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eMethods 

Data Selection 

In order to find genome-wide association (GWA) summary statistics, we searched the published 

literature (Pubmed, SCOPUS), data repositories (dbGaP, GWAS ATLAS [https://atlas.ctglab.nl], GWAS 

catalogue [https://www.ebi.ac.uk/gwas], opentargets.org), and the Psychiatric Genomics Consortium (PGC) 

website (https://www.med.unc.edu/pgc/). We sought data from studies with the largest available European 

ancestry, due to the limited availability of well-powered GWA data from other ancestry groups.1 Most of the 

selected summary data were produced via meta-analyses of large case-control samples by multi-institutional 

collaborative consortia; detailed descriptions of selection criteria, quality control, and analyses are described 

within the individual studies (see references in Table 1 and S. Table 1). We included 14 psychiatric 

phenotypes, including attention deficit hyperactivity disorder (ADHD; N = 53,293)2, anorexia nervosa (AN; N = 

72,517)3, bipolar disorder (N = 51,710)4, the PGC cross-disorder phenotype (PGC-CD; N = 107,785)5, 

cannabis use disorder (CUD; N = 357,806)6, major depressive disorder (MDD; N = 500,199)7, obsessive-

compulsive disorder (OCD; N = 9,725)8, opioid use disorder (OUD; N = 82,707)9, problematic alcohol use 

(PAU; N = 435,563)10, post-traumatic stress disorder (PTSD; N = 174,659)11, schizophrenia (SZ; N = 

105,318)12, and Tourette’s syndrome (TS; N = 14,307).13 We also included three continuous phenotypes: 

generalized anxiety disorder (N = 175,163)14 was assessed based on the GAD-2 Score,15 a 2-item self-report 

assessment of the frequency of worrying and related physical sensations;15 the personality trait of neuroticism 

(N = 168,105);16 and another dispositional trait reflecting risk tolerance (RT; N = 315,894).17 We selected 13 

immune-related phenotypes, including allergic rhinitis (AR; N = 289,307),18 asthma (N = 385,822),18 atopic 

dermatitis (AD; N = 40,835),19 celiac disease (N = 15,283),20 Crohn’s disease (N = 40,266),21 hypothyroidism 

(HYPO; N = 244,890; primarily autoimmune-mediated in developed countries),18 primary biliary cholangitis 

(PBC; N = 13,239),22 primary sclerosing cholangitis (PSC; N = 14,890),23 rheumatoid arthritis (RA; N = 

58,284),24 systemic lupus erythematosus (SLE; N = 23,210),25 type 1 diabetes (T1D; N = 26,890),26 ulcerative 
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colitis (UC; N = 45,975),21 and vitiligo (N = 44,266).27 Data for multiple sclerosis could not be shared at the time 

of our search.  

We searched the literature using the following SCOPUS for articles identifying risk factors for 

psychiatric, allergic, autoimmune, and inflammatory disorders. We identified numerous risk factors that 

influence liability to both psychiatric and immune-related disorders, including age,28,29 sex,30,31 alcohol and 

tobacco consumption,32–37 cognitive processing,38 diet,39–42 exercise,43,44 early life stress or trauma,45–48, 

educational attainment,49 infection and microbial dysbiosis,50–53 perinatal factors,54–59 obesity,60,61 sleep,62,63 

socioeconomic status and neighborhood deprivation,64–67 social connectedness,68 and toxic exposures.69,70 

Additionally, our review identified considerable evidence that chronic stress leads to dysregulation of 

autonomic and neuroendocrine signaling mechanisms, which can have direct effects on liability to psychiatric 

and immune-related disorders, but are additionally proposed to exert effects through changes in function of 

certain immune cell populations, chronic low-grade inflammation, gastrointestinal dysbiosis, and changes in 

gastrointestinal and vascular permitaiblity.71–75 As such, we sought to include phenotypes that capture aspects 

of the human stress response. We included resting heart rate,18 heart rate reactivity and recovery during 

exercise,76 and heart rate variability,76 all of which are influenced by cardiac autonomic signaling. We sought 

well-powered GWA data relevant to these phenotypes and ultimately selected 15 phenotypes, including body 

mass index (BMI; N = 806,834)77, cigarettes per day (CPD; N = 263,954)78, cognitive processing (CP; N = 

