tdep2) = ∆ log nγ(tdep1, tdep2) (32)

can indeed by solved for tdep1 and tdep2 because there is no fixed value of log DF such that we must have
∆ log n = DF at any fixed point. Instead, there is some ∆ log n value that all species can obtain at the
same time with the right values tdep1 and tdep2 (i.e. ∆ log nµ(tdep1, tdep2) all intersect somewhere) and the
population sizes then adjust (through a dilution factor-mediated negative frequency-dependent interaction)
until DFeff = ∆ log n (which can be obtained due to species all having different yields).

It is plausible that three species could coexist on two resources with initial lags, dilutions to
a total population size, and separate growth rates for each resource. The previous results leads
us to expect that three species should also be able to coexist with initial lags if tdep1 and tdep2 can both be
made relevant. Without diauxic lags, we need to introduce separate second-resource growth rates for each
species, such that species are now characterized by four parameters (compared to the previous three): a
lag time, a yield, and two growth rates.

Analysis mirrors the previous calculations and is provided here in brief.

To find a fixed point, choose parameters, solve: gα1 − gα2 gα2 −1
gβ1 − gβ2 gβ2 −1
gγ1 − gγ2 gγ2 −1

 ·
 tdep1

tdep2

log DFeff

 =

 gα1tlagα

gβ1tlagβ

gγ1tlagγ

 (33)

then solve:
1 1 1

egα1(tdep1−tlagα)−1
yα

egβ1(tdep1−tlagβ)−1
yβ

egγ1(tdep1−tlagγ )−1
yγ

DFeff(1−e−gα2(tdep2−tdep1))
yα

DFeff(1−e−gβ2(tdep2−tdep1))
yβ

DFeff(1−e−gγ2(tdep2−tdep1))
yγ

 ·
 nα(0)

nβ(0)
nγ(0)

 =

 n0

s1

s2

 (34)

and then confirm tlagµ < tdep1 < tdep2 and ∀µ nµ(0) > 0.

While we were able to identify fixed points, none of them were stable. It is possible that a stable fixed
point would require one or two of the species to not finish its initial lag until after tdep1 or that we simply
failed to identify one during our limited search. We suspect stable fixed points should be possible, but this
is left for future work to establish.
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Appendix Figure S18: Three species survive on two resources with diauxic lags and a dilution to a specific population
size. Parameters are those labeled as equation (31). The system is initiated at {nα, nβ , nγ} = {0.025, 0.01, 0.04} and
run for 1000 days (of which the first eight are shown) to confirm stability of the fixed point. Species begin each day

growing exponentially until the first resource is depleted (when ∆nα
yα

+
∆nβ
yβ

+
∆nγ
yγ

= s1). Species then experience

diauxic lags before resuming growth at their original growth rates. After saturation, population sizes are divided by
a population-size dependent dilution factor DFeff to reset to nα + nβ + nγ = n0.

Assuming three species can coexist in this scenario, it is worth noting that this requires each species to be
characterized by four parameters (instead of the three parameters per species for the case of three species
surviving as the result of diauxic lags) and for a first-resource vs second-resource growth rate tradeoff to
become involved. This continues the pattern of diauxic lags consistently being slightly ahead of initial lags
in terms of ability to support coexistence. The strength of diauxic lags in supporting coexistence comes
from their division of the growth phase into two separate subphases with their own distinct dynamics
without the need for multiple growth rates and the associated increase in tradeoff complexity.

As a final note, some form of lag is necessary to have three species surviving on two resources even when
they have separate R1 and R2 growth rates. With no lags we would have:

∀µ gµ1tdep1 + gµ2(tdep2 − tdep1) = log DFeff

or  gα1 − gα2 gα2 −1
gβ1 − gβ2 gβ2 −1
gγ1 − gγ2 gγ2 −1

 ·
 tdep1

tdep2

log DFeff

 =

 0
0
0

 (35)

Because the matrix will have a nonzero determinant without fine tuning the growth rates, equation (35)
is only solved by tdep1 = tdep2 = log DFeff = 0, which is a nonphysical solution. More intuitively, the fixed
point is impossible because ∆ log nµ = (gµ1 = gµ2)tdep1 + (gµ2)tdep2 are three planes that intersect at the
origin and therefore nowhere else (whereas with lags the planes are offset from the origin and intersect
somewhere else).

2.5 Likelihood of random species coexisting with either initial or diauxic lags

With separate growth rates for each resource and constant-factor dilutions, at most two
species can survive with diauxic lags, initial lags, or no lags, but the frequency of coexistence
may still vary. Having taken an analytic approach to asking whether coexistence is possible under various
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scenarios with initial or diauxic lags, we now approach our central question from a different angle and ask
how frequently coexistence is expected to be observed. To set up a fair comparison we want a case in which
both initial and diauxic lags support the same maximum number of surviving species.

