Supporting Information

Effects of Linker and Liposome Anchoring on Lactose-functionalized Glycomacromolecules as Multivalent Ligands for Binding Galectin-3

Tanja Freichel^[a], Dominic Laaf^[b], Miriam Hoffmann^[a], Patrick B. Konietzny^[a], Robert Wawrzinek ^[c], Viktoria Heine^[b], Christoph Rademacher^[c], Nicole L. Snyder^[d], Lothar Elling^[b] and Laura Hartmann^{[a] †}

[a] Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.

[b] Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.

[c] Max Planck Institute of Colloids and Interfaces, Mühlenberg 1, 14476 Potsdam, Germany.

[d] Department of Chemistry, Davidson College, North Carolina 28035, United States.

Corresponding authors: laura.hartmann@hhu.de

Contents

1.	Add	litional information on synthesis of glycomacromolecules and liposome formulation	3		
	1.1. liposo	Additional information on the characterization of the functionalization degree of the mes.	4		
2.	Add	litional information on binding studies of glycomacromolecules	6		
3.	Ana	lytical data of glycomacromolecules	9		
	3.1.	Gal(1)-2, 1	9		
	3.2.	Gal(1,3,5)-6, 2	. 10		
	3.3	Gal(1,2,3)-4, 3	. 12		
	3.4	Lac(1)-2, 4	. 14		
	3.5	Lac(1)-2, 4 *	. 16		
	3.6	Lac(2)-3, 5	. 18		
	3.7	Lac(1,5)-5, 6	20		
	3.8	Lac(1,5,9)-9, 7	. 22		
	3.9	Lac(1,4,7)-8, 8	. 24		
	3.10	Lac(1,3,5)-6, 9	. 26		
	3.11	Lac(1,3,5)-6, 9 *	. 28		
	3.12	Lac(1,2,3)-4, 10	. 30		
	3.13	Lac(1,2,3)-4, 10 *	. 32		
	3.14	Lac ₃ TPD, 11	. 34		
	3.15	Lac(1,2,3,4,5,6)-7, 12	. 36		
	3.16	Lac(2)-3 L, 13	. 38		
	3.17	Lac(1,5)-5 L, 14	. 40		
	3.18	Lac(1,5,9)-9 L, 15	. 42		
	3.19	Glc(1,3,5)-6, 16	. 44		
	3.20	Glc(1,3,5)-6, 16*	. 46		
4.	Ana	lytical data for glycomacromolecule-lipid conjugates	. 49		
	4.1.	Lac(1)-2-PEG-DSPE-conjugate, L4	. 49		
	4.2.	Lac(1,3,5)-6-PEG-DSPE-conjugate, L9	. 50		
	4.3.	Lac(1,2,3)-4-PEG-DSPE-conjugate, L10	. 52		
	4.4.	Glc(1,3,5)-6-PEG-DSPE-conjugate, L16	. 54		
5.	5. Analytical data of liposomes				

1. Additional information on synthesis of glycomacromolecules and liposome formulation

Scheme S 1: Scheme of the synthesis of compound 11.

Figure S 1: Components used for the liposome formulation.

1.1. Additional information on the characterization of the functionalization degree of the liposomes

Figure S 2: Results of the Lactose-Assay Kit measuring the time dependent behavior of the absorbent resulting from the conversion of the lactose standard provided by the kit (top) and of the liposome L10 (bottom).

Sample	Measured conc. [µM]	Theoretical conc.* [µM]
Liposome L4	143±19	149
Liposome L9	389±53	376
Liposome L10	320±54	447

Figure S 3: Results of the lactose-assay kit: Resulting lactose concentration (B) using the galactose standard curve (A).*calculated from total amount of weighted lipids in consideration of coupling efficiency and for 100 % of lactose-oligomer on outer surface of liposome.

2. Additional information on binding studies of glycomacromolecules

Figure S 4: ELISA inhibition curve of Gal-3 with lactose.

Figure S 5: ELISA inhibition curve of Gal-3 with glycomacromolecules 9 and 12.

Figure S 6: ELISA inhibition curve of Gal-3 with glycomacromolecules 3,6,7 and 13-15.

Figure S 7: Results from the SPR inhibition studies of Gal-3 with the controls lactose and Glc(1,3,5)-6, 16.

Figure S 8: Results from the SPR inhibition studies of Gal-3 with galactose samples 1, 2 and 3.

Figure S 9: Chem3D-simulation and measurement of the distances between the three nitrogen-atoms of the triazoles (marked in green) of Lac₃TPD 11 after MM2 conformational minimization.

