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ARTICLE

The genomic signatures of natural selection
in admixed human populations

Sebastian Cuadros-Espinoza,1,2 Guillaume Laval,1 Lluis Quintana-Murci,1,3,* and Etienne Patin1,*
Summary
Admixture has been a pervasive phenomenon in human history, extensively shaping the patterns of population genetic diversity. There

is increasing evidence to suggest that admixture can also facilitate genetic adaptation to local environments, i.e., admixed populations

acquire beneficial mutations from source populations, a process that we refer to as ‘‘adaptive admixture.’’ However, the role of adaptive

admixture in human evolution and the power to detect it remain poorly characterized. Here, we use extensive computer simulations to

evaluate the power of several neutrality statistics to detect natural selection in the admixed population, assuming multiple admixture

scenarios. We show that statistics based on admixture proportions, Fadm and LAD, show high power to detect mutations that are bene-

ficial in the admixed population, whereas other statistics, including iHS and FST, falsely detect neutral mutations that have been selected

in the source populations only. By combining Fadm and LAD into a single, powerful statistic, we scanned the genomes of 15 worldwide,

admixed populations for signatures of adaptive admixture. We confirm that lactase persistence and resistance to malaria have been un-

der adaptive admixture in West Africans and in Malagasy, North Africans, and South Asians, respectively. Our approach also uncovers

other cases of adaptive admixture, including APOL1 in Fulani nomads and PKN2 in East Indonesians, involved in resistance to infection

and metabolism, respectively. Collectively, our study provides evidence that adaptive admixture has occurred in human populations

whose genetic history is characterized by periods of isolation and spatial expansions resulting in increased gene flow.
Introduction

Over the last two decades, the search for molecular signa-

tures of natural selection in the human genome has played

an integral part in understanding human evolution and

population differences in disease risk.1–6 Genome scans

for local adaptation have shed light on the environmental

pressures that populations have faced for the last 100,000

years, including reduced exposure to sunlight, altitude-

related hypoxia, new nutritional resources, or exposure

to local pathogens. Candidate genes for local genetic adap-

tation have been identified on the basis of expected signa-

tures of positive selection, such as extended haplotype

homozygosity or strong differences in allele frequencies

between geographically diverse populations. In doing so,

selection studies have implicitly assumed that advanta-

geous variation occurred in a single population that has

remained isolated from other populations since their sepa-

ration. Yet, ancient and modern genomics studies have

clearly demonstrated that the last millennia of human his-

tory have been characterized by large-scale spatial expan-

sions followed by extensive gene flow.1,7,8 These findings

indicate that most human populations descend from

admixture between formerly isolated groups, highlighting

the need for detailed studies of the expected genomic sig-

natures of natural selection in admixed populations.

Several studies have searched for evidence of genetic

adaptation in admixed populations as a means to detect

genes under positive selection in their ancestral sources

prior to admixture.9–15 These studies showed that admix-
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ture can obscure signals of selective sweeps in the source

populations and proposed approaches to alleviate this

problem, such as local ancestry masking. Conversely, few

studies have yet explored the patterns of diversity expected

under admixture with selection as a means to detect genes

under positive selection in the admixed population since

admixture.16,17 Studying the genomic signatures of ‘‘adap-

tive admixture,’’ that is, positive selection in the admixed

population of an allele that was beneficial in one of its

ancestral sources, could shed light on the role of gene flow

in spreading beneficial alleles among populations18 and

the prevalence of recent, ongoing selection in humans.

While an increasingnumberof studieshave revealedhow

introgression fromancienthominins, such asNeanderthals

or Denisovans, facilitated genetic adaptation in modern

humans,19 the occurrence of adaptive admixture among

modern humans remains largely unexplored. Nonetheless,

several empirical studies have reported candidate loci for

positive selection inadmixedpopulations.16,20–38A striking

example is the Duffy null FY*BES allele, which confers pro-

tection against Plasmodium vivax malaria.39,40 Selection

signals have been detected at the locus in diverse African-

descent admixed populations from Madagascar, Cabo

Verde, Sudan, and Pakistan,22,29,30,32,34 suggesting strong,

ongoing selection owing to vivax malaria in these regions.

A variety of methods has been used to detect the signatures

of adaptive admixture, relying on classic neutrality statis-

tics, such as iHS or FST, and deviations from allele

frequencies22,41 or admixture proportions21,24,27,30,31,34–38

expected under admixture and neutrality.42 However, little
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is knownabouthow theseneutrality statistics behaveunder

scenarios of admixture with selection and, therefore, about

the power of these statistics to detect adaptive admixture.

Moreworrying, it has been suggested that artifactual signals

of adaptive admixture can be observed because of errors in

local ancestry inference (LAI) in complex genomic

regions43,44 and/or when the populations used as ancestral

sources are poor proxies of the true source populations.16,31

Lastly, reported signals of adaptive admixture are still

limited to few populations relative to the large number of

admixture events reported in humans.1,7,8

In this study, we compared the power of various

neutrality statistics to detect adaptive admixture through

computer simulations under different admixture with se-

lection scenarios. We then used a combination of the

most powerful statistics to scan the genomes of 15

different admixed human populations from around the

world and detect candidate loci for adaptive admixture.

In doing so, we confirm several, iconic signals of ongoing

positive selection since admixture and identify cases that

highlight pathogens as key drivers of recent genetic adap-

tation in humans.
Material and methods

General simulation settings
All the simulations were computed with the SLiM 3.2 engine45 un-

der the Wright-Fisher model. Each simulation consisted of a 2-Mb

long locus characterized by varying recombination and mutation

rates. For each simulation, we sampled the physical coordinates of

a random 2-Mb genomic window in the human genome, excluding

telomeric and centromeric regions, and assigned recombination

rates based on the 1000 Genomes phase 3 genetic map46 andmuta-

tion rates based on Francioli et al. mutation map.47 To account for

background selection, which is thought to be prevalent in the

human genome and could affect the power of neutrality tests,48

we simulated exon-like genetic elements positioned according to

the position of exons in the sampled 2-Mb genomic window.

Each simulated exon is made of positions under negative selection

or under neutrality, mimicking non-synonymous and synonymous

positions, respectively. We set deleterious mutations to occur three

times more frequently than neutral mutations to account for codon

degeneracy. The fitness effects of deleterious mutations were

sampled from the gamma distribution inferred in Europeans by

Boyko and colleagues.49 For simulations that include positive selec-

tion, the beneficial mutation was set to appear in the middle of the

2-Mb simulated locus and assumed to be semi dominant. Because

we used computationally intensive forward-in-time simulations,

we rescaled population sizes and times according to N= l and

T=l, with l ¼ 10, and used rescaled mutation, recombination,

and selection parameters, lm, lr, and ls.45 Of note, we found that

simulating background selection has little impact on the power to

detect alleles under strong positive selection in the admixed popu-

lation (s R 0.05; data not shown).

Admixture with selection models
We performed simulations of a population that originates from

admixture between two source populations, referred to as P1 and

P2 (Figure S1). We assumed that P1 and P2 contributed a1 and a2
The Ame
admixture proportions to the admixed population, with a1 þ a2

¼ 1. We also assumed that P1 and P2 diverged Tdiv generations

ago and the single-pulse admixture event occurred Tadm genera-

tions ago. We simulated three scenarios of admixture with

selection (Figures 1 and S2). For scenarios 1 and 2, a beneficial

mutation was set to appear in the P1 source population and is

transmitted to the admixed population with either the same

selection coefficient (scenario 1) or a selection coefficient set

to 0 (scenario 2). For scenario 3, we adapted a combination of

recipes 9.6.2 and 14.7 from the SLiM manual,50 introducing a

set of ‘‘ancestry marker’’ neutral mutations in the P1 source pop-

ulation, and randomly choosing one of them to become benefi-

cial by setting its selection coefficient to s > 0 in the admixed

population only. We computed 500 simulations for each admix-

ture with selection scenario, as well as 500 simulations for the

null scenario (i.e., no positive selection). Because the goal of

these simulations was to compare the power of neutrality statis-

tics to detect positive selection, only the selection coefficient of

the beneficial mutation s was given different values, ranging

from s ¼ 0.01 to s ¼ 0.05. All the other parameters were given

fixed values: population sizes of source and admixed popula-

tions N ¼ 10,000; divergence time between source populations

Tdiv ¼ 2,000 generations; admixture proportions a1 ¼ 0.35

and a2 ¼ 0.65; time of the single pulse admixture event Tadm

¼ 70 generations; time when the beneficial mutation appears

Tmut ¼ 350 generations ago.
Power of explored neutrality statistics
Neutrality statistics were computed for all genetic variants within

the 2-Mb simulated loci under no positive selection (H0) and only

for the selected mutation for simulated 2-Mb loci under positive

selection (H1). We estimated detection power (i.e., the true posi-

tive rate [TPR]) for each statistic as the proportion of values under

H1 that are above a varying threshold value under H0, correspond-

ing to a given false positive rate (FPR). We computed FST, DDAF,

and iHS by using selink.51 We computed FST and DDAF between

the admixed population and the source population that does

not experience positive selection. For iHS, we used a 200-kb win-

dow and normalized the values by bins of similar derived allele

frequency (DAF).