257,828)79, alcoholic drinks per week (DPW; N = 537,349)78, educational attainment (EA; N = 766,345)79, the 

frequency of moderate-intensity exercise (EXER; N = 367,908)18, annual income (N = 332,594)18, sleep 

duration (N = 446,118)80, social deprivation (via the Townsend Index;81 SOCD; N = 420,035),82 and the 

frequency of social interactions (SOCI; N = 383,941).18 We also selected phenotypes that capture aspects of 

the human autonomic response to stress, including resting heart rate (HR; N = 361,411),18 HR increase during 

and recovery after exercise (HRI and HRR; N = 58,818),83 heart rate variability (HRV; N = 28,122).83 We 

sought to include cortisol-related phenotypes, 84,85 but this was precluded by low heritability (h2) Z-statistics and 

relatively small sample size. In order to restrict the scope of the study and preserve statistical power, we made 

the somewhat arbitrary decision to exclude a number of well-powered GWA studies capturing a variety of 

dietary consumption phenotypes,86,87 and we also did not examine studies of gut microbiome composition and 

related metabolites.88,89 The final list of phenotypes is provided in S. Table 1. 
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Genetic Correlations via LD-Score Regression 

We removed SNPs with MAF < 1% based on the 1000 Genomes Phase reference panel for European 

populations and we excluded the major histocompatibility region. We used LD-score regression (LDSC)90 with 

default settings and the HapMap3 reference panel to estimate SNP h2. 

Mendelian Randomization  

We briefly review the assumptions and limitations of MR: 1) The instrument SNPs are associated and 

have a causal effect on the exposure phenotype. For exposures with sparse genetic architecture, weak 

associations between instrument SNP and exposure are likely to bias toward null findings. For polygenic 

phenotypes, the inclusion of a larger set of lower confidence instrument SNPs could increase the likelihood of 

selecting instrument SNPs that have a pleiotropic mechanism relevant to both the exposure and outcome 

phenotype. One approach to cope with potential bias introduced by weak instruments and highly polygenic 

phenotypes is to perform MR with robust associated profile scores.91 2) The exposure phenotype should share 

no common cause with the outcome phenotype (i.e., there are no confounding factors). When this possibility is 

not excluded, multivariable MR can be used to reassess exposure-outcome relationships while adjusting for 

genetic associations of a third variable. 3) The instrument SNPs only exert effects on the outcome phenotype 

through the exposure phenotype, as opposed to shared biological mechanisms or mediation through some 

other phenotype. Outlier removal, heterogeneity testing, sensitivity analyses, and comparison across multiple 

MR methods can help evaluate this assumption. 4) Two-sample MR rests on the assumption of independent 

samples drawn from the same population and sample overlap can bias toward rejecting the null hypothesis, 

especially when there are weak instruments with overestimated effect sizes.  

For the present study, the TwoSampleMR (TSMR)92 package was used to harmonize data and 

threshold and clump instrument SNPs (p1 < 5x10-8, p2 < 0.001, window = 1x105). For phenotypes denoted with 

† in Table 1, this identified < 15 LD-independent SNPs, so we instead used a suggestive threshold of p < 1x10-

5. Bidirectional MR analyses were performed using inverse variance-weighted (IVW) method with significance 

set at FDR q < 0.05 and we verified findings with Egger-based models (reported in S. Tables). We performed 

single-SNP, heterogeneity, and leave-one-out (LOO) sensitivity analyses. We verified effects with the mr.raps 

package,91 which uses adjusted profile scores that are more robust to outliers in the genetic instrument and 
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estimates effects under assumptions of pervasive balanced pleiotropy, which can account for weak instrument 

bias. We preferentially report results after removal of potential outlier SNPs (|standardized residual| > 2.5 s.d. 