Figure S 10: Chem3D-simulation and measurement of the distances between the three nitrogen-atoms of the triazoles (marked in green) of Lac₃TPD 8 after MM2 conformational minimization.

3. Analytical data of glycomacromolecules

3.1. Gal(1)-2, 1

¹H-NMR (300 MHz, Deuterium Oxide) δ [ppm]: 7.90 (s, 1 H, triazole-CH), 4.65 (t, J = 5.1 Hz, 2 H, -N-N-CH₂-), 4.37 (d, J = 7.8 Hz, 1 H, CH_{anomer}Gal), 4.29 (dt, J = 11.6, 4.8 Hz, 1 H, -CH_{pyranose}), 4.09 (dt, J = 11.1, 5.2 Hz, 1 H, CH_{pyranose}), 3.91 (dd, J = 3.4, 1.0 Hz, 1 H, --CH_{pyranose}), 3.78 – 3.72 (m, 2 H, CH_{pyranose}), 3.70 – 3.58 (m, 10 H, CH_{pyranose}, O-CH₂-), 3.54 – 3.29 (m, 13 H, CH_{pyranose}, C=ONH-CH₂), 3.01 (t, J = 7.1 Hz, 2 H, CH=C-CH₂), 2.79 (t, J = 7.2 Hz, 2 H, CH=C-CH₂-CH₂), 2.56 – 2.41 (m, 8 H, , NHC=O-CH₂), 2.00 (s, 3H, -CH₃). HR-MS (ESI) calc. for C₃₃H₅₉N₉O₁₄ [M+2H]²⁺ 402.7085; found 402.7084. Yield: 51 mg (63 %).

Figure S 11: ¹H-NMR spectrum of compound 1.

Figure S 12: HR-MS spectrum of compound 1.

Figure S 13: RP-HPLC and ESI-MS spectrum of compound 1.

3.2. Gal(1,3,5)-6, 2

¹H-NMR (300 MHz, Deuterium Oxide) δ [ppm]: 7.90 (s, 3 H, triazole-CH), 4.65 (t, J = 5.0 Hz, 6 H, -N-N-CH₂-), 4.37 (d, J = 7.8 Hz, 3 H, CH_{anomer}Gal), 4.29 (dt, J = 9.9, 4.8 Hz, 3 H, CH_{pyranose}), 4.09 (dt, J = 11.0, 5.1 Hz, 3H, CH_{pyranose}), 3.91 (d, J = 3.3 Hz, 3H, CH_{pyranose}), 3.78 – 3.71 (m, 6 H, CH_{pyranose}), 3.70 – 3.56 (m, 30 H, CH_{pyranose}, O-CH₂-), 3.53 – 3.30 (m, 39H, CH_{pyranose}, C=ONH-CH₂), 3.00 (t, J = 7.1 Hz, 6 H, CH=C-CH₂), 2.79 (t, J = 7.2 Hz, 6 H CH=C-CH₂-CH₂), 2.53-2.44 (m, 24 H, NH-C=O-CH₂-), 2.00 (s, 3H, -CH₃). HR-MS (ESI) calc. for C₉₅H₁₆₄N₂₅O₄₀ [M+3H]³⁺ 765.0517; found 765.0522. Yield: 119 mg (52 %).

Figure S 14: ¹H-NMR spectrum of compound 2.

Figure S 15: HR-MS spectrum of compound 2.

Figure S 16: RP-HPLC and ESI-MS spectrum of compound 2.

3.3 Gal(1,2,3)-4, **3**

¹H-NMR (300 MHz, D₂O) δ [ppm] 7.89 (s, 3H, triazole-C*H*), 4.64 (t, J = 4.7 Hz, 6H, -N-N-C*H*₂-), 4.37 (d, J = 7.8 Hz, 3H, C*H*_{anomer}Gal), 4.28 (dt, J = 9.9, 4.7 Hz, 3H, -C*H*_{pyranose}), 4.09 (dt, J = 10.8, 5.0 Hz, 3H, -C*H*_{pyranose}), 3.91 (d, J = 3.0 Hz, 3H, -C*H*_{pyranose}), 3.81 – 3.71 (m, 6H, -C*H*_{pyranose}), 3.70 – 3.58 (m, 15H, C*H*_{pyranose}, O-C*H*₂-), 3.53 – 3.29 (m, 30H, C*H*_{pyranose}, C=ONH-C*H*₂), 3.04 – 2.92 (m, 6H, CH=C-C*H*₂), 2.78 (t, J = 7.0 Hz, 6H, CH=C-CH₂-C*H*₂), 2.53-2.42 (m, 16H, -N-C=O-C*H*₂-), 1.99 (s, 3H, -C*H*₃). HR-MS (ESI) calc. for C₇₅H₁₂₈N₂₁O₃₂ [M+3H]³⁺ 611.6339; found 611.6340. Yield: 90 mg (49 %).