For the admixture-specific statistics, we introduced an allele fre-

quency-based statistic, Fadm, that measures the difference between

xi, the observed frequency of allele i in the admixed population,

and yi, the expected allele frequency under admixture and

neutrality. It was shown that yi ¼
P

papxi;p, which is the average

of allele frequencies xi;p observed in the source populations p

weighted by estimated admixture proportions ap, whereP
pap ¼ 1 (Bernstein52). Under neutrality, the squared difference

between xi and yi, ðxi � yiÞ2, is the variance of allele frequencies

in the admixed population due to genetic drift.42 Thus, ðxi �yiÞ2
can be interpreted as the genetic distance between the current ad-

mixed population and its ancestral population at the time of

admixture. Analogously to FST, this genetic distance can be used

to detect natural selection, as the change in frequency of a benefi-

cial allele in time depends on its selection coefficient.53 Fadm is

thus defined as follows:

Fadm ¼
P

i

�
xi � yi

�2

2
�
1�P

iy
2
i

�;

where 1�P
iy

2
i is the expected heterozygosity in the admixed

population, used here to allow comparisons among SNPs.
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Figure 1. Performance of neutrality statistics under different scenarios of admixture with selection
(A) Explored scenarios of admixture with selection (from left to right): adaptive admixture, positive selection in the source population
only, and positive selection in the admixed population only. The blue and gray points indicate the appearance of a new beneficial or
neutral mutation, respectively. The blue and gray areas indicate changes in frequency of the beneficial and neutral mutation,
respectively.
(B) Receiver operating characteristic (ROC) curves comparing the performance of classic neutrality statistics FST, iHS, and DDAF and the
admixture-specific statistics Fadm and LAD across the three explored scenarios. The selection coefficient was fixed to s¼ 0.05 to highlight
the differences between statistics and between models (see Figure S2 for lower s values). False positive rate (FPR) is the fraction of simu-
lated neutral sites that are incorrectly detected as under selection, and true positive rate (TPR) is the fraction of simulated adaptive mu-
tations that are correctly detected as under selection.
When calculating Fadm in the simulated and observed data, the

allele frequencies xi;p at the time of admixture were estimated by

the allele frequencies in the current generation, which is accurate

when genetic drift in source populations is weak or when admix-

ture is recent. We used as admixture proportions the simulated

proportions asim, for the simulated data, and the estimated propor-

tions a, for the observed data, obtained by running ADMIXTURE

v.1.23 (Alexander et al.;54 see empirical detection of adaptive

admixture). We verified with simulations that errors in the estima-

tion of admixture proportions do not affect Fadm detection power

(Figure S3A) by computing Fadm with a sampled from a normal dis-

tributionN (m¼ asim, s
2¼ 0.0262); 0.026 is the highest root-mean-

square deviation of the ADMIXTURE estimation.54 Additionally,

we excluded sites where the observed allele frequency in the ad-

mixed population xi is higher (or lower) than the maximum (or

minimum) of the frequencies xi;p in the source populations.

Although this can reduce the detection power in scenario 3, this

filter increases power for the adaptive admixture scenario

(Figure S3B), which is the focus of this study.

We also computed an LAI-based neutrality statistic, LAD, which

measures the local ancestry deviation from the average genome-

wide ancestry, defined as follows:
712 The American Journal of Human Genetics 109, 710–726, April 7,
LADw;p ¼aw;p � ap;

where aw;p is the admixture proportion from source population p

for a given windoww and ap is the estimated genome-wide admix-

ture proportion. Natural selection has been proposed to bias the

estimation of admixture proportions since the first estimates of

this parameter were obtained.55–57 The rationale is that, when a

beneficial allele is transmitted from a source population to the ad-

mixed population, estimated admixture proportions from this

source population are expected to increase at the locus relative

to neutral loci. As single-marker estimates of admixture propor-

tions are sensitive to errors in the estimation of allele frequencies,

more powerful haplotype-based methods have preferentially been

used to detect natural selection since admixture.38

We used RFMix v1.5.4 to estimate local ancestry,58 with default

parameter values (except for –G,whichwas replacedwith the simu-

lated Tadm value) and using the forward-backward option with

three expectation maximization steps. Because LAD is sensitive to

phasing errors,58 we incorporated potential phasing errors in our

simulations by phasing, with SHAPEIT v.4.2.1 (Delaneau et al.59),

unphased diploid individuals obtained from the combination of

two simulated haploid individuals. Admixture proportions ap
2022
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Figure 2. Effects of study design and non-stationary demography on the power to detect adaptive admixture
(A) Effects of the sample size of the admixed population (n) on the detection power of Fadm and LAD at a fixed FPR ¼ 5%. The simulated
model is shown on the left, illustrating different values of n.
(B) Effects of the use of proxy source populations on the detection power of Fadm and LAD at a fixed FPR ¼ 5%. The genetic distance
between the true source and its proxy was measured by FST. The simulated model is shown on the left, including the true source and
its proxy.
(C) Effects of non-stationary demography on the detection power of Fadm and LAD at a fixed FPR¼ 5%. The simulatedmodel is shown on
the left, including a bottleneck in the admixed population.
were estimated as the local ancestry inferred by RFMix averaged

across loci for both the simulated and observed data.
Sample size and source population choice scenarios
We explored five different values of sample sizes for the two source

populations and the admixed population: n ¼ 20, 50, 100, 200,

and 500 individuals (Figures 2A and S4). When exploring the

values for a given population, sample size for the other two was

fixed to n ¼ 50 individuals. For the use of a proxy source popula-

tion (Figure 2B), we simulated two additional populations that

diverge 400 generations ago from each of the two source popula-

tions. We then used these proxy populations for Fadm and LAD cal-

culations. To explore the effect of the genetic distance (estimated

by FST) between the proxy population and the true source popula-

tion on detection power, we set the population size of the proxies
The Ame
to 10,000, 4,000, 1,000, and 500, resulting in FST values of 0.005,

0.01, 0.02, and 0.03, respectively.