of the mean). We assessed the effects of adjustment for each of the third variables separately using the MVMR 

package with default settings.93 To check for possible sample overlap among the MR effects, we examined 

LDSC covariance intercepts. For those with significant positive values, we repeated bidirectional IVW analyses 

using the MRlap package (default settings) to adjust for additional bias introduced by sample overlap.94 

 

Characterization of Loci 

For six phenotype pairs with robust MR effects (i.e., FDR q < 0.05 and consistent across sensitivity and 

MVMR-adjusted analyses), a two-sided meta-analysis was performed using the ASSETT package.95 Because 

we encountered an unresolvable error when combining continuous and dichotomous phenotypes, the effect of 

RT on AR was not assessed. SNPs showing significant effects for only one of the phenotypes were removed 

from the analysis. Subsets of SNPs with concordant and discordant effects were separately advanced for 

enrichment analysis using FUMA’s SNP2GENE function. The concordant subsets included information about 

the direction of the effects, while the latter subsets contained only the overall model p-values. FUMA analysis 

was performed with clumping setting of r2 < 0.1, p-value thresholds corresponding to the threshold used to 

define the MR instrument (i.e., 5x10-8 and in some cases 1x10-5) and the second threshold of 0.05, with the 

window size of 250kB, using the default settings for both positional and eQTL-based gene mapping. For cell-

type analysis, we included available human single-cell RNA-seq reference datasets.96–105 For cell types 

surviving multiple test correction (family-wise FDR q < 0.05), we examined the pair-wise conditional analyses 

within- (i.e. Step 2) and across-reference datasets (i.e. Step 3) to prioritize among potentially correlated cell 

types. High proportional significance (PS; i.e., > 0.8) indicates complete independence, while lower values 

suggest partial or complete dependence on other correlated cell types. In S. Figure 5B, the numeral 2 denotes 

a cell type with > 0.8 in Step 2, while 2’ denotes the cell type with the highest PS despite being < 0.8. A similar 

relationship applies between numerals 3 and 3’ with respect to Step 3 conditioning PS.  

eDiscussion 

The main findings of our study supported modest positive effects of psychiatric on immune liability, 

where the relevant loci were primarily enriched with brain tissues and cell types, but also contained signals for 
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peripheral leukocytes and lymphoid tissue. These loci were also enriched in signal for various behavioral traits, 

immune cell counts, and biological terms including cell adhesion, calcium-binding, and response to viral 

infection. Below, we provide a literature search of individual genes implicating these biological terms. When we 

considered the six robust positive MR effects (i.e., FDR q < 0.05 and consistent across sensitivity and MVMR-

adjusted analyses), 54 psychiatric instrument loci were independent of third variable effects. These were 

significantly enriched (FDR q < 0.05) for several annotations, including cellular adhesion (comprised of genes 

ATXN1, ADD3, and the protocadherin-α family within a locus in 5q31.3; S. Table 5). 

For ATXN1, the relevant protein participates in complex interactions to regulate transcription and 

splicing, though its exact roles are not well understood. Our review identified considerable mechanistic 

evidence linking polyglutamine expansion mutations in this gene (and others) with various neurodegenerative 

disorders, including spinocerebellar ataxias and amyotrophic lateralsclerosis,106–108 but its less clear how it may 

relate to the penetrance of autosomal dominant Alzheimer’s phenotypes.109 This gene was identified in 

bioinformatic analyses based on enrichmed protein-protein interactions with 19 candidate genes for SZ.110 