Figure S 17: ¹H-NMR spectrum of compound 3.

Figure S 18: HR-MS spectrum of compound 3.

Figure S 19: RP-HPLC and ESI-MS spectrum of compound 3.

3.4 Lac(1)-2, **4**

¹H NMR (300 MHz, Deuterium Oxide) δ [ppm]: 8.05 (s, 1 H, triazole-*CH*), 5.75 (d, J = 9.2 Hz, 1H, *CH*_{anomer}Glc), 4.52 (d, J = 7.7 Hz, 1H, *CH*_{pyranose}, O-*CH*₂-), 4.10 – 3.73 (m, 10H, *CH*_{pyranose}, O-*CH*₂-), 3.72 – 3.57 (m, 10H,), 3.47-3.31 (m 12 H, C=ONH-*CH*₂), 3.05 (t, J = 7.1 Hz, 2 H, CH=CH-*CH*₂), 2.82 (t, J = 7.0 Hz, 2 H, CH=CH-*CH*₂-*CH*₂), 2.58 – 2.43 (m, 8 H, NHC=O-*CH*₂), 2.00 (s, 3 H, -*CH*₃). HR-MS (ESI) calc. for C₃₇H₆₅N₉O₁₈ [M+2H]²⁺ 461.7218; found 461.7217. Yield: 51 mg (55 %).

Figure S 20: ¹H-NMR spectrum of compound 4.

Figure S 21: HR-MS spectrum of compound 4.

Figure S 22: RP-HPLC and ESI-MS spectrum of compound 4.

3.5 Lac(1)-2, 4*

¹H-NMR (600 MHz, Deuterium Oxide) δ [ppm]: 8.44 (br s, 1H, NH), 8.03 (m, 1H, triazole-CH), 5.74 (d, ³J = 9.3 Hz,1H, CH_{anomer}Glc), 4.50 (d, ³J = 7.8 Hz, 1H, CH_{anomer}-Gal), 4.03 (t, ³J = 9.0 Hz, 1H, CH_{pyranose}), 3.97 – 3.55 (m, 19H, O-CH₂-, CH_{pyranose}), 3.45 (m, 4H, C=ONH-CH₂), 3.36 (m, 4H, C=ONH-CH₂), 3.32 (t, 3J = 6.1 Hz, 2H, C=ONH-CH₂), 3.20 (m, 2H, CH₂-NH₂), 3.03 (t, ³J = 7.1 Hz, 2H, CH=CH-CH₂), 2.80 (t, ³J = 7.2 Hz, 2H, CH=CH-CH₂-CH₂), 2.47 (m, 8H, NHC=O-CH₂). HR-MS (ESI) calc. for C₃₅H₆₃N₉O₁₇ [M+2H]²⁺ 440.72; found 440.72. Yield: 48 mg (54 %).

Figure S 23: ¹H-NMR spectrum of compound 4*.

Figure S 24: HR-MS spectrum of compound 4*.

Figure S 25:RP-HPLC and ESI-MS spectrum of compound 4*.

3.6 Lac(2)-3, 5

¹H-NMR (300 MHz, Deuterium Oxide) δ [ppm]: 8.05 (s, 1H, triazole-C*H*); 5.75 (d, ³J = 9.2 Hz, 1H, C*H*_{anomer}Glc), 4.52 (d, ³J = 7.7 Hz, 1H, C*H*_{anomer}-Gal), 4.09-3.92 (m, 3H, C*H*_{pyranose}), 3.93-3.82 (m, 4H, C*H*_{pyranose}), 3.81-3.73 (m, 3H, C*H*_{pyranose}), 3.72-3.54 (m, 18H, C*H*_{pyranose}, C*H*₂ _{pyranose}, O-C*H*₂-), 3.51-3.28 (m, 16H, C*H*_{pyranose}, C=ONH-C*H*₂), 3.04 (t, ³J = 7.1 Hz, 2H, CH=CH-C*H*₂), 2.81 (t, ³J = 7.1 Hz, 2H, CH=CH-CH₂-C*H*₂), 2.57-2.45 (m, 12H, NHC=O-C*H*₂), 1.99 (s, 3H, C*H*₃). HR-MS (ESI): m/z calc. for C₄₇H₈₃N₁₁O₂₂ [M+2H]²⁺ 576.7852; found 576.7847. Yield: 267.1 mg (66 %).