For the scenario of selection in the proxy source population only

(Figure S5), we simulated two additional populations that diverge

600 generations ago from each of the two source populations. We

randomly selected a mutation that occurred in the ancestral pop-

ulation of the P1 source population and its related proxy popula-

tion and assigned it a selection coefficient of s ¼ 0.02 in the proxy

population only, 599 generations ago. Under the latter scenario,

Fadm and LAD detect mutations that are not beneficial in the ad-

mixed population and wrongly support positive selection in the

P2 source population (Figures S5A and S5B). For comparison pur-

poses, we thus compared Fadm and LAD distributions under this

scenario to those obtained under a simple scenario of adaptive

admixture (scenario 1, Figure 1) where the beneficial mutation is

transmitted to the admixed population from the P2 source
rican Journal of Human Genetics 109, 710–726, April 7, 2022 713



population (Figure S5D). In all these scenarios, the following pa-

rameters were given a fixed value: N ¼ 10,000; Tdiv ¼ 2,000 gener-

ations; a1 ¼ 0.35; a2 ¼ 0.65; Tadm ¼ 70 generations; s ¼ 0.02; and

Tmut ¼ 1,400 generations ago.
Complex admixture scenarios
Weestimated detectionpower under two additional admixture sce-

narios: a doublepulsemodel anda constant continuousmodel (Fig-

ures S6A and S6B). For these scenarios to be comparable to the sin-

gle pulse admixture scenario, we set the sum of the admixture

proportions contributed by each pulse to be equal to a1 ¼ 35%

and the average of the admixture dates to be equal to 70 genera-

tions. Namely, under the double pulsemodel, the admixed popula-

tion originates from an admixture event that occurs 130 genera-

tions ago between two source populations, with a1 ¼ 17.5%, and

receives a second admixture pulse from P1 10 generations ago

with a1 ¼ 17.5%. Under the constant continuous model, the ad-

mixed population also originates from an admixture event occur-

ring 130 generations ago between two source populations with

a1 ¼ 35%/130 ¼ 0.27%, when Tadm is not rescaled, and a1 ¼
2.7%, when Tadm is rescaled, but receives an additional pulse

from P1 of a1 ¼ 2.7% at each generation until present. In all sce-

narios, the following parameters were given a fixed value: N ¼
10,000; Tdiv¼ 2,000 generations; s¼ 0.02; and Tmut¼ 1,400 gener-

ations ago.
Admixture parameters
Under the single pulse admixture model (Figure S1), we explored

detection power as a function of different model parameters (Fig-

ures 3 and S7–S11; Table S1). In total, 32,956 compatible param-

eter combinations were explored. We thus reduced the number

of simulations per combination from 500 to 100 to limit compu-

tational burden. For the frequency of the beneficial mutation in

the source population at the time of admixture, instead of condi-

tioning on the frequency within simulations (which would have

drastically increased computations), we introduced the beneficial

mutation Tmut generations ago in the source population on the ba-

sis of previous results.60 For each statistic and parameter combina-

tion, we calculated the proportion of simulated sites under selec-

tion that were recovered by using a threshold of FPR ¼ 5%. We

then averaged the power across demographic parameter values

to obtain a single value for each combination of Tadm, a1, and s.

We performed a similar procedure to obtain a single value for

each combination of Tadm, a1, and one of the other parameters

(e.g., Tdiv and N; Figures S7–S11).

Non-stationary demography
We estimated detection power under five alternative demo-

graphic scenarios (Figures 2C and S6C), each with 500 simula-

tions under adaptive admixture and 500 simulations with no pos-

itive selection. Demographic scenarios include: (1) a recent

expansion of the source population, where the source population

undergoes an expansion with a 5% growth rate since Tadm, from

an initial N ¼ 10,000; (2) a recent expansion of the admixed pop-

ulation, where the admixed population undergoes an expansion

with a 5% growth rate since Tadm, from an initial N ¼ 10,000; (3)

an old expansion of the source population, where the source pop-

ulation undergoes an expansion with a 5% growth rate since Tadm

þ 500 generations, from an initial N ¼ 10,000; (4) an old bottle-

neck in the source population, where the source population un-

dergoes a 10-fold size reduction from Tdiv – 50 to Tdiv, from an
714 The American Journal of Human Genetics 109, 710–726, April 7,
initial N ¼ 10,000; and (5) a recent bottleneck in the admixed

population, where the admixed population undergoes a 10-fold

size reduction from Tadm – 50 to Tadm, from an initial N ¼
10,000. We compared these scenarios to a constant population

size scenario and the size of all populations fixed to N ¼
10,000. In all scenarios, the following parameters were given a

fixed value: Tdiv ¼ 2,000 generations; a1 ¼ 0.35; a2 ¼ 0.65;

Tadm ¼ 70 generations; s ¼ 0.02; and Tmut ¼ 1,400 generations

ago.
Empirical detection of adaptive admixture
We analyzed the genomes of 15 admixed populations to search for

signals of adaptive admixture. The datasets and references for all ad-

mixed and source populations can be found in Table S2, as well as

the final number of SNPs used after merging the datasets for ad-

mixed and source populations. For each merged dataset, we (1)

excluded sites with a proportion of missing genotypes > 5% via

PLINK v.2.0 (Chang et al.61), (2) excluded A/T and C/G variant sites,

(3) excluded first- and second-degree-related individuals (kinship

coefficient > 0.08 computed with KING v2.2.2; Manichaikul

et al.62), and (4) performed phasing by using SHAPEIT v.4.2.1

with default parameter values. Additionally, we verified the validity

of the admixture model for each set of source/admixed populations

(Table S2) by computing admixture f3 statistics with admixr package

v.0.7.1 (Petr et al.63).

We obtained admixture proportions by running ADMIXTURE

v.1.23, considering the K value producing the lowest cross-valida-

tion error and a set of ‘‘independent’’ SNPs obtained by running

the ‘‘–indep-pairwise’’ command with PLINK v.2.0 with the

following parameters: 50-SNPwindow, 5-SNP step, and r2 threshold

of 0.5. We verified for each studied admixed population that the K

value with the fewest cross-validation errors matches the number

of source populations. Local ancestry was inferred with RFMix

v.1.5.4, after excluding 2 Mb at telomeres and centromeres of each

chromosome, as well as invariant sites and singletons, and with

default parameter values except for the generation time ‘‘-G,’’ which

was given a value based on literature (Table S2).

We combined the SNP ranks for Fadm and LAD statistics by using

Fisher’s method,64 defined as follows:

X2
2k ¼ � 2

Xk

i¼1

lnðriÞ;

where ri is defined as the rank of a given SNP for the statistic i,

divided by the total number of analyzed SNPs (i.e., the empirical

p value), and k ¼ 2 is the number of statistics.

Using simulations, we verified that this statistic followed a chi-

squared distribution with 2k ¼ 4 degrees of freedom under no posi-

tive selection (Figure 4A), including when the admixed population

experienced a 10-fold bottleneck. In these simulations, we used

the same parameter values as those in Figure 2C for the ‘‘constant

size’’ and ‘‘bottleneck in the admixed population’’ scenarios. Statisti-

cal significance was defined based on Bonferroni correction: we

considered a p value threshold of 0.05 divided by the number of

0.2-cMRFMixwindows analyzed (all SNPswithin the samewindow

had the same local ancestry value), which yielded, on average, a p

value threshold of 3.5 3 10�6 (Table S3). To reduce the number of

false positives due to positive selection in a proxy source population

only (FigureS5),wecomputed iHS in the twosourcepopulationsand

excluded from the list of candidate genes any locus that includes

SNPs with both an |iHS|> 2 in one source population and an excess

of local ancestry from the other source population (Figure S5). To
2022
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Figure 3. Effects of model parameters on
the power to detect adaptive admixture
Color represents average detection power
for a fixed FPR ¼ 5% across parameter com-
binations. The effects of other parameters,
such as population sizes and divergence
time (Figure S1 and Table S1), are shown
in Figures S7–S11.
annotate the different signals that passed this threshold, we chose

the protein-coding genewithin 250 kb of the variant with the high-

est V2G score.65
Results

Power estimation under different models of admixture

with selection

To estimate the power to detect positive selection in ad-

mixed populations, we performed extensive forward-in-

time simulations of a population that originates from

admixture between two source populations (Figure S1).