We choose the case of two species growing on two resources with separate growth rates for each resource
and a constant factor dilution (with all yields set to 1). There are two environmental parameters that
feedback and affect the species: tdep1 and tdep2. In the absence of lags, it is well-established that two
species can survive on two resources if one is the R1 fast-grower and the other is the R2 slow-grower (with
appropriate bounds on the necessary values of gµi relative to the dilution factor and resource supply).
Adding in lags does not, however, increase the maximum number of surviving species because we still need
to solve

∆ log nµ(tdep1, tdep2) = log DF (36)

for each species. With only two free variables we can solve equation (36) for at most two species.

For our comparison of initial and diauxic lags, we can sample species from some reasonable distributions
and ask whether they coexist (i) with initial lags, (ii) with diauxic lags, and (iii) without any lags. So,
although we know coexistence is possible, we are now asking how frequently it occurs.

Invasibility can be used as an approximation of whether species coexist. Fixed point analysis
has been working great so far but would now become more tedious and computationally slower. So we
instead turn to invasibility criteria. If species α and species β can each invade each other’s steady-state
then we conclude they coexist. We have a continuous mapping of population fractions on one day to
population fractions on the next, so if there is a single fixed point then invasibility criteria are sufficient to
determine the qualitative competitive outcome. If each species can invade the other, neither can be driven
extinct, and both must survive.5

We begin with diauxic lags and consider the invasibility of slow-switcher α by fast-switcher β:

The environmental parameters for slow-switcher α’s steady-state can be calculated as the time it would take
α to finish R1 then R2 on its own (remembering equation (2) for the day-to-day carryover correciton):

nα(tdep1|α)− nα(0) = s1 & nα(tdep2|α)− nα(tdep1|α) = 1− s1

1

DF− 1
exp

(
gα1tdep1|α

)
− 1

DF− 1
= s1 &

DF

DF− 1
− DF

DF− 1
exp

(
−gα2tdep2|α

)
= 1− s1

tdep1|α =
1

gα1
log (s1(DF− 1) + 1) & tdep2|α − tdep1|α = tlagα +

1

gα2
log

(
DF

s1(DF− 1) + 1

)
(37)

Knowing α’s steady-state, we can determine if β can invade by asking whether β grows by at least a factor
of DF on each cycle – i.e. if gβ1tdep1|α + gβ1(tdep2|α − tdep1|α) > log DF.

5We cannot, however, rule out the possibility of two fixed points. Assuming α is the slow-switcher: With initial lags there
may be both a fixed point in which α finishes its lag in time to eat some of R1 and a separate fixed point in which α does
not finish its lag in time and only eats R2. Likewise, with diauxic lags there may be both a fixed point in which α finishes its
lag in time to eat some of R2 and a separate fixed point in which α does not finish its lag in time and only eats R1. In both
cases, each fixed point would correspond to different values of tdep1 and tdep2 and, in turn, different population sizes. If two
fixed points do exist, the qualitative competitive outcome will be a bistability between a coexistence state and a competitive
exclusion. Ideally we would detect these cases and use the width of the basins of attractions in calculating the likelihood of
coexistence. But, in the interest of simplicity, we will assume the presence of both fixed points is rare (later backed up by a
demonstration that an unstable fixed point is already rare) and use invasibility as an analytically simple and computationally
efficient approximation for whether the species coexist.

28



So, with diauxic lags, fast-switcher β can invade slow-switcher α iff

gβ1

gα1
log (s1(DF− 1) + 1) +

gβ2

gα2
log

(
DF

s1(DF− 1) + 1

)
+ gβ2tlagα > log DF . (38)

Similarly, fast-switcher β’s steady-state is

tdep1|β =
1

gβ1
log (s1(DF− 1) + 1) & tdep2|β − tdep1|β =

1

gβ2
log

(
DF

s1(DF− 1) + 1

)
, (39)

and so, with diauxic lags, α can invade β iff

gα1

gβ1
log (s1(DF− 1) + 1) + max

[
0,

gα2

gβ2
log

(
DF

s1(DF− 1) + 1

)
− gα2tlagα

]
> log DF , (40)

where the max [0, . . .] is necessary to account for the possibility that tlagα > tdep2|β − tdep1|β and prevent
the second term from becoming negative.

