Supplementary Information for

Detecting lysosomal storage disorders by glycomic profiling using liquid chromatography mass spectrometry

Justin Mak 1 and Tina M. Cowan 1,2

¹ Clinical Biochemical Genetics Laboratory, Stanford Health Care

² Department of Pathology, Stanford University Medical Center

Table of Contents

Figure S1. Resolution of glucosylsphingosine from galactosylsphingosine	2
Figure S2. Chromatographic resolution of hex4 isomers that differentiate MOGS from Pompe disease	3
Figure S3. MPS biomarker spectra	4
Figure S4. Chromatographic resolution of two ion features both annotated as hexNAc-s that can differentia MPS 4a from MPS 6	ate . 45
Figure S5. Detailed Z-scores for each sample	.46
Figure S6. Limits of detection for glycolipids	.47
Table S1. Detailed methods for the LC-MS analyses	.48

Figure S1. Resolution of glucosylsphingosine from galactosylsphingosine.

ERNDIM Special Assays in Serum (SAS) samples were acquired using the targeted LC-MS/MS method. Representative extracted ion chromatograms show baseline resolution of glucosylsphingosine (1.88 min) from galactosylsphingosine-d5 (2.01 min). ERNDIM samples do not contain galactosylsphingosine. Resolution of unlabeled glucosylsphingosine and galactosylsphingosine is shown in Figure 1a.

Figure S2. Chromatographic resolution of hex4 isomers that differentiate MOGS from Pompe disease.

Urines from patients with Mannosyl-oligosaccharide Glucosidase (MOGS) 1 deficiency and Pompe disease were acquired using the targeted LC-MS/MS method. Representative extracted ion chromatograms show baseline resolution of a compound annotated as glc3-man in MOGS (4.35 min) from glc4 in Pompe disease (4.6 min). Maltotetraose (authentic standard; 4.5 min) is also included to visualize chromatographic resolution.

Figure S3. MPS biomarker spectra.

To validate spectra generated by Data Independent Acquisition (DIA) for each of the twenty MPS biomarkers, select urine samples were re-acquired on the Waters Vion using Data Dependent Acquisition (DDA) with ion-mobility enabled. For DDA, total MS cycle times ranged from 0.5-1 second, with each DDA scan set to 0.1-0.2 seconds. An MS/MS inclusion list containing each MPS biomarker's m/z and retention time was created and set to preferential or dedicated MS/MS acquisition. Various capillary voltages, cone voltages, and collision energy ramps were used to generate ideal DDA data. Representative DDA data is shown. DIA scans are included for comparison. Except where indicated, negative ESI was used. The Waters Unifi *in-silico* fragmentation algorithm was used to make structural assignments (indicated by blue dots or chemical structures above ions).

Biomarker number: 1

Annotation: hexNAc-s-UA-hexNAc-s-UA; Formula: C28H44N2O29S2

Item name: 2020-11-12-sample009-DDA-MPS1-001 Channel name: 2: +467.0650 (37.4 PPM) : DT=3.62 to 3.80 ms : DDA HD TOF MS (60-1200) 5V ESI- : Integrated : Smoothed

Item name: 2020-11-12-sample009-DDA-MP... Channel name: MS precursor : RT=2.9939 min... Item description:

2.83e4

Left Shoulder-DIA

Right Shoulder-DIA

Biomarker number: 2

Annotation: UA-s-hexNAc-UA; Formula: C20H31NO21S

Item name: 2020-11-10-sample059-mps1-dda-002 Channel name: 2: +652.1001 (37.0 PPM) : DT=6.19 to 6.51 ms : DDA HD TOF MS (60-1600) 5V ESI- : Integrated : Smoothed

Biomarker number: 3

Annotation: hexN-s-UA; Formula: C12H21NO14S

Biomarker number: 4

Annotation: hexN-s; Formula: C6H13NO8S

Clean DIA fragmentation spectra not available due to multiple co-eluting compounds with similar drift times.