Figure S 26: ¹H-NMR spectrum of compound 5.

Figure S 27: HR-MS spectrum of compound 5.

Figure S 28: RP-HPLC and ESI-MS spectrum of compound 5.

3.7 Lac(1,5)-5, 6

¹H-NMR (300 MHz, Deuterium Oxide) δ [ppm]: 8.05 (s, 2H, triazole-C*H*), 5.75 (d, 2H, ³J = 9.1 Hz, C*H*_{anomer}Glc), 4.52 (d, ³J = 7.7 Hz, 2H, C*H*_{anomer}-Gal), 4.10-3.73 (m, 18H, C*H*_{pyranose}), 3.72-3.54 (m, 30H, C*H*_{pyranose}, C*H*₂ _{pyranose}, O-C*H*₂-), 3.51-3.29 (m, 28H, C*H*_{pyranose}), 3.72-3.04 (t, ³J = 7.1 Hz, 4H, CH=CH-C*H*₂), 2.81 (t, ³J = 6.5 Hz, 4H, CH=CH-CH₂-C*H*₂), 2.56-2.44 (m, 20H, NHC=O-C*H*₂), 1.94 (s, 1,5H, C*H*₃), 1.92 (s, 1,5H, C*H*₃). HR-MS (ESI): m/z calc. for C₈₂H₁₄₂N₁₉O₃₉ [M+3H]³⁺ 672.3232; found: 672.3225. Yield: 145.0 mg (28 %).

Figure S 29: ¹H-NMR spectrum of compound 6.

Figure S 30: HR-MS spectrum of compound 6.

Figure S 31: RP-HPLC and ESI-MS spectrum of compound 6.

3.8 Lac(1,5,9)-9, 7

¹H-NMR (300 MHz, Deuterium Oxide) δ [ppm]: 8.05 (s, 3H, triazole-C*H*), 5.75 (d, ³J = 9.2 Hz, 3H, C*H*_{anomer}Glc), 4.52 (d, 3H, 3J = 7.7 Hz, C*H*_{anomer}-Gal), 4.10-3.92 (m, 8H, C*H*_{pyranose}), 3.92-3.82 (m, 14 H, C*H*_{pyranose}), 3.82-3.73 (m, 6H, C*H*_{pyranose}), 3.72-3.55 (m, 54H, C*H*_{pyranose}, C*H*₂ _{pyranose}, O-C*H*₂-), 3.51-3.28 (m, 50H, C*H*_{pyranose}, C=ONH-C*H*₂), 3.04 (t, ³J = 7.0 Hz, 6H, CH=CH-C*H*₂), 2.81 (t, ³J = 7.0 Hz, 6H, CH=CH-CH₂-C*H*₂), 2.57-2.42 (m, 36H, NHC=O-C*H*₂), 1.94 (s, 1,5H, C*H*₃), 1.92 (s, 1,5H, C*H*₃). HR-MS (ESI): m/z calc. for C₁₃₇H₂₃₇N₃₁O₆₄ [M+4H]⁴⁺ 835.1555; found 835.1562. Yield: 76 mg (32 %).

Figure S 32: ¹H-NMR spectrum of compound 7.

Figure S 33: HR-MS spectrum of compound 7.

Figure S 34: RP-HPLC and ESI-MS spectrum of compound 7.

3.9 Lac(1,4,7)-8, 8

¹H-NMR (300 MHz Deuterium Oxide) δ [ppm]: 8.05 (s, 3H, triazole-CH), 5.75 (d, ³J = 9.2 Hz, 3H, CH_{anomer}Glc), 4.52 (d, ³J = 7.6 Hz, 3H, CH_{anomer}-Gal), 4.11 – 3.53 (m, 77H, CH_{pyranose}, CH₂ _{pyranose}, O-CH₂-), 3.53 – 3.24 (m, 43H, CH_{pyranose}, CH₂ _{pyranose}, C=ONH-CH₂), 3.04 (t, ³J = 7.1 Hz, 6H, CH=CH-CH₂), 2.81 (t, ³J = 7.1 Hz, 6H, CH=CH-CH₂-CH₂), 2.59 – 2.38 (m, 32H, NHC=O-CH₂), 1.99 (s, 3H, CH₃). HR-MS (ESI) calc. for C₁₂₇H₂₁₉N₂₉O₆₀ [M+4H]⁴⁺ 777.6239; found 777.6229. Yield: 107 mg (35 %).

Figure S 35: ¹H-NMR spectrum of compound 8.

Figure S 36: HR-MS spectrum of compound 8.

Figure S 37: RP-HPLC and ESI-MS spectrum of compound 8.