We introduced a beneficial mutation in one of the source

populations, with a varying selection coefficient (material

and methods). We considered three different scenarios of

admixture with selection (Figures 1A and S2). Scenario 1

corresponds to adaptive admixture, where the admixed

population inherits an allele that is beneficial in one of its

source populations: the mutation is under positive selec-

tion in the source population, is transmitted to the ad-

mixed population, and remains beneficial—with the same

selection coefficient—in the admixed population. In sce-

nario 2, the beneficial allele is under positive selection in
The American Journal of Huma
the source population, is transmitted

to the admixed population, and be-

comes neutral in the admixed popula-

tion only. We simulated this scenario

to verify whether some neutrality

statistics wrongly support positive

selection in the admixed population

because of a residual signal inherited

from the source population. At the

same time, this scenario is also useful

for evaluating the power to detect

residual signals of positive selection

in the admixed population, as a

means to detect genes under positive

selection in source populations that

no longer exist in an unadmixed

form.9–15 Finally, in scenario 3, a

neutral mutation in the source popula-

tion becomes beneficial in the admixed

population only, at the time of admix-

ture. This case is used for determining

how neutrality statistics behave when

natural selection operates since admix-

ture on standing neutral variation.
We evaluated the performance, under each scenario, of

three classic neutrality statistics, FST, DDAF, and iHS, as well

as two statistics that are specifically designed to detect selec-

tion in the admixed population: Fadm,which is proportional

to the squared difference between the observed and the ex-

pected allele frequency in the admixed population,22,42,57

and LAD, the difference between the admixture proportion

at the locus and its genome-wide average,38 estimated on

the basis of local ancestry inference (LAI) by RFMix

(material and methods).58 Receiver operating characteristic

(ROC) curves indicate that both the classic neutrality statis-

tics andFadmandLADarepowerful todetect adaptive admix-

ture (scenario 1) when the selection coefficient s ¼ 0.05

(>70% detection power for a false positive rate [FPR] of

5%; Figures 1B and S2), in agreement with a previous

study.16 Nevertheless, the power of FST, DDAF, and iHS is

also highwhen themutation is beneficial in the source pop-

ulation and is no longer selected in the admixed population

(scenario 2), indicating that these statistics wrongly detect

selection in the source population as selection in the ad-

mixedpopulation. Incontrast,FadmandLADdetect adaptive

admixture specifically, as their power under scenario 2 is low

or nil (Figure 1B). Of note, our simulations also imply that

the power of classic statistics is substantial when using the
n Genetics 109, 710–726, April 7, 2022 715
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true source and proxy populations of 0.02), and recent admixture (Tadm ¼ 10 generations). Only FPR < 5% are shown.
admixed population as a means to detect selection in the

source populations (>65% detection power when s ¼ 0.05

and FPR ¼ 5%). Finally, LAD and iHS showed a reduced po-

wer to detect selection in the admixed population when

the mutation is neutral in the source populations (scenario

3), relative to the adaptive admixture case (scenario 1).

Thismay stem fromthe fact that, under scenario 3, thebene-

ficial mutation has been selected for fewer generations than

in scenario 1, resulting in a weaker signal. Furthermore, this

scenario is similar to selection on standing variation, where

the adaptive mutation may be present on several haplo-

types, making it harder to detect.66

Collectively, our simulations indicate that Fadm and LAD

are the only studied statistics that have substantial power
716 The American Journal of Human Genetics 109, 710–726, April 7,
to specifically detect strong, ongoing selection in the ad-

mixed population and have more power to detect adaptive

admixture than post-admixture selection on standing

neutral variation. Because our objective is to detect the sig-

natures of positive selection in the admixed population,

and not in the source populations, we based all subsequent

analyses on the Fadm and LAD statistics.

Effects of the study design

We investigated how sample size and the choice of source

populations affect the power of Fadm and LAD to detect

adaptive admixture signals (material and methods). We

explored sample sizes ranging from n ¼ 20 to n ¼ 500 for

both the admixed and the source populations. We found
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that n ¼ 100 already provides optimal power because the

variance of neutrality statistics is virtually unchanged

when n R 100 (Figures 2A and S4A). Conversely, we

found that when n < 50, sampling error increases the

variance of Fadm and LAD null distributions by as much

as 5 times and ultimately decreases detection power by

up to 40% (FPR ¼ 5%). Interestingly, LAD detection power

is not affected when the sample size of the source popula-

tions is low, even when n ¼ 20 (Figure S4B). Consistently,

RFMix accuracy was shown to be only minimally reduced

when the sample size of reference panels is as small as

n ¼ 3, as it uses both source and admixed individuals

for LAI.58

Because obtaining genotype data for the true source pop-

ulations of an admixed population is difficult, if not

impossible, population geneticists often use related, pre-

sent-day populations as proxies, which may lead to false

adaptive admixture signals.16,31 We explored how detec-

tion power is affected by the genetic distance between

the true source population and a related population used

as a proxy for Fadm and LAD computations (material and

methods). We observed a difference in performance be-

tween Fadm and LAD, the latter’s being more robust to

the use of a proxy (Figure 2B). LADmaintains similar detec-

tion power even if the divergence between the true and

proxy populations is FST ¼ 0.01, whereas power decreases

by 25% for Fadm. Such a difference in power may result

from the nature of the two statistics. In the case of Fadm,

the expected allele frequency is directly estimated from

the allele frequencies observed in the proxy, and these fre-

quencies are decreasingly correlated with those in the true

source population as their divergence increases. On the

other hand, LAD is derived from LAI by RFMix, which

has been shown to be robust to the use of proxy reference

populations.58

Nonetheless, we identified a potentially problematic sce-

nario for both Fadm and LAD involving population proxies:

when the selection event occurs specifically in the proxy

source population (i.e., the mutation is not selected in

both the true source and the admixed populations;

Figure S5), spurious deviations in local ancestry and in

allele frequencies were observed in the admixed popula-

tion. Specifically, this generates an excess of local ancestry

from the other source population and expected allele fre-

quencies higher than those observed in the admixed pop-

ulation (Figures S5A and S5B). We found that this scenario

produces weaker LAD values (i.e., lower detection power)

but larger Fadm values (i.e., higher detection power) relative

to an adaptive admixture event (Figures S5C–S5F). To

remediate this, we performed a selection scan in the proxy

population by using a single-population statistic, iHS, and

excluded the top 1% values. In doing so, we managed to

exclude approximately 90% of the outlier values of Fadm
and LAD generated by this scenario. More importantly,

because there is no correlation between iHS in the proxy

population and Fadm or LAD in the case of adaptive admix-

ture, none of the outlier values generated by a true adap-
The Ame
tive admixture event were excluded by this analysis step

(Figures S5G and S5H).

Effects of the admixture model and non-stationary

demography

Several studies have shown that admixture in humans has

often involved multiple admixture pulses from two or

more source populations.8,51,67–71 We thus estimated the

detection performance of Fadm and LAD under admixture

models that are more complex than the single admixture

pulse. We found that the power to detect adaptive admix-

ture is only moderately reduced under a two-pulse admix-

ture model or a constant, continuous admixture model:

the true positive rate (TPR) decreases by <11% at a FPR ¼
5%, relative to the single pulse model (Figures S6A and

S6B). This suggests that our power estimations are valid

for a variety of admixture models.

Assuming a single-pulse admixture model, we then

explored how detection power is impacted by key parame-

ters of the adaptive admixture model, including the

strength of selection s, the admixture time Tadm, the

admixture proportion a, and the divergence time between

source populations Tdiv (Figures 3 and S7–S11; Table S1). As

expected, we found that detection power is high only

when the selection coefficient s is strong; the TPR is up

to 94% and 27% when s ¼ 0.05 and 0.01, respectively

(FPR ¼ 5%; Figure 3). Power is also determined by the

admixture time Tadm, as it affects the duration of selection;

the TPR is up to 94% and 21% when Tadm R 70 and %20

generations, respectively. Interestingly, we observed that

the higher the admixture proportion a (from the source

population where the selected mutation appeared), the

lower the detection power. Power decreases particularly

when a > 0.65, probably because of a threshold effect: if

the beneficial allele is at high frequency and, e.g., a ¼
0.9, there is little room for the observed allele frequency

or local ancestry to deviate from its expectation, making

it hard to detect. Finally, as the divergence time between

source populations decreases, the detection power of

LAD is reduced by �15% (51% versus 67% when Tdiv ¼
500 or 2,000 generations, respectively; Figure S7), whereas

that of Fadm is not affected (59% versus 55%, when Tdiv ¼
500 or 2,000 generations, respectively). The reduced detec-

tion power of LAD is probably due to the decreased accu-

racy of RFMix when Tdiv decreases.72

We also estimated power under scenarios where demog-

raphy deviates from a constant population size model.