Biomarker number: 5

Annotation: hexNAc-s-UA-hexNAc-UA; Formula: C28H44O26N2S

<u>DIA</u>

Biomarker number: 6

Annotation: no annotation

Biomarker number: 7

Annotation: hex-s-hexNAc-s; Formula: C14H25NO17S2

Biomarker number: 8

Annotation: neuAC-hex-hexNAc-s; Formula: C25H42N2O22S

Biomarker number: 9

Annotation: hexNAc-s; Formula: C8H15NO9S

Biomarker number: 10

Annotation: hex3-hexNAc2-s; Formula: C34H58N2O29S

<u>Neg ESI</u>

Pos ESI

Uninformative DIA fragmentation spectra due to insufficient collision energy. Higher collision energies were used for the DDA acquisition.

Biomarker number: 11

Annotation: hexNAc-s-UA-hexNAc-s; Formula: C22H36N2O23S2

MPS 4 sample

MPS 6 sample

Biomarker number: 12

Annotation: hex3-hexNAc2; Formula: C34H58N2O26

Pos ESI

<u>DIA</u>

Biomarker number: 13

Annotation: hex4-hexNAc2; Formula: C40H68N2O31

Pos ESI

Uninformative DIA fragmentation spectra due to insufficient collision energy. Higher collision energies were used for the DDA acquisition.

Biomarker number: 14

Annotation: hex5-hexNAc3; Formula: C54H91N3O41

Pos ESI

Uninformative DIA fragmentation spectra due to insufficient collision energy. Higher collision energies were used for the DDA acquisition.

Biomarker number: 15

Annotation: hexNAc-s; Formula: C8H15NO9S

Biomarker number: 16

Annotation: hexNAc-disulfate; Formula: C8H15NO12S2

DIA

ltem name: 2020-11-10-sample072 Channel name: Low energy : Time 1.3769 +/- 0.0258 minutes : Drift Times: 1.49 +/- 0.21, 1.49 +/- 0.21, 4.07 +/- 0... Item description:

Biomarker number: 17

Annotation: hexNAc-s-UA; Formula: C14H23NO15S

Left peak

<u>Right peak</u> (note the different fragmentation pattern)

Biomarker number: 18

Annotation: hexNAc-UA; Formula: C14H23NO12

Biomarker number: 19

Annotation: hexNAc-UA-hexNAc; Formula: C22H36N2O17

Biomarker number: 20

Annotation: neuAC-hex3-hexNAc2; Formula: C45H75N3O34

Pos ESI

Figure S4. Chromatographic resolution of two ion features both annotated as hexNAc-s that can differentiate MPS 4a from MPS 6.

Representative extracted ion chromatograms showing retention time differences between two ion features annotated as hexNAc-s (300.0384 m/z; ESI-) for A) MPS 4a and B) MPS 6. Urine samples were analyzed on the Vion using DDA with ion-mobility enabled. Corresponding spectra are included. There were no appreciable differences in drift time. To control for retention time shifts due to mobile phase or batch effects, the samples were acquired consecutively without system changes.

A) MPS 4a urine

Drift Time = 3.45-3.62 ms

Figure S5. Detailed Z-scores for each sample.

Z-scores are overlayed onto the heatmap given in Figure 3.

Figure S6. Limits of detection for glycolipids.

The limits of detection for glycolipids were assessed using ERNDIM SAS samples. Extracted ion chromatograms of lyso-SM, lyso-Gb3, and glucosylsphingosine are shown. For lyso-SM and glucosylsphingosine, the lowest concentrations in the survey year were detected. For lyso-Gb3, the second lowest concentration was detected. Both the quantifier ion (top trace) and the qualifier ion (bottom trace) were detected for lyso-SM and glucosylsphingosine. Only the quantifier ion was detected for lyso-Gb3.

B) Lyso-Gb3 (12.5 nmol/L); peak height = 12,240 counts

C) Glucosylsphingosine (0.6 nmol/L); peak height = 9,091 counts

Table S1. Detailed methods for the LC-MS analyses.