3.10 Lac(1,3,5)-6, 9

¹H-NMR (300 MHz, Deuterium Oxide) δ [ppm]: 8.05 (s, 3H, triazole-C*H*), 5.75 (d, ³J = 9.2 Hz, 3H, C*H*_{anomer}Glc), 4.52 (d, ³J = 7.7 Hz, 3H, C*H*_{anomer}-Gal), 4.09 – 3.73 (m, 30H, C*H*_{pyranose}, C*H*₂ _{pyranose}, O-C*H*₂-), 3.73 – 3.55 (m, 30H, C*H*_{pyranose}, C*H*₂ _{pyranose}, O-C*H*₂-), 3.53 – 3.26 (m, 36H, C*H*_{pyranose}, C=ONH-C*H*₂), 3.04 (t, ³J = 7.1 Hz, 6H, CH=CH-C*H*₂), 2.81 (t, ³J = 7.1 Hz, 6H, CH=CH-CH₂-C*H*₂), 2.60 – 2.38 (m, 24H, NHC=O-C*H*₂), 1.99 (s, 3H, C*H*₃). HR-MS (ESI) calc. for C₁₀₇H₁₈₂N₂₅O₅₂ [M+3H]³⁺ 883.0783; found: 883.0787. Yield: 109 mg (41 %).

Figure S 38: ¹H-NMR spectrum of compound 9.

Figure S 39: HR-MS spectrum of compound 9.

Figure S 40: RP-HPLC and ESI-MS spectrum of compound 9.

3.11 Lac(1,3,5)-6, 9*

¹H-NMR (600 MHz, Deuterium Oxide) δ [ppm]: 8.43 (br s, 2 H, NH), 8.03 (m, 3H, triazole-CH), 5.73 (m, 3H, CH_{anomer}Glc), 4.50 (d, ³J = 7.8 Hz, 3H, CH_{anomer}-Gal), 4.03 (t, ³J = 9.1 Hz, 3H, CH_{pyranose}), 3.99 – 3.55 (m, 57H, CH_{pyranose}, CH₂ _{pyranose}, O-CH₂-), 3.44 (m, 12 H, C=ONH-CH₂), 3.33 (m, 22H, CH_{pyranose}, C=ONH-CH₂), 3.20 (t, ³J = 5.1 Hz, 2 H, CH₂-NH₂), 3.02 (m, 6H, CH=CH-CH₂), 2.79 (m, 6H, CH=CH-CH₂-CH₂), 2.47 (m, 24 H, NHC=O-CH₂). HR-MS (ESI) calc. for C₁₀₅H₁₈₀N₂₅O₅₁ [M+3H]³⁺ 869.07; found: 869.08. Yield: 103 mg (40 %).

Figure S 41: ¹H-NMR spectrum of compound Lac(1,3,5)-6, **9*.**

Figure S 42: HR-MS spectrum of compound 9*.

Figure S 43: RP-HPLC and ESI-MS spectrum of compound 9*.

3.12 Lac(1,2,3)-4, 10

¹H-NMR (300 MHz, Deuterium Oxide) δ [ppm]:8.12 – 7.97 (m, 3H, triazole-C*H*), 5.74 (d, ³J = 9.2 Hz, 3H, C*H*_{anomer}Glc), 4.52 (d, ³J = 7.6 Hz, 3H, C*H*_{anomer}-Gal), 4.10 – 3.53 (m, 44H, C*H*_{pyranose}, C*H*₂ _{pyranose}, O-C*H*₂-), 3.53 – 3.25 (m, 28H, C*H*_{pyranose}, C=ONH-C*H*₂), 3.12 – 2.93 (m, 6H, CH=CH-C*H*₂), 2.88 – 2.70 (m, 6H, CH=CH-CH₂-C*H*₂), 2.57 – 2.35 (m, 16H, NHC=O-C*H*₂), 1.99 (s, 3H, C*H*₃). HR-MS (ESI) calc. for C₈₇H₁₄₆N₂₁O₄₄ [M+3H]³⁺ 729.6605; found 729.6606. Yield: 121 mg (55 %).

Figure S 44: ¹H-NMR spectrum of compound 10.

Figure S 45: HR-MS spectrum of compound 10.

Figure S 46: RP-HPLC and ESI-MS spectrum of compound 10.