Indeed, demographic events, such as bottlenecks, have

been shown to alter the performance of several neutrality

statistics.73–79 We simulated five demographic scenarios,

including 10-fold bottlenecks and 5% growth rate expan-

sions in either the admixed or the source populations (ma-

terial and methods). We found that detection power is

minimally affected under all expansion models (TPR

decrease of 5% at a FPR ¼ 5%; Figure 2C). In contrast,

detection power is reduced by as much as 50% under the

scenario where a 10-fold bottleneck is introduced in the
rican Journal of Human Genetics 109, 710–726, April 7, 2022 717



admixed population, relative to the stationary model. This

is mirrored by the increased variance of Fadm and LAD null

distributions under this scenario (Figure S6C). Finally,

detection power of both Fadm and LAD is minimally

affected when the 10-fold bottleneck is introduced in the

source populations, either few generations after their diver-

gence or before the admixture pulse (TPR decrease of 5% at

a FPR ¼ 5%; Figure 2C), suggesting that both statistics are

relatively robust to increased genetic drift occurring in

the source populations.

Empirical detection of adaptive admixture in humans

We next sought to detect candidate genes for adaptive

admixture in humans by scanning, with both Fadm and

LAD statistics, the genomes of 15 worldwide populations

(Table S2) that have experienced at least one admixture

event in the last 5,000 years (i.e., the upper detection limit

set for accurate local ancestry inference80). To improve

detection power and facilitate candidate prioritization,

we combined the empirical p values of both statistics

with Fisher’s method,64 used here as a combined test for

positive selection since admixture. We confirmed with

simulations that the Fisher’s score follows a chi-squared

distribution with 4 degrees of freedom under the null hy-

pothesis of absence of positive selection and when

assuming different demographic scenarios (Figure 4A).

Consistently, we found that Fadm and LAD statistics are

not correlated under the null hypothesis (Spearman’s coef-

ficient ¼ 0.03), whereas they are correlated under adaptive

admixture (Spearman’s coefficient ¼ 0.96). Importantly,

we found that Fisher’s method increases detection power

under unfavorable scenarios, relative to each individual

statistic (Figure 4B). In particular, Fisher’s method im-

proves power when the admixed population experienced

a 10-fold bottleneck, when admixture is recent (Tadm ¼
10 generations), or when using a proxy population that

experienced strong drift (FST with the true source popula-

tion¼ 0.02). Given the limited knowledge on the past pop-

ulation sizes of the studied populations, which could in-

crease FPR (Figure S6C), we applied a conservative

Bonferroni correction on Fisher’s p values, considering

the number of RFMix genomic windows as the number

of tests (all SNPs within a given window have the same

value for LAD). This yielded a p value threshold of approx-

imately p ¼ 3.5 3 10�6 (Table S3). Finally, we verified that

the empirical distribution of Fisher’s p values is uniform in

all studied populations and found an excess of low p values

for several populations (Figure S12), suggesting that adap-

tive admixture has occurred in these groups.

Our genome scans identified a number of previously re-

ported signals of adaptive admixture. Among these, we

found theHLA class II locus in Bantu-speaking populations

from Gabon31 (Figures 5A and 5C; top ranking SNP identi-

fied inHLA-DPA1 [MIM: 142880]; p¼ 7.93 10�8; expected

frequency of 0.33 versus observed frequency of 0.70), the

HLA class I locus in Mexicans27,35,37,81 (Figure S13; top

ranked SNP identified in ABCF1; p ¼ 2.2 3 10�6; expected
718 The American Journal of Human Genetics 109, 710–726, April 7,
frequency of 0.013 versus observed frequency of 0.039),

the lactase persistence-associated LCT/MCM6 locus (MIM:

223100) in the Fulani nomads of Burkina Faso82

(Figure 6A; top ranked SNP identified in CCNT2 [MIM:

603862]; p¼ 1.13 10�6; expected frequency of 0.12 versus

observed frequency of 0.47), and ACKR1 (previously

referred as DARC [MIM: 613665]) in African-descent popu-

lations from Madagascar, the Sahel, and Pakistan29,30,34

(Figures 5B and 5D and S13). For the latter locus, the top-

ranking variant is rs12075 in the Malagasy (p ¼ 3.4 3

10�9; expected frequency 0.45 versus observed frequency

of 0.93), as previously found.30 This variant, also known

as the Duffy null FY*BES allele (MIM: 110700), confers

resistance against Plasmodium vivax infection in sub-Sa-

haran Africans.39,40 Together, these results confirm that

our conservative approach can recover strong, well-docu-

mented signals of adaptive admixture.

Candidate genes for adaptive admixture

We found several candidate loci for adaptive admixture (Fig-

ures 6 and S14), among which was theMYH9/APOL1 (MIM:

603743) locus in the Fulani (Figures 6A and 6C; p ¼ 1.3 3

10�7; top ranked SNP in IFT27 [MIM: 615870]; expected fre-

quencyof0.15versusobserved frequencyof0.45).Common

APOL1 variants confer both protection against human Afri-

can trypanosomiasis (HAT, or sleep sickness) and susceptibil-

ity to common kidney diseases (MIM: 612551) in African-

descent individuals.83 Another candidate is the PKN2

(MIM: 602549) locus in East Indonesians (p ¼ 1.1 3 10�6;

top ranked SNP in ZNF326 [MIM: 614601]; expected fre-

quency of 0.27 versus observed frequency of 0.46), which

shows a large excess of Papuan ancestry (Figures 6B and

6D). PKN2 plays a role in cellular signal transduction re-

sponses and has been reported as involved in the regulation

of glucose metabolism in skeletal muscle.84 A nearby locus,

LRRC8B (MIM: 612888), has been reported as a candidate

for positive selection in Solomon Islanders,51 although it

did not show signals for adaptive admixture in this popula-

tion. A unique, strong signal was detected at the ARRDC4/

IGF1R (MIM: 147370) locus in Solomon Islanders (p ¼
7.4 3 10�9; top ranked SNP close to ARRDC4; expected fre-

quency of 0.09 versus observed frequency of 0.58), where

an excess of East Asian-related ancestry was observed (Fig-

ures S14B and S14F). This locus was previously identified as

a candidate for positive selection innear andwestern remote

Oceanians.51 ARRDC4 is an arrestin that plays important

roles inglucosemetabolismand immuneresponse toentero-

virus infection,85 whereas IGF1R, the receptor for the insu-

lin-like growth factor, is a key determinant of body size

and growth.86,87 A last example is CXCL13 (MIM: 605149)

in the Nama pastoralists from South Africa (Figures S14A

and S14E; p ¼ 2.3 3 10�6; top ranked SNP identified in

CXCL13; expected frequency of 0.51 versus observed

frequency of 0.80). The CNOT6L/CXCL13 locus has previ-

ously been reported as suggestively associated with tubercu-

losis (TB) risk in South African populations with San

ancestry.88However, we found that the top-ranking variants
2022
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Figure 5. Iconic genomic signals of adaptive admixture
(A) Genome-wide signals of adaptive admixture in Bantu-speaking populations from Gabon.
(B) Genome-wide signals of adaptive admixture in Sahelian Arabs and Nubians.
(A and B) Highlighted blue points indicate variants that passed the Bonferroni significance threshold (shown by a horizontal dotted
line). Gene labels were attributed on the basis of the gene with the highest V2G score within 250 kb of the candidate variant. p values
were obtained assuming that combined Fisher’s scores follow a chi-squared distribution under no selection.
(C) Local signatures of adaptive admixture for the HLA region in Bantu-speaking populations from Gabon.
(D) Local signatures of adaptive admixture for the ACKR1 region in Sahelian Arabs and Nubians.
(C and D) Light blue points indicate Fadm values for individual variants. The green and gold solid lines indicate average local ancestry
from African rainforest hunter-gatherers and West Africans respectively.
show outlier extended haplotype homozygosity in the Ju/

’hoansi San, used as source population (iHS¼�3.12), while

European ancestry is in excess at the locus in the Nama, sug-

gesting a spurious signal due to positive selection in the

proxy source population (Figure S5).

Lastly, we detected suggestive signals of adaptive admix-

ture at genes shown to be strong candidates for positive se-

lection, including the MCM6/LCT locus in the Bantu-

speaking Bakiga of Uganda (Figure S15; p ¼ 4.3 3 10�6;

top ranked SNP in CCNT2; expected frequency of 0.15

versus observed frequency of 0.31) and TNFAIP3 (MIM:

191163) in East Indonesians, who show an excess of

Papuan-related ancestry at the locus (Figure 6B; p ¼
5.0 3 10�6; top ranked SNP in TNFAIP3; expected fre-

quency of 0.27 versus observed frequency of 0.43). The

TNFAIP3 locus has not only been reported as evolving un-

der positive selection in Papuans51 but also as adaptively
The Ame
introgressed from Denisovans.51,89–91 TNFAIP3 plays an

important role in human immune tolerance to pathogen

infections.92 Collectively, these results indicate that adap-

tive admixture has occurred in various admixed popula-

tions around the world and highlight the immune system

and nutrient metabolism as important targets of recent ge-

netic adaptation.

Discussion

In this study, we evaluated the power of several neutrality

statistics to detect loci under positive selection in admixed

populations and used these statistics to explore cases of

adaptive admixture in the genomes of 15 worldwide

human populations. Although Fadm and LAD, or

closely related statistics based on the difference between

observed and expected allele frequencies and admixture
rican Journal of Human Genetics 109, 710–726, April 7, 2022 719
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Figure 6. Genomic signals of adaptive admixture discovered in this study
(A) Genome-wide signals of adaptive admixture in the Fulani nomads of West Africa.
(B) Genome-wide signals of adaptive admixture in East Indonesians.
(A and B) Highlighted blue points indicate variants that pass the Bonferroni significance threshold (shown by a horizontal dotted line).
Gene labels were attributed on the basis of the gene with the highest V2G score within 250 kb of the candidate variant. p values were
obtained assuming that combined Fisher’s scores follow a chi-squared distribution under no selection.
(C) Local signatures of adaptive admixture for the IFT27/MYH9/APOL1 region in the Fulani nomads.
(D) Local signatures of adaptive admixture for the PKN2/LRR8CB region in East Indonesians.
(C and D) Light blue points indicate Fadm values for individual variants. The pink solid line indicates the local ancestry from Europeans
and North Africans, and the orange solid line indicates the local ancestry from Papuans.
proportions, have been used in several empirical studies,

their power has not been thoroughly evaluated. Here, we

showed that these statistics are powerful to detect adaptive

admixture and have little power to detect residual signals

of positive selection in the source populations. Thus,

Fadm and LAD are suited to search for loci under positive se-

lection in admixed populations since admixture, particu-

larly when selection is strong (i.e., s R 0.05), admixture

is relatively old (i.e., Tadm> 2,000 years) and the admixture

proportion is moderate-to-low (i.e., a < 0.6). Notably, we

found that power is marginally affected when admixture

has been recurrent, a feature that is convenient given the

difficulty to distinguish between single-pulse, double-

pulse, or more complex admixture models from the ge-

netic data.8,51,67–71 Furthermore, Fadm is more powerful

than LAD when selection occurs in the admixed popula-

tion only and when the divergence time between source
720 The American Journal of Human Genetics 109, 710–726, April 7,
populations is low (Tdiv ¼ 500 generations), whereas LAD

is more powerful than Fadm when source sample sizes are

low (i.e., n ¼ 20) and when the true and proxy source pop-

ulations are distantly related (i.e., FST R 0.01; Table S4).

The latter result is consistent with the known robustness

of LAI to cases where the populations used as reference

sources are poor proxies of the true source populations.58

Nonetheless, caution must be taken when handling popu-

lation proxies, as selection occurring only in the proxy

population can produce artifactual genomic signals, for

both LAD and Fadm, that might be misinterpreted as

adaptive admixture.16,31,51 We suggest that performing se-

lection scans on the proxy source populations can help

distinguish false from true adaptive admixture signals.

We also caution that Fadm calculation relies on the accurate

estimation of admixture proportions, which can be

biased under certain scenarios.93 Finally, we found that
2022



combining Fadm and LAD statistics into a unique statistic,

based on the Fisher’s method, provides well-calibrated

p values under different models and substantially increases

power under several realistic admixture with selection sce-

narios, relative to individual statistics.

When applying this combined method on the empirical

data, we identified several previously reported candidate

variants for adaptive admixture. These include the ACKR1

Duffy null allele detected in admixed populations from

Madagascar,30 the Sahel,34 and Pakistan,29 the lactase persis-

tence c.�13910C>T LCT allele in the Fulani from West

Africa,82 and HLA alleles in Bantu-speaking populations

fromwestern Central Africa31 andMexicans.27,35,37,81 These

candidate loci were detected previously on the basis of LAD

only or in combination with classic neutrality statistics.

However, the detection of natural selection with the LAD

statistic has previously been questioned because deviations

in local ancestry can be explained as artifacts of long-range

linkage disequilibrium (LD), which was not properly

modeled by the first-generation LAI methods.43 Our ana-

lyses reveal that these genomic regions not only show

outlier LAD values but also outlier Fadm values. Because

Fadm only depends on allele frequencies at the SNP of inter-

est, these results support the view that the observed signals

of adaptive admixture are true and unlikely to be explained

by incorrectly modeled LD.

Our results also highlight novel signals of adaptive

admixture, such as the APOL1/MYH9 locus in the Fulani

nomads of West Africa. Interestingly, an APOL1 haplotype

of non-African origin, named G3, was shown to be under

positive selection in the Fulani of Cameroon,94 in line

with the excess of non-African ancestry that we detected

at the locus in the Fulani from Burkina Faso. Nevertheless,

the physiological effect of the G3 variants is still debated:

experimental work suggests that the G3 haplotype has

no lytic activity against Trypanosoma parasites and is not

associated with increased susceptibility to common kidney

diseases in African Americans.95 Alternatively, the signifi-

cant excess of non-African ancestry observed at the locus

may be due to strong negative selection against HAT-resis-

tance APOL1 alleles (i.e., G1 and G2 haplotypes) in regions

where the incidence of sleeping sickness is low, such as

Burkina Faso.96 As they do not confer a selective advantage

in Trypanosoma brucei-free regions, the G1 and G2 haplo-

types only strongly increase the risk for chronic kidney

diseases83 and thus become disadvantageous. Further

epidemiological and experimental work will be needed to

confirm this hypothesis.

In accordance with our simulation study, several of the

putatively selected alleles detected here are known to be

under strong positive selection in humans, including

alleles in ACKR1,97–99 LCT,100,101 or HLA.81 Given that

we focused on admixture events occurring during the

five last millennia, only alleles that confer a very strong

selective advantage can leave detectable signatures in the

genomes of the studied admixed individuals. In addition

to their confirmatory nature, these results improve our un-
The Ame
derstanding of the selective advantage conferred by these

well-known beneficial alleles. First, because Fadm and LAD

detect natural selection since admixture only, selection

studies in recently admixed populations represent a valu-

able tool to detect recent ongoing selection. Second, ad-

mixed and source populations have often lived in different

environments, so evolutionary studies of adaptive admix-

ture can help refine correlations between signatures of nat-

ural selection and environmental pressures. An illustrative

example is the Duffy null FY*BES allele, which is fixed or

nearly fixed in most sub-Saharan African populations.99

It has long been proposed that natural selection has

favored this allele because it protects against malaria due

to Plasmodium vivax.102 Indeed, cellular experiments have

shown that the parasite depends on the ACKR1 protein

for erythrocytic infection.39,40 However, recent studies

have casted doubt on this result because P. vivax has been

detected in FY*BES homozygous carriers,103,104 suggesting

that parasite invasion is possible when its human receptor

ACKR1 is absent. We and others have found signatures of

adaptive admixture for the FY*BES allele in African-descent

admixed populations from Madagascar,22,30 Cabo Verde,32

the Sahel,34 and Pakistan29 but not in North Americans or

South Africans.16,31 Evidence of ongoing positive selection

for Duffy negativity is thus confined to regions where the

current incidence of P. vivax malaria is estimated to be

high.105 These findings thus support the view that resis-

tance to vivax malaria is the main evolutionary force

driving the frequency of the FY*BES allele in humans.

Overall, our study reports evidence that recent admix-

ture has facilitated human genetic adaptation to varying

environmental conditions. It has been proposed that

gene flow can promote rapid evolution when the demo-

graphic structure of a species is unstable.18 Our findings

support this view, as Homo sapiens is a structured species

that has settled a large variety of ecological niches and

has undergone large-scale, massive dispersals followed by

extensive gene flow.1,7,8We thus anticipate thatmore cases

of adaptive admixture in humans will soon be uncovered,

thanks to methodological and technological advances.