Detailed methods for A) the Vion ion-mobility quadrupole time of flight MS (IMS-qTOF MS) and B) the TQ-S Micro tandem quadrupole MS.

- A) <u>Vion</u>: Untargeted analyses were performed with a Waters Acquity H-Class UPLC system coupled to a Waters Vion ion-mobility quadrupole time of flight MS (IMS-qTOF MS). Positive and negative electrospray ionization (ESI) was used in sensitivity mode. Profile-mode data was acquired from 60-1600 m/z over a scan time of 0.2 seconds with Data Independent Acquisition (DIA) and ion mobility (High Definition MS^e). Soft transmission and a nitrogen-filled collision cell were used. The capillary voltage was 2.5 kV, the cone voltage was 35 V, the source temperature was 120°C, the desolvation gas temperature was 500°C, the cone gas flow was 50 L/h, and the nebulizer gas flow was 1000 L/h, and the collision energy ramp was set to 25-65 V. Leucine-enkephalin was used for lock-mass correction. Before every batch, CCS calibration was performed according to manufacturer directions. Waters Unifi 1.9.4 was used to control the system and analyze data.
- B) <u>TQ-S Micro</u>: Targeted analyses were performed on a Waters Acquity H-Class UPLC system coupled to a Waters TQ-S Micro tandem quadrupole MS. Positive and negative ESI was used with rapid polarity switching. Multiple reaction monitoring (MRM) was used at unit resolution. The capillary voltage was 2.5 kV, the source temperature was 150°C, the desolvation gas temperature was 425°C, the cone gas flow was 50 L/h, and the nebulizer gas flow was 1000 L/h. Waters MassLynx 4.2 was used to control the system and TargetLynx XS was used for data analysis. The following MRM table was used for the acquisition method:

	Compound	Polarity	Q1	Q3	Cone (V)	Collision (eV)	RT start, min	RT end, min
1	NAGA galNAc-O-Ser M+H+	Pos	309.13	126.05	10	15	2.3	5
2	NAGA galNAc-O-Ser M+H+	Pos	309.13	186.07	10	15	2.3	5
3	NAGA GalNAc-O-Thr M+H+	Pos	323.14	126.05	10	15	2.3	5
4	NAGA GalNAc-O-Thr M+H+	Pos	323.14	186.08	10	15	2.3	5
5	Alpha-mann hex2-hexNAc M+H+	Pos	546.2	138.06	40	40	2.3	5
6	Alpha-mann hex2-hexNAc M+H+	Pos	546.2	204.09	40	20	2.3	5
7	GM2 hex2-hexNAc2 M+H+	Pos	749.28	204.09	30	30	2.3	5
8	GM2 hex2-hexNAc2 M+H+	Pos	749.28	366.3	30	20	2.3	5
9	Fabry Lyso-Gb3 d18:1 M+H+	Pos	786.47	264.33	31	32	2.3	5
10	Fabry Lyso-Gb3 d18:1 M+H+	Pos	786.47	282.36	31	34	2.3	5
11	Aspartyl NeuAC-hex-hexNAc-Asn M+H+	Pos	789.29	274.09	50	30	2.3	5
12	Aspartyl NeuAC-hex-hexNAc-Asn M+H+	Pos	789.29	336.14	50	15	2.3	5
13	Aspartyl NeuAC-hex2-hexNAc2-Asn M+H+	Pos	1154.42	204.09	50	50	2.3	5
14	Aspartyl NeuAC-hex2-hexNAc2-Asn M+H+	Pos	1154.42	366.14	50	30	2.3	5
15	Aspartyl NeuAC-hex2-hexNAc2-Asn M+H+	Pos	1154.42	657.23	50	20	2.3	5
16	Sialidosis neuAC-hex3-hexNAc2 M+H+	Pos	1202.42	204.08	20	50	2.3	5
17	Sialidosis neuAC-hex3-hexNAc2 M+H+	Pos	1202.42	366.14	20	40	2.3	5