With initial lags instead of diauxic, all that changes about α’s steady state is that tdep1|α is now lengthened
by tlagα instead of tdep2|α − tdep1|α being lengthen:

tdep1|α = tlagα +
1

gα1
log (s1(DF− 1) + 1) & tdep2|α − tdep1|α =

1

gα2
log

(
DF

s1(DF− 1) + 1

)
(41)

So, with initial lags, fast-switcher β can invade slow-switcher α iff

gβ1

gα1
log (s1(DF− 1) + 1) + gβ1tlagα +

gβ2

gα2
log

(
DF

s1(DF− 1) + 1

)
> log DF . (42)

Because β is assumed to have no lag, its steady state is still

tdep1|β =
1

gβ1
log (s1(DF− 1) + 1) & tdep2|β − tdep1|β =

1

gβ2
log

(
DF

s1(DF− 1) + 1

)
. (43)

Determining whether α can invade β is, however, a slightly more complicated expression than before. This
is because α may or may not finish its lag before R1 is depleted. Specifically:

With initial lags slow-switcher α can invade fast-switcher β iff

max

[
0,

gα1

gβ1
log (s1(DF− 1) + 1)− gα1tlagα

]
+ . . .

gα2

(
1

gβ2
log

(
DF

s1(DF− 1) + 1

)
−max

[
0, tlagα −

log (s1(DF− 1) + 1)

gβ1

])
> log DF . (44)
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Appendix Figure S19: Initial lags benefit coexistence at small-to-intermediate lag time values, while diauxic lags
benefit coexistence at large lag time values. (A) Species’ growth rates were uniform-randomly sampled from the
volume in which α is the overall fast-grower (gα1 +gα2 > gβ1 +gβ2), both species grow fastest on R1 (gµ1 > gµ2), and
growth rates ranged from 0 to 1 (0 < gµi < 1). The qualitative competitive outcomes were determined for the case of
each species eating R1 then R2 and α having either an initial or a diauxic lag. The frequency of coexistence is plotted
as a function of α’s lag time. Around tlagα ≈ 1, initial lags roughly double the frequency of coexistence compared to
the case of no lags. At larger tlagα, diauxic lags increasingly benefit coexistence, roughly quintupling the frequency
of coexistence by tlagα ≈ 100. The two curves cross at tlagα ≈ 3, which is roughly the typical doubling time. (B) In
the case of diauxic lags, increasing the fast-grower α’s lag time benefits the fast-switcher but never by so much that
the fast-switcher excluding the fast-grower becomes the overwhelmingly most likely outcome. (C) By contrast, in
the case of initial lags, increasing the lag time eventually leads to the fast-switcher excluding the slow-switcher the
nearly universal outcome and driving the likelihood of coexistence towards zero. (For brevity, ‘wins’ is used in place
of ‘excludes the other species’ in the figure labels.)

With random species from reasonable distributions, coexistence is more likely if species have
diauxic lags than if they have initial. With the invasibility criteria worked out, we now choose
distributions to sample species from. We assume growth rates vary from 0 to 1 (with an implicit unit
of hr−1 in mind) and lag times vary from 0 to 12 (again with a unit of hours in mind and considering
the lag times seen in this paper’s experimental sections as representative). We assume that species grow
fastest on their preferred resource (i.e. gµ1 > gµ2) and assume the fast-grower is the slow-switcher. With
two growth rates there is some flexibility in defining which species is the fast-grower, so we enforce that
gα1 + gα2 > gβ1 + gβ2 (with α being the fast-grower/slow-switcher) to consider both growth rates.6 We use
a dilution factor of 10 and a balanced resource supply s1 = s2 = 1/2.

Stated more mathematically, we uniform-randomly sampled the volume defined by
0 < gα2 < gα1 < 1

0 < gβ2 < gβ1 < 1

gβ1 + gβ2 < gα1 + gα2

0 < tlagα < 12

(45)

and used DF = 10 and s1 = s2 = 1/2. We generated 10 million random species pairs from that volume
and determined invasibility if α’s lag was diauxic, if α’s lag was initial, and if α had no lag. We assigned

6Instead using gα1 > gβ1 would further benefit the ability of diauxic lags to support coexistence while harming the ability
of initial lags to support coexistence.
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qualitative competitive outcomes based on invasibility.7 The frequencies of coexistence are:

Lag Type Frequency of Coexistence

Diauxic 25.4%
Initial 15.3%
None 9.5%

In our results, the introduction of diauxic lags makes coexistence 2.67x more likely compared to the no-lags
case, while the introduction of initial lags makes coexistence only 1.61x more likely. This is yet another
example of diauxic lags benefiting coexistence to a greater extend than initial lags do.