3.13 Lac(1,2,3)-4, **10***

¹H-NMR (600 MHz, Deuterium Oxide) δ [ppm]: 8.45 (br s, 1H, NH), 8.02 (m, 3H, triazole-CH), 5.74 (m, 3H, CH_{anomer}Glc), 4.50 (d, ³J = 7.8 Hz, 3H, CH_{anomer}-Gal), 4.03 (m, 3 H, CH_{pyranose}), 3.96 – 3.55 (m, 41H, CH_{pyranose}, CH₂ _{pyranose}, O-CH₂-), 3.43 (m, 12H, C=ONH-CH₂), 3.33 (m, 14H, C=ONH-CH₂), 3.20 (m, 2H, CH₂-NH₂), 3.01 (m, 6H, CH=CH-CH₂), 2.78 (m, 6H, CH=CH-CH₂-CH₂), 2.45 (m, 16H, NHC=O-CH₂). HR-MS calc. for C₈₅H₁₄₄N₂₁O₄₃ [M+3H]³⁺ 715.66; found: 715.66. Yield: 97 mg (45 %).

Figure S 47: ¹H-NMR spectrum of compound 10*.

Figure S 48: HR-MS spectrum of compound 10*.

Figure S 49: RP-HPLC and ESI-MS spectrum of compound 10*.

3.14 Lac₃TPD, **11**

¹H NMR (300 MHz, Deuterium Oxide) δ [ppm]: 8.03 (s, 2H, triazole-C*H*), 8.00 (s, 1H, triazole-C*H*), 5.77 – 5.68 (m, 3H, C*H*_{anomer}Glc), 4.52 (d, ³J = 7.7 Hz, 3H, C*H*_{anomer}-Gal), 4.04 (t, ³J = 8.6 Hz, 3H, C*H*_{pyranose}), 3.99 – 3.73 (m, 27H), 3.69 (dd, ³J = 10.0, 3.3 Hz, 3H, C*H*_{pyranose}), 3.59 (dd, ³J = 10.0, 7.6 Hz, 3H, C*H*_{pyranose}), 3.38 – 3.21 (m, 8H, C=ONH-C*H*₂), 3.07 – 2.92 (m, 6H, CH=CH-C*H*₂), 2.71 (t, ³J = 7.1 Hz, 2H, CH=CH-CH₂-C*H*₂), 2.65 – 2.51 (m, 4H, CH=CH-CH₂-C*H*₂). HR-MS (ESI) calc. for C₅₅H₉₀N₁₂O₃₃ [M+2H]²⁺ 723.2861; found 723.2859. Yield: 73 mg (50 %).

Figure S 50: ¹H-NMR spectrum of compound 11.

Figure S 51: HR-MS spectrum of compound 11.

Figure S 52: RP-HPLC and ESI spectrum of compound 11.

3.15 Lac(1,2,3,4,5,6)-7, **12**

¹H-NMR (300 MHz, Deuterium Oxide) δ [ppm]: 8.04 (m, 6H, triazole-CH), 5.74 (d, J = 9.2 Hz, 6H, CH_{anomer}Glc), 4.52 (d, J = 7.6 Hz, 6H, CH_{anomer}-Gal), 4.10 – 3.74 (m, 62H, CH_{pyranose}, O-CH₂-), 3.72 – 3.54 (m, 20H, CH_{pyranose}, CH₂ _{pyranose}, O-CH₂-), 3.50 – 3.27 (m, 50H, C=ONH-CH₂), 3.04-2.98 (m, 12H, CH=CH-CH₂), 2.85 – 2.72 (m, 12H, CH=CH-CH₂-CH₂), 2.52-2.41 (m, 28H, NHC=O-CH₂), 1.99 (s, 3H, CH₃). HR-MS (ESI+) m/z calc. for C₁₆₂H₂₆₇N₃₉O₈₃ [M+4H]⁴⁺ 1021.6962; found 1021.6962. Yield: 235.1 mg (55 %).

Figure S 53: ¹H-NMR spectrum of compound 12.

Figure S 54: HR-MS spectrum of compound 12.

Figure S 55: RP-HPLC and ESI spectrum of compound 12.

3.16 Lac(2)-3 L, 13

¹H-NMR (300 MHz, Deuterium Oxide) δ [ppm]:7.84 (s, 1H, triazole-C*H*), 4.53 (t, 2H, ³J = 6.8 Hz, O-C*H*₂-), 4.46 (2x d, 2H, ³J \approx 7.7 Hz, ³J \approx 7.7 Hz, C*H*_{anomer}Glc, C*H*_{anomer}-Gal), 4.01-3.70 (m, 7H, C*H*_{pyranose}), 3.70-3.51 (m, 22H, O-C*H*₂-, C*H*_{pyranose}, -N-N-C*H*₂-), 3.50-3.29 (m, 17, C=ONH-C*H*₂, C*H*_{pyranose}), 3.00 (t, ³J = 7.0 Hz, 2H, CH=CH-C*H*₂), 2.79 (t, ³J = 7.1 Hz, 2H, CH=CH-CH₂-C*H*₂), 2.57-2.43 (m, 12H, NHC=O-C*H*₂), 2.21 (p, 2H, ³J = 6.6 Hz, CH₂-C*H*₂-C*H*₂), 1.99 (s, 3H, C*H*₃). HR-MS (ESI): m/z calc. for C₅₀H₈₉N₁₁O₂₃ [M+2H]²⁺ 605.8061; found 605.8072. Yield: 235.1 mg (55 %).