	Compound	Polarity	Q1	Q3	Cone (V)	Collision (eV)	RT start, min	RT end, min
18	Aspartyl glcNAc-Asn M+H+	Pos	336.14	126.1	30	20	2.9	5.8
19	Aspartyl glcNAc-Asn M+H+	Pos	336.14	133.1	30	10	2.9	5.8
20	Fuco fuc-hexNAc-Asn M+H+	Pos	482.2	126.05	25	35	2.9	5.8
21	Fuco fuc-hexNAc-Asn M+H+	Pos	482.2	133.06	20	20	2.9	5.8
22	beta-mannosidosis man-glcNAc M+H+	Pos	384.15	186.08	20	15	1.8	3.8
23	beta-mannosidosis man-glcNAc M+H+	Pos	384.15	204.09	20	15	1.8	3.8
24	Niemann-Pick AB Lyso-sphingomyelin M+H+	Pos	465.37	124.98	35	52	1.8	3.8
25	Niemann-Pick AB Lyso-sphingomyelin M+H+	Pos	465.37	184.09	35	20	1.8	3.8
26	glucosyl and galactosyl-sphingosine M+H+	Pos	462.4	282.37	38	22	1.1	3
27	glucosyl and galactosyl-sphingosine M+H+	Pos	462.4	444.4	24	12	1.1	3
28	psychosine d5 M+H+	Pos	467.44	287.38	38	22	1.1	3
29	psychosine d5 M+H+	Pos	467.44	449.44	38	14	1.1	3
30	glucosylsphingosine 13c6 M+H+	Pos	468.4	282.3	30	18	1.1	3
31	glucosylsphingosine 13c6 M+H+	Pos	468.4	450.37	30	14	1.1	3
32	Fabry Ceramide Trihexoside d18:1/16:0 M+H+	Pos	1024.67	520.5	30	30	1.1	3
33	Fabry Ceramide Trihexoside d18:1/16:0 M+H+	Pos	1024.67	844.62	30	30	1.1	3
34	Fabry Ceramide Trihexoside d18:1/22:0 M+H+	Pos	1108.77	604.6	30	30	1.1	3
35	Alpha-mann hex3-hexNAc M+H+	Pos	708.26	204.09	40	30	3.8	6
36	Alpha-mann hex3-hexNAc M+H+	Pos	708.26	222.1	40	20	3.8	6
37	Aspartyl hex2-hexNAc2-asn M+H+	Pos	863.33	204.09	40	20	3.8	6
38	Aspartyl hex2-hexNAc2-asn M+H+	Pos	863.33	366.14	40	30	3.8	6
39	Alpha-mann hex4-hexNAc M+H+	Pos	870.31	204.09	40	30	3.8	6
40	Alpha-mann hex4-hexNAc M+H+	Pos	870.31	222.1	40	20	3.8	6
41	GM1 hex3-hexNAc2 M+H+	Pos	911.33	138.1	44	76	3.8	6
42	GM1 hex3-hexNAc2 M+H+	Pos	911.33	366.14	44	35	3.8	6
43	GM1 hex3-hexNAc2 M+Na+	Pos	933.31	388.12	45	60	3.8	6
44	Fuco fuc-hexNAc2-hex3 M+H+	Pos	1057.39	366.17	25	35	3.8	6
45	Fuco fuc-hexNAc2-hex3 M+H+	Pos	1057.39	512.59	25	15	3.8	6
46	GM1 hex4-hexNAc2 M+H+	Pos	1073.38	204.08	50	45	3.8	6
47	GM1 hex4-hexNAc2 M+H+	Pos	1073.38	366.14	50	35	3.8	6
48	GM1 hex4-hexNAc2 M+Na+	Pos	1095.36	388.12	50	80	3.8	6
49	GM1 hex4-hexNAc