Additionally, ATXN1 appears to have relevance to immune-related diseases, as loss of function is associated 

with more severe disease in a mouse model of multiple sclerosis, and this was mediated by effects on a 

potentially pathogenic B-cell subpopulation.111,112 It plays a role in extracellular matrix remolding during lung 

development and is down-regulated in a model of asthma.113,114 Additionally, it was identified in prior 

pharmacogenetic GWAS of IBD treatment response.115 GWAS studies support associations of ATXN1 with 

cognitive function, intelligence, and educational attainment.116,117  

ADD3 encodes γ-adducins, which are ubiquitously expressed, heteromeric proteins that participate in 

membrane-associated spectrin-actin cytoskeletal networks and interact with calmodulin.118 Homozygous loss-

of-function mutations within a consanguineous family were associated with inherited cerebral palsy.112 Loss-of-

function mutations have also been associated with renal podocyte dysfunction and related chronic kidney 

disease.119 GWAS data suggest this gene may be relatively specific to bipolar disorder120 and it was identified 

in an earlier study comparing bipolar I and II.121 There is literature linking γ-adducins to electrophysiological 

plasticity induced by environmental stimuli (e.g., effects of cocaine exposure on striatal neurons) and learning 

behavior (e.g., Morris water maze).122,123 Another line of research associated gamma-adducin expression with 

blood pressure homeostasis and with cerebrovascular and blood-brain-barrier dysfunction.119,124 A GWAS 
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study in East Asian ancestry identified ADD3 in association with neonatal biliary atresia.125 ADD3 was identified 

among differentially expressed genes that discriminated intestinal biopsies from Celiac-affected individuals and 

subsets of first degree relatives that lacked serological evidence of disease activity.126 Furthermore, ADD3 was 

down-regulated in a mouse model of spontaneous colitis caused by macrophage-restricted knockout of the 

IL10RA gene.127 ADD3 was also identified among CD4+ T cell genes whose expression discriminated high- 

and low-atopy subtypes of asthma and predicted differences in eosinophil counts and IgE levels.128  

Protocadherins are cell adhesion molecules that undergo alternative splicing and combinatorial 

heteromerization to allow specificity of cell recognition, though their exact roles in the developing and adult 

CNS are not well understood yet.129–131 Multiple subtypes of protocadherins have been identified, and members 

of the clustered α-protocadherin family have been associated with psychiatric and neurodevelopmental 

phenotypes.130 Deletion of this family was associated with reduced post-injury axon outgrowth, myelination, 

and expression of BDNF in rodent model.132 Deletion of this family also impacted cortical neuron migration133 

and serotonergic fiber development and maturation.134,135 One study found α-protocadherins were upregulated 

during stimulation of Th2 lymphocytes.136 We also found relevant associations with other types of 

protocadherins. PCDH1 plays a well-characterized role in asthma pathophysiology and is important in the 

response to glucocorticioids.137,138 Roles in GI epithelial structure and function have been observed for 

members of the other protocadherin families.139  

We also saw enrichment for genes involved in calcium-binding (including LTBP2, PLCB2, and MATN4). 

LTBP2 encodes a latent transforming growth factor (TGF) beta binding protein, which is found in association 

with fibrillin in the extracellular matrix and thought to help limit the availability of TGF-β.140 TGF-β plays a role in 

regulating inflammation and promoting airway and extracellular matrix remodeling in asthma.145 Both TGF-β 

and LTBP2 genes play roles in inflammation-induced fibrosis in other organs, including the intestines.146,147  

Mutations of LTBP2 are associated with congenital ophthalmic disorders,141142 but there is less evidence linking 

it with psychiatric phenotypes. Research in pulmonary development identifies roles for several members of the 

LTBP gene family.143 Secreted protein product of LTBP2 was identified as a biomarker of idiopathic pulmonary 

fibrosis.144 Interestingly, LTBP2 was identified among genes differentially expressed after antibiotic treatment 

designed to alter the gut microbiome.148 Research in oncology identifies a role for LTBP2 in tumor/metastasis 

suppression for several malignancies.149,150 PLCB2 encodes phospholipase C beta-2, an enzyme that 
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participates in G-protein-coupled signaling pathways relevant to taste receptors and regulation of platelet 

response.151,152 This gene was identified in secondary analyses of SZ GWAS data.153 It was also found among 

down-regulated genes in the amygdala of rats subjected to chronic stress.154 This gene also participates in 

pathways that influence differentiation, activation, and chemotaxis of multiple immune cells.155,156 One study 

identified a role in negative regulation of inflammatory signaling in a model of viral infection.157 It was also 

among over-expressed genes in childhood asthma.158 MATN4 encodes matrilin-4, a member of the von 

Willebrand factor A domain-containing protein family, which are involved in formation of filamentous 

extracellular matrix-associated in various tissues. Mutations in this gene have been found in neurogenetic 

syndromes within consanguineous families.159 The gene was also identified among those differentially 

methylated in children in relation to history of early life adversity and adults in relation to air pollution.160,161 

Matrilin-4 has been shown experimentally to regulate stress-induced hematopoietic stem cell proliferation.162 

MATN4 was also identified among hundreds of differentially expressed genes identified in IBD.  

We also observed enrichment among genes downregulated in a fibroblast model of human 

cytomegalovirus infection, including AKT3, ADD3, CHMP2A, TMCO6, REV3L, TRAF3IP2, and TNKS. AKT3 

encodes a serine/threonine kinase that regulates signaling in response to growth factors like platelet-derived 

growth factor and insulin-like growth factor 1. In humans, mutations in AKT3 are associated with profound 

neurodevelopmental phenotypes163 and experimental models also suggest roles in behavioral traits.164–167 In T-

regulatory cells, AKT3 inhibits interferon-γ, and loss of this function may promote loss of this cell population’s 

suppressive function.168 Loss of function is also associated with more severe phenotypes in models of multiple 

sclerosis.169,170 AKT3 was investigated as a potential susceptibility gene in an association analysis between 

Danish and Genetics of Asthma International Network families, but associations were non-significant.171  

CHMP2A encodes a protein that functions within the endosomal sorting systems and within exosomes. 

Loss of function mutations are thought to contribute to proteostatic stress that causes neurodegenerative 

phenotypes.172 TMCO6 is a transmembrane protein whose function is not well characterized, but loss-of-

function mutations are associated with a subtype of mitochondrial complex I deficiency. Within bipolar-affected 

and unaffected individuals, this gene was near a locus associated with soluble CD14 levels (a non-specific 

marker of monocyte activation) within cerebrospinal fluid samples.173  
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REV3L encodes a catalytic subunit of DNA polymerase zeta, which is found in the mitochondria and 

plays a role in the response to DNA damage. Numerous studies have examined its role in malignancies,174,175 

including cervical cancer,174 chemoresistant squamous cell carcinoma of the head and neck,176,177 and non-

small cell lung cancer.178 Defects in this gene are associated with genotoxic stress and interferon activation,179 

and are disruptive to mammalian embryonic development.180–182 SNPs in intergenic regions including REV3L 

and TRAF3IP2 were associated with rheumatoid arthritis in a large-scale study of black South Africans.183 

TRAF3IP2 encodes an adaptor protein that plays a central role in innate immunity response to 

pathogens, inflammation, and stress via regulating responses of the Rel/NF-kappaB transcription factor family 

members in their response to cytokines.184 TRAF3IP2 facilitates pro-inflammatory IL-17 signaling,185–187 which 

has been implicated in endothelial dysfunction and  cardiovascular disease,188–191 as well as obesity-related 

vascular insulin resistance.192 GWA studies have identified a locus in TRAF3IP2 with common variants 

affecting susceptibility to psoriasis and psoriatic arthritis,194195 as well as an association with cutaneous 

manifestations of inflammatory bowel disease,196 and susceptibility to mucocutaneous adverse reactions 

among patients treated with Nevirapine.197 TNKS encodes a poly-ADP-ribosyltransferase involved in several 

processes, including activation of Wnt/beta-catenin signaling pathway,198,199 as well as in regulating telomere 

length200 and vesicle trafficking.201 It’s been studied for its role in malignancy,202,203 herpesvirus infection,204,205 

and obesity.206  

Among the 54 loci involved in six robust psychiatric-immune MR effects (described in main text and S. 

Table 4), we observed nominal enrichment (uncorrected p < 0.05) for multiple immunologic signatures (e.g., 

genes down-regulated by IFN-gamma in microglia, p = 1.3x10-4, targets of several transcription factors (e.g., 

ELK1 p = 1.5x10-4 ; E2A p = 0.01; STAT1 p = 0.01), and transcripts upregulated by suppression of JAK2 (p = 

0.01; S. Table 5). Overall, these findings support the idea that genes with pleiotropic effects potentially relevant 

to both psychiatric and immune-related disorders were identified in association with some of the loci 

contributing to significant MR effects. 
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Supplementary Figures 

eFigure 1. Flow Chart of the Study Design and Analysis Plan 

 

S. Figure 1 Legend. Study design and analysis plan with miniaturized depictions of the corresponding Figures 
and S. Figures to orient and guide readers. The top-left panel depicts literature and databases searched for 
relevant GWAS summary statistics. The mid-left panel depicts LD-score regression (LDSC) analysis to 
estimate SNP heritability Z-score, resulting in a final set of phenotypes. The bottom-left panel depicts pairwise 
evaluation of genetic correlations among psychiatric, immune-related, and third variable phenotypes using 
LDSC. A set of 44 correlated psychiatric-immune pairs (FDR q < 0.05) were investigated for bidirectional 
Mendelian randomization (MR) effects with sensitivity analyses. Multivariable MR (MVMR) was used to adjust 
for effects of additional phenotypes (depicted in the bottom-center panel). Significant psychiatric instrument loci 
with positive effects on immune outcomes were interrogated for enriched genes, tissues, and gene-sets using 
FUMA’s GENE2FUNCTION analysis (middle-center panel). For phenotype pairs demonstrating robust MR 
effects, two-sided GWAS meta-analysis identified subsets of SNPs with concordant and discordant effects 
(bottom right panel), and these SNP subsets were characterized for enriched genes tissues, cell-types, gene-
sets, and genes was performed with FUMA SNP2GENE function (middle-center panel). 
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eFigure 2. Genetic Correlations Among Psychiatric Disorders and Immune-Related Traits and Other Risk 
Factors  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genetic correlation coefficients (text) and z-score (color) between psychiatric (X-axis), immune-related (Y-
axis), and third variable phenotypes (both axes). Increasing intensity of red color indicates positive correlations 
and increasing intensity of blue indicates negative correlations. Correlations reaching uncorrected p < 0.05 are 
denoted with *, while those reaching false discovery rate q < 0.05 (reflecting correction for a total 587 unique 
tests) are denoted with **. Abbreviations include allergic rhinitis (AR), anorexia nervosa (AN), atopic dermatitis 
(AD), attention-deficit hyperactivity disorder (ADHD), body mass index (BMI), cannabis use disorder (CUD), 
cigarettes per day (CPD), cognitive processing (CP), alcoholic drinks per week (DPW), educational attainment 
(EA), frequency of moderate intensity exercise (EXER), heart rate (HR), heart rate increase during exercise 
(HRI), heart rate recovery after exercise (HRR), heart rate variability (HRV), hypothyroidism (HYPO), 
obsessive compulsive disorder (OCD), post-traumatic stress disorder (PTSD), primary biliary cirrhosis (PBC), 
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primary sclerosing cholangitis (PSC), problematic alcohol use (PAU), rheumatoid arthritis (RA), risk-tolerance 
(RT), sleep duration (SLEEP), social deprivation via the Townsend Index (SOCD), social interaction frequency 
(SOCI), schizophrenia (SZ), systemic lupus erythematosus (SLE), Tourette’s syndrome (TS), type 1 diabetes 
(T1D), ulcerative colitis (UC). Full results are also provided in S. Table 2. 
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eFigure 3. MVMR Effects After Adjustment for Other Risk Factors  

 

Multivariable Mendelian randomization results, depicting effect sizes with 95% confidence intervals with and 
without adjustment for the additional phenotypes. Full results of these analyses are provided in S. Table 3. 
Abbreviations include body mass index (BMI), cognitive processing (CP), heart rate variability (HRV), 
hypothyroidism (HYPO), major depressive disorder (MDD), schizophrenia (SZ), ulcerative colitis (UC).
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eFigure 4. A through F. Miami Plots Depicting Concordant and Discordant Effects Identified via 2-Sided Meta-Analysis of Psychiatric-Immune 
Phenotype Pairs  
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4C.  

 

 

 

 

  



© 2022 America Medical Association. All rights reserved. 
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S. Figures 4 Legend. Miami plots depicting the results of ASSET two-sided meta-analysis of psychiatric-immune phenotype pairs (limited to case-
control data only), such that the top of the plot reflects SNPs with significantly concordant effect for both phenotypes, and the bottom plot reflects SNPs 
with significantly discordant effect for both phenotypes. Y-axes reflect the magnitude of the -log10(p-value) and all plots have the same y-axis limits to 
facilitate comparison. The red line depicts the threshold for genome-wide significance (5x10-8). Details for each of the LD-independent genome-wide 
loci are provided in S. Table 6. 
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eFigure 5. A & B. Tissue and Cell Type Enrichment Analyses of Loci With Concordant and 
Discordant Effects Within the Psychiatric-Immune Associations Identified 
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Figure 5 Legend. Tissue and cell type enrichment results performed on concordant (Conc.) and 
discordant (Disc.) SNP subsets generated with respect to psychiatric-immune phenotype pairs. 
Color intensity reflects -log10(p) of the enrichment p-value. P-values were corrected by applying 
the false discover rate (FDR) multiple testing correction per database and significant findings 
(FDR q < 0.05) are denoted with *. Differences in enrichment effects between respective 
concordant and discordant effects based on two-tailed Z-test are indicated using “Z” to denote 
the more significant enrichment. We display all terms with significant enrichment among at least 
1 concordant SNP subsets, will full results in S. Table 7. Panel A depicts tissue-level 
enrichment analyses conducted using eQTL data from the GTEXv8 database. Panel B depicts 
cell type enrichment analyses using all human datasets provided within the FUMA interface. 
Numerical symbols within the heatmap denote the results of conditioned significance analyses; 
cell types for which Step 2 (i.e., within reference data set conditioning) average proportional 
significance [PS] > 0.8 are denoted with 2, whereas 2’ denotes the cell type with the highest 
average Step 2 PS when none reached the threshold of 0.8. Similarly, 3 and 3’ indicate 
annotations with an average PS > 0.8 and the highest average PS when none reached this 
threshold. Full names of gene-sets can be searched within the Molecular Signature Database 
for detailed descriptions. Abbreviations include: ACC (anterior cingulate cortex), Brodmann’s 
area (BA), the PGC cross-disorder phenotype (PGC-CD), developmental (Dev.), excitatory (Ex), 
gestational week (GW), hemisphere (Hemi), inhibitory (Inh), lateral geniculate nucleus (LGN), 
major depressive disorder (MDD), middle temporal gyrus (MTG), neuroepithelial cells (NEP), 
oligodendrocyte precursor cells (OPC), prefrontal cortex (PFC), schizophrenia (SZ), and 
ulcerative colitis (UC). 

 

 