Figure S 56: ¹H-NMR spectrum of compound 13.

Figure S 57: HR-MS spectrum of compound 13.

Figure S 58: RP-HPLC and ESI spectrum of compound 13.

3.17 Lac(1,5)-5 L, 14

¹H-NMR (300 MHz, Deuterium Oxide) δ [ppm]:7.84 (s, 2H, triazole-C*H*), 4.53 (t, ³J = 6.8 Hz, 4H, O-C*H*_{2propyl}), 4.46 (m, 4 H, C*H*_{anomer}Glc, C*H*_{anomer}-Gal), 4.01-3.70 (m, 13H, C*H*_{pyranose}), 3.70-3.51 (m, 37H, O-C*H*₂-, C*H*_{pyranose}, -N-N-C*H*₂-), 3.50-3.29 (m, 30H, C=ONH-C*H*₂, C*H*_{pyranose}), 3.00 (t, ³J = 7.0 Hz, 4H, CH=CH-C*H*₂), 2.79 (t, 4H, CH=CH-CH₂-C*H*₂), 2.56-2.45 (m, 20H, NHC=O-C*H*₂), 2.21 (m, 4H, CH₂-C*H*₂-C*H*₂), 1.94 (s, 1.5H, C*H*₃), 1.91 (s, 1.5H, C*H*₃). HR-MS (ESI): m/z calc. for C₈₈H₁₅₄N₁₉O₄₁ [M+3H]³⁺ 711.0178; found 711.0183. Yield: 120.7 mg (23 %).

Figure S 59: ¹H-NMR spectrum of compound 14.

Figure S 60: HR-MS spectrum of compound 14.

Figure S 61: RP-HPLC and ESI-MS spectrum of compound 14.

3.18 Lac(1,5,9)-9 L, 15

¹H-NMR (300 MHz, Deuterium Oxide) δ [ppm]:7.84 (s, 3H, triazole-C*H*), 4.53 (t, ³J = 6.8 Hz, 6H, O-C*H*_{2propyl}-), 4.46 (m, 6H, C*H*_{anomer}Glc, C*H*_{anomer}-Gal), 4.01-3.70 (m, 20H, C*H*_{pyranose}), 3.70-3.51 (m, 66H, O-C*H*₂-, C*H*_{pyranose}, -N-N-C*H*₂-), 3.50-3.30 (m, 52H, C*H*_{pyranose}, C=ONH-C*H*₂), 3.00 (t, ³J = 6.9 Hz, 6H, CH=CH-C*H*₂), 2.79 (t, ³J = 7.0 Hz, 6H, CH=CH-CH₂-C*H*₂), 2.56-2.45 (m, 36H, NHC=O-C*H*₂), 2.21 (m, 6H, CH₂-C*H*₂-C*H*₂), 1.94 (s, 1.5H, C*H*₃), 1.91 (s, 1.5H, C*H*₃). HR-MS (ESI): m/z calc. for C₁₄₆H₂₅₅N₃₁O₆₇ [M+4H]⁴⁺ 878.6869; found 878.6877. Yield: 69.9 mg (22 %).

Figure S 62: ¹H-NMR spectrum of compound 15.

Figure S 63: HR-MS spectrum of compound 15.

Figure S 64: RP-HPLC and ESI-MS spectrum of compound 15.

3.19 Glc(1,3,5)-6, **16**

¹H-NMR (300 MHz, D₂O) δ [ppm]7.93 – 7.87 (m, 3H, triazole-C*H*), 4.88 (d, J = 3.4 Hz, 2.7H, C*H*_{anomer}Glc), 4.72 –4.59 (m, 6H, -N-N-C*H*₂), 4.43 (d, J = 7.9 Hz, 0.3H, C*H*_{anomer}Glc), 4.16 – 4.02 (m, 3H, O-C*H*₂-), 4.00 – 3.86 (m, 3H, O-C*H*₂-), 3.73 – 3.56 (m, 33H, O-C*H*₂-, C=ONH-C*H*₂, C*H*_{pyranose}), 3.55 – 3.43 (m, 17H, O-C*H*₂-), 3.42 – 3.30 (m, 27H, C*H*₂-NH₂), 3.00 (t, J = 7.3 Hz, 6H, CH=C-C*H*₂), 2.92 – 2.74 (m, 9H, CH=C-CH₂-C*H*₂), 2.58 – 2.42 (m, 24H, NHC=O-C*H*₂), 2.00 (s, 3H, -C*H*₃). HR-MS (ESI) calc. for C₉₅H₁₆₄N₂₅O₄₀ [M+3H]³⁺ 765.0517; found 765.0527. Yield: 110 mg (48 %).