Initial lags benefit coexistence at small to intermediate lag time values, while diauxic lags
benefit coexistence at large lag time values. To develop a little more intuition, we used the same
randomly sampled growth rates and varied tlagα. We then looked at how often coexistence was observed at
different values of tlagα (Appendix Fig S19A). Initial lags increased the frequency of coexistence from 9.5% to
as high as ∼ 20% at small to intermediate lag times (0.5 . tlagα . 5) but actually decreased the frequency
of coexistence at large lag times (tlagα & 10). By contrast, with diauxic lags, the frequency of coexistence
only ever increased with increasing lag times, reaching 20% at tlagα ≈ 4 and 30% at tlagα ≈ 7.

From this information, whether initial or diauxic lags have a greater tendency to produce coexistence
depends on what range of lag time values are expected. In our calculations, diauxic lags became more
likely to produce coexistence than initial lags at tlagα ≈ 3. The mean growth rate from the sampling was
〈gµi〉 = 0.5. Putting this together we conclude that:

If the typical difference in lag times is small compared to the inverse of the typical growth rate (i.e. if
〈∆tlag〉 < 1.5 〈gµi〉−1) then the lags being initial will be more likely to produce coexistence than if the lag
were diauxic. Conversely, if the typical difference in lag times is large (i.e. if 〈∆tlag〉 > 1.5 〈gµi〉−1) then the
lags being diauxic will be more likely to produce coexistence. For reference, 1.5 〈gµi〉−1 is approximately
the doubling time. So (with the specific distribution we have chosen) if lags are expected to last for longer
than it would take the cells to divide once then giving the fast-grower a diauxic lag is more likely to produce
coexistence than giving it an initial lag.

To further understand why initial and diauxic lags increase the frequency of coexistence in different ranges
of tlagα, we looked at which exclusion outcome occur in cases that were not coexistence ((Appendix Fig
S19B-C). Under both forms of lag, the frequency of the fast-grower α excluding the slow-grower decreased
with increasing tlagα while the frequency of the fast-switcher β excluding α increased. However, with
diauxic lags the fast-switcher excluding the slow-switcher never exceeded 50% likelihood whereas with
initial lags the fast-switcher excluding the slow-switcher eventually became the almost-always observed
outcome. Increasingly large diauxic lags don’t lead to the fast-switcher always excluding the slow-switcher
because the slow-switcher always has a period of growth before the diauxic lags begin and can grow enough
during this period to survive. (Whereas increasingly large initial lags mean the slow-switcher has less and
less, and eventually no, chance to grow.) This is perhaps the main distinction between initial and diauxic

7Bistabilities between each species excluding the other occurred in 1.0% of cases when lags were diauxic and 0.2% of
cases when lags were initial (and in no cases without lags as bistabilities were impossible). Given the low frequency of this
form of bistability, we strongly suspect bistability between an exclusion and a coexistence state would be even less likely
(although confirming this remains left for a more dedicated study to determine). We therefore conclude that invasibility was
indeed a good proxy for coexistence. When a bistability between coexistence and exclusion states does occur, a case that was
misclassified as pure exclusion actually contributes to the frequency of coexistence, so the true rates of coexistence under initial
and diauxic lags can only be larger than the reported values. Thus, the presented numbers for the frequencies of coexistence
under diauxic and initial lags are lower bounds suspected to be close to the true values.
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lags: Diauxic lags affect only part of the growth cycle, so when the slow-switcher is the fast-grower each
species has a period of distinct advantage and robust stable coexistence can readily occur. Initial lags
by contrast initially delay one species but do not create two distinct periods of growth to quite the same
extent and are therefore an important tradeoff but a less robust source of stable coexistence.

2.6 Summary: Diauxic lags support coexistence to a greater extent than initial lags

In this comparison of initial and diauxic lags we have shown:

• Diauxic lags allow for coexistence when all yields are constant and species have a single growth rate
for both resources, but initial lags do not allow for coexistence under the same assumptions.

• For initial lags to support the coexistence of two species, the species must have different yields and
dilutions must be to a specific population size (rather than by a constant factor).

• Under the equivalent scenario (different yields for each species, dilutions to a specific population size,
and species still having only one growth rate) diauxic lags support three-species coexistence.

• Diauxic lags as a source of coexistence generally requires a sufficiently large difference in lag times
but can occur with arbitrarily large differences in lag time, whereas initial lags generally require lag
times to be within a specific range (with both upper and lower bounds).

• When sampling random species, if the difference in lag times is assumed to be more than the typical
doubling time, diauxic lags are more likely to produce coexistence than initial lags.

These individual conclusions lead us to conclude that tradeoffs between growth rate and diauxic lag time
are more likely to produce coexistence than tradeoffs between growth rate and initial lag time. We also
conclude the coexistence states resulting from diauxic lags appear to be more robust against perturbations
and require less complex tradeoffs involving fewer species parameters. This exploration is, however, limited,
and considerable room is left for a dedicated study to address these questions in depth.
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