Importantly, given the highly conservative nature of our

approach, it is very likely that we do not recover variants

that have probably been weakly to mildly selected since

admixture, such as TNFAIP3 in Indonesian populations

of Papuan-related ancestry51,89–91 or the MCM6/LCT locus

in the Bantu-speaking Bakiga from Uganda.31 The use of

new, accurate LAI methods80,106 and the development of

novel powerful neutrality statistics, such as the integrated

decay in ancestry tracts (iDAT),32 and model-based proba-

bilistic frameworks107 are promising paths to improve

the power to detect adaptive admixture while better

accounting for the demography of admixed populations.

Furthermore, many human traits are known to be highly

polygenic, suggesting that polygenic adaptation is a key

driver of phenotypic evolution,108 highlighting the need

for new methods to detect polygenic selection since

admixture.109 Finally, genomic studies of adaptive
rican Journal of Human Genetics 109, 710–726, April 7, 2022 721



admixture are expected to be more powerful when admix-

ture is ancient, but statistical tests for admixture inmodern

genomes have low power when admixture time is older

than 5,000 years.8 Ancient genomics studies offer a great

opportunity to circumvent this limitation by revealing

how human populations interacted in the past and how

beneficial alleles have spread in time and space.41,110
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CNRS, the Fondation Allianz-Institut de France, the French Gov-

ernment’s Investissement d’Avenir program, Laboratoires d’Excel-

lence ‘‘Integrative Biology of Emerging Infectious Diseases’’ (ANR-

10-LABX-62-IBEID) and ‘‘Milieu Intérieur’’ (ANR-10-LABX-69-01),

the Fondation de France (No. 00106080), the Fondation pour la

Recherche Médicale (équipe FRM DEQ20180339214), and the

French National Research Agency (ANR-19-CE35-0005).
Declaration of interests

The authors declare no competing interests.

Received: October 15, 2021

Accepted: February 14, 2022

Published: March 7, 2022
Web resources

1000 Genomes Phase 3 and HGDP genomic data, https://www.

internationalgenome.org/data

admixr R package, https://cran.r-project.org/web/packages/

admixr/index.html

ADMIXTURE software, https://dalexander.github.io/admixture/

index.html

dbGAP database, https://dbgap.ncbi.nlm.nih.gov/

Estonian Biocenter public genomic data, https://evolbio.ut.ee
722 The American Journal of Human Genetics 109, 710–726, April 7,
European Genome-Phenome archive, https://ega-archive.org/

Jakobsson Lab genomic data, http://jakobssonlab.iob.uu.se/data/

OMIM, http://www.omim.org/

PLINK software, https://www.cog-genomics.org/plink/2.0/

RFMix software, https://www.dropbox.com/s/cmq4saduh9gozi9/

RFMix_v1.5.4.zip

selink software, https://github.com/h-e-g/selink

SHAPEIT software, https://odelaneau.github.io/shapeit4/

SLiM software, https://messerlab.org/slim/
References

1. Nielsen, R., Akey, J.M., Jakobsson, M., Pritchard, J.K., Tishk-

off, S., and Willerslev, E. (2017). Tracing the peopling of

the world through genomics. Nature 541, 302–310.

2. Novembre, J., and Di Rienzo, A. (2009). Spatial patterns of

variation due to natural selection in humans. Nat. Rev.

Genet. 10, 745–755.

3. Quintana-Murci, L. (2019). Human Immunology through

the Lens of Evolutionary Genetics. Cell 177, 184–199.

4. Rees, J.S., Castellano, S., and Andrés, A.M. (2020). The Geno-

mics of Human Local Adaptation. Trends Genet. 36, 415–

428.

5. Fan, S., Hansen, M.E.B., Lo, Y., and Tishkoff, S.A. (2016).

Going global by adapting local: A review of recent human

adaptation. Science 354, 54–59.

6. Mathieson, I. (2020). Human adaptation over the past

40,000 years. Curr. Opin. Genet. Dev. 62, 97–104.

7. Pickrell, J.K., and Reich, D. (2014). Toward a new history and

geography of human genes informed by ancient DNA.

Trends Genet. 30, 377–389.

8. Hellenthal, G., Busby, G.B.J., Band, G., Wilson, J.F., Capelli,

C., Falush, D., andMyers, S. (2014). A genetic atlas of human

admixture history. Science 343, 747–751.

9. Johnson, N.A., Coram, M.A., Shriver, M.D., Romieu, I.,

Barsh, G.S., London, S.J., and Tang, H. (2011). Ancestral com-

ponents of admixed genomes in a Mexican cohort. PLoS

Genet. 7, e1002410.

10. Vicuña, L., Fernandez, M.I., Vial, C., Valdebenito, P., Cha-

parro, E., Espinoza, K., Ziegler, A., Bustamante, A., and Eyher-

amendy, S. (2019). Adaptation to Extreme Environments in

an Admixed Human Population from the Atacama Desert.

Genome Biol. Evol. 11, 2468–2479.

11. Yelmen, B., Mondal, M., Marnetto, D., Pathak, A.K., Monti-

naro, F., Gallego Romero, I., Kivisild, T., Metspalu, M., and

Pagani, L. (2019). Ancestry-Specific Analyses Reveal Differen-

tial Demographic Histories and Opposite Selective Pressures

in Modern South Asian Populations. Mol. Biol. Evol. 36,

1628–1642.

12. Lohmueller, K.E., Bustamante, C.D., and Clark, A.G. (2011).

Detecting directional selection in the presence of recent

admixture in African-Americans. Genetics 187, 823–835.

13. Reynolds, A.W., Mata-Mı́guez, J., Miró-Herrans, A., Briggs-
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110. Dehasque, M., Ávila-Arcos, M.C., Dı́ez-Del-Molino, D., Fu-

magalli, M., Guschanski, K., Lorenzen, E.D., Malaspinas,

A.-S., Marques-Bonet, T., Martin, M.D., Murray, G.G.R.,

et al. (2020). Inference of natural selection from ancient

DNA. Evol. Lett. 4, 94–108.
2022

http://refhub.elsevier.com/S0002-9297(22)00062-3/sref108
http://refhub.elsevier.com/S0002-9297(22)00062-3/sref108
http://refhub.elsevier.com/S0002-9297(22)00062-3/sref109
http://refhub.elsevier.com/S0002-9297(22)00062-3/sref109
http://refhub.elsevier.com/S0002-9297(22)00062-3/sref109
http://refhub.elsevier.com/S0002-9297(22)00062-3/sref110
http://refhub.elsevier.com/S0002-9297(22)00062-3/sref110
http://refhub.elsevier.com/S0002-9297(22)00062-3/sref110
http://refhub.elsevier.com/S0002-9297(22)00062-3/sref110
http://refhub.elsevier.com/S0002-9297(22)00062-3/sref110


The American Journal of Human Genetics, Volume 109
Supplemental information
The genomic signatures of natural selection

in admixed human populations

Sebastian Cuadros-Espinoza, Guillaume Laval, Lluis Quintana-Murci, and Etienne Patin



Supplementary Figures 

 

 

 

 

 

 

 

Figure S1. The simulated single-pulse admixture model. 

The admixed population originates from admixture between two source populations, referred 

to as P1 and P2. P1 and P2 contribute α1 and α2 admixture proportions to the admixed 

population, with α1 + α2 = 1. P1 and P2 diverge Tdiv generations ago and the admixture event 

occurs Tadm generations ago. The population sizes of the admixed population and of P1 and P2 

source populations are Nadm, N1 and N2, respectively. 

 

  



 

 

 

 

 

 

Figure S2. Performance of neutrality statistics under different scenarios of admixture 

with selection, assuming different selection coefficients. 

Receiver operating characteristic (ROC) curves comparing the performance of the classic 

neutrality statistics FST, ΔDAF and iHS and the admixture-specific statistics Fadm and LAD, 

across the 3 explored admixture with selection scenarios, with varying selection coefficients s 

∈ {0.01, 0.02, 0.03, 0.04}. 

 

  



 

 

 

Figure S3. Performance of Fadm when using simulated admixture proportions with error 

and when applying or not an allele frequency filter. 

(A) Receiver operating characteristic (ROC) curves comparing the performance of Fadm when 

using the simulated admixture proportions αsim or α sampled from a normal distribution 𝒩(µ 

= αsim, σ² = 0.026² = 0.000676), 0.026 being the highest root-mean-square deviation of the 

ADMIXTURE estimation.54 

(B) Receiver operating characteristic (ROC) curves comparing the performance of Fadm, with 

and without applying an allele frequency filter based on the source populations (see Material 

& Methods), under the 3 explored admixture with selection scenarios.  

  



 

 

 

Figure S4. Effects of sample size on the power of Fadm and LAD statistics. 

(A) Distributions under the null hypothesis (no positive selection) of Fadm and LAD, with 

varying sample sizes for the admixed population. 

(B) Effect of the sample size of the source populations on the detection power of Fadm and 

LAD.  

  



 

Figure S5. False positive signals due to selection in the proxy source population. 

(A) Distributions of Fadm when there is or not positive selection in the proxy of the P1 source 

population. 



(B) Distributions of local ancestry in the admixed population from the P2 source population, 

when there is or not positive selection in the proxy source population. 

(C) The simulated model, assuming positive selection only in the proxy of the P1 source 

population. 

(D) The simulated model, assuming adaptive admixture in the P2 source population. The 

scenario was simulated for comparison purposes. 

(C-D) The blue and gray points indicate the appearance of a new beneficial and neutral 

mutations, respectively. The blue and gray areas indicate changes in frequency of the 

beneficial and neutral mutation, respectively. 

(E-F) ROC curves for (E) Fadm and (F) LAD comparing the scenario where there is positive 

selection in the proxy of P1 only (scenario 4; Figure S5C) and the scenario where there is a 

adaptive admixture in P2 (scenario 5; Figure S5D).  

(G–H) Absolute iHS values for the selected mutation in the proxy of the P1 source population 

vs. (G) Fadm and (H) LAD values in the admixed population, when there is selection in this 

proxy of P1 only (scenario 4; Figure S5C), or when there is adaptive admixture in P2 

(scenario 5; Figure S5D). Dashed green lines represent the 99th percentiles (based on the null 

model simulations) for absolute iHS (vertical) and Fadm or LAD (horizontal). Excluding 

values that are above the absolute iHS 99th percentile excludes approximately 90% of the 

extreme Fadm and LAD values under selection in this proxy of P1 only (scenario 4) but, 

importantly, does not exclude any extreme value generated under the true adaptive admixture 

scenario (scenario 5). 

  



 

Figure S6. Effects of complex admixture and non-stationary demography on the power 

to detect adaptive admixture. 

(A) The different simulated admixture models: a single pulse admixture model, a double 

pulse admixture model and a constant continuous admixture model. For these scenarios to be 

comparable, we set the sum of the admixture proportions contributed by each pulse to be 

equal to α1 = 35%, and the average of the admixture dates to be equal to 70 generations 

(Material and Methods). 



(B) Detection power of Fadm and LAD under the three different admixture scenarios (FPR = 

5%; Material & Methods). 

(C) Distributions of Fadm and LAD under the null hypothesis (no positive selection), with or 

without a 10-fold bottleneck in the admixed population.  

  



 

 

Figure S7. Effects of the divergence time between source populations on the power to 

detect adaptive admixture. 

Effects on the detection power of Fadm and LAD of admixture time Tadm, admixture proportion 

α and the divergence time between source populations Tdiv. Colour indicates average detection 

power for a FPR = 5% threshold, across combinations of the remaining parameters. Because 

Tdiv is the upper limit of the time at which the beneficial mutation appears Tmut, we assumed 

for these simulations Tmut < 500 generations and s ∈ {0.05; 0.10}.   



 

Figure S8. Effects of population sizes on the power to detect adaptive admixture. 

Effects on the detection power of Fadm and LAD of admixture time Tadm, admixture proportion 

α and (A) N1, (B) N2 and (C) Nadm, the population sizes of source population P1, source 

population P2 and the admixed population, respectively (Figure S1). Colour indicates average 

detection power for a FPR = 5% threshold, across combinations of the remaining parameters. 



 

 

 

Figure S9. Effects of the frequency of the beneficial mutation (s = 0.01) on the power to 

detect adaptive admixture. 

Effects on the detection power of Fadm and LAD of admixture time Tadm, admixture proportion 

α and Fonset, the frequency of the beneficial mutation in the source population at the time of 

admixture Tadm. Colour indicates average detection power for a FPR = 5% threshold, across 

combinations of the remaining parameters.  



 

 

 

Figure S10. Effects of the frequency of the beneficial mutation (s = 0.05) on the power to 

detect adaptive admixture. 

Effects on the detection power of Fadm and LAD of admixture time Tadm, admixture proportion 

α and Fonset, the frequency of the beneficial mutation in the source population at the time of 

admixture Tadm. Colour indicates average detection power for a FPR = 5% threshold, across 

combinations of the remaining parameters.  



 

 

 

Figure S11. Effects of the frequency of the beneficial mutation (s = 0.10) on the power to 

detect adaptive admixture. 

Effects on the detection power of Fadm and LAD of admixture time Tadm, admixture proportion 

α and Fonset, the frequency of the beneficial mutation in the source population at the time of 

admixture Tadm. Colour indicates average detection power for a FPR = 5% threshold, across 

combinations of the remaining parameters.  



 

 

 

 

 

 

 

 

Figure S12. Distributions of Fisher’s combined P-values in the empirical data. 

Histograms of combined P-values using Fisher’s method, for the 15 analysed admixed 

populations. The P-values are uniformly distributed, except for certain populations where 

there is an excess of small P-values, corresponding to the populations where signals for 

adaptive admixture were found. 

  



 

Figure S13. Other previously reported genomic signals of adaptive admixture. 

(A) Genome-wide signals of adaptive admixture in Malagasy populations from Madagascar. 

(B) Genome-wide signals of adaptive admixture in African-descent Makranis and Makrani 

Baluch from Pakistan. 

(C) Genome-wide signals of adaptive admixture in admixed Mexicans (African ancestry). 

(A-C) Highlighted blue points indicate variants that passed the Bonferroni significance 

threshold (shown by a horizontal dotted line). Gene labels were attributed based on the gene 

with the highest V2G score within 250-kb of the candidate variant.  



(D) Local signatures of adaptive admixture for the ACKR1 region in Malagasy from 

Madagascar. 

(E) Local signatures of adaptive admixture for the ACKR1 region in Makranis and Makrani 

Baluch from Pakistan. 

(F) Local signatures of adaptive admixture for the HLA class I region in admixed Mexicans. 

(D-F) Light blue points indicate Fadm values for individual variants. The gold solid line 

indicates the average African local ancestry. 

  



 



Figure S14. Other novel genomic signals of adaptive admixture.  

(A) Genome-wide signals of adaptive admixture in the Nama from South Africa. 

(B) Genome-wide signals of adaptive admixture in Solomon Islanders. 

(C) Genome-wide signals of adaptive admixture in Vanuatu Islanders. 

(D) Genome-wide signals of adaptive admixture in admixed Peruvians. 

(A-D) Highlighted blue points indicate variants that passed the Bonferroni significance 

threshold (shown by a horizontal dotted line). Gene labels were attributed based on the gene 

with the highest V2G score within 250-kb of the candidate variant. 

(E) Local signatures of adaptive admixture for the CNOT6L/CXCL13 region in the Nama 

from South Africa. 

(F) Local signatures of adaptive admixture for the ARRDC4 region in Solomon Islanders. 

(G) Local signatures of adaptive admixture for the IGKV1-17 region in Vanuatu Islanders. 

(H) Local signatures of adaptive admixture for the ITPR2 region in admixed Peruvians. 

(E-H) Light blue points indicate Fadm values for individual variants. The yellow, gold and 

pink solid lines indicate average local ancestry from East Africans, Austronesians and 

Europeans respectively. 

  



 

 

 

 

 

 

 

 

 

Figure S15. Genome scans for populations where there is no evidence for adaptive 

admixture. 

Manhattan plots of –log10(P-values) for the combined Fisher’s method, in the remaining 6 

admixed populations where no variant passes the Bonferroni significance threshold (shown by 

a horizontal dotted line). 
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