Figure S 65: ¹H-NMR spectrum of compound 16.

Figure S 66: HR-MS spectrum of compound 16.

Figure S 67: RP-HPLC and ESI-MS spectrum of compound 16.

3.20 Glc(1,3,5)-6, 16*

¹H-NMR (600 MHz, Deuterium Oxide) δ [ppm]: 8.46 (br s. 1 H. NH). 7.88 (m, 3H, triazole-CH), 4.80 (m, 3H, CH_{anomer}Glc), 4.64 (m, 6H, -N-N-CH₂-), 4.41 (d, ³J_{HH} = 7.9 Hz, 0.6H, CH_{anomer}Glc), 4.07 (m, 3H, O-CH₂-), 3.91 (m, 3H, O-CH₂-), 3.75 (dd, ³J_{HH} = 5.6; 4.6 Hz, 2H, O-CH₂-), 3.69 (s, 4H, O-CH₂-), 3.65 (s, 8H, O-CH₂-), 3.63 – 3.28 (m, 59H, O-CH₂-, C=ONH-CH₂, CH_{pyranose}), 3.21 (m, 2H, CH₂-NH₂), 2.98 (m, 6H, CH=C-CH₂), 2.87–2.75 (m, 9H, CH=C-CH₂-CH₂), 2.48 (m, 24H, NHC=O-CH₂). ESI-MS m/z calc. for C₉₃H₁₆₂N₂₅O₃₉ [M+3H]³⁺ 751.04. found: 751.25. Yield: 86 mg (38 %).

Figure S 68: ¹H-NMR spectrum of compound 16*.

Figure S 69: HR-MS spectrum of compound 16*.

Figure S 70: RP-HPLC and ESI-MS spectrum of compound 16*.

4. Analytical data for glycomacromolecule-lipid conjugates

4.1. Lac(1)-2-PEG-DSPE-conjugate, L4

Yield: 2.01 mg (58 %). Conversion: 66 %. MALDI-TOF-MS calc. for C₁₇₃H₃₃₀N₁₁O₇₃PNa [M+Na]⁺ 3786.5; found: 3787.8.

Figure S 71:¹H-NMR spectrum of compound L4.

Figure S 72: MALDI-TOF-MS-spectrum of compound L4.

4.2. Lac(1,3,5)-6-PEG-DSPE-conjugate, L9

Yield: 2.26 mg (44 %). Conversion: 56 %. MALDI-TOF-MS calc. für C₂₄₃H₄₄₆N₂₇O₁₀₇PNa [M+Na]⁺ 5511.3; found: 5511.6.

Figure S 73: ¹H-NMR spectrum of compound L9.

Figure S 74: MALDI-TOF-MS-spectrum of compound L9.

4.3. Lac(1,2,3)-4-PEG-DSPE-conjugate, L10

Yield: 3.00 mg (69 %). Conversion: 66 %. MALDI-TOF-MS calc. for C₂₂₃H₄₁₀N₂₃O₉₉PNa [M+Na]⁺ 5051.8; found 5052.5.

Figure S 75: ¹H-NMR spectrum of compound L10.

Figure S 76: MALDI-TOF-MS-spectrum of compound L10.

4.4. Glc(1,3,5)-6-PEG-DSPE-conjugate, L16

Yield: 1.54 mg (35 %). Conversion: 62 % (as determined by ¹H-NMR). MALDI-TOF-MS calc. for $C_{231}H_{428}N_{27}O_{95}PNa$ [M+Na]⁺ 5158.0; found: 5158.7.

Figure S 77: ¹H-NMR spectrum of compound L16.

Figure S 78: MALDI-TOF-MS-spectrum of compound L16.

5. Analytical data of liposomes

Figure S 79: Exemplary DLS spectrum of liposome L4.

Figure S 80: Exemplary DLS spectrum of liposome L9.

Figure S 81: Exemplary DLS spectrum of liposome L10.

Figure S 82: Exemplary DLS spectrum of liposome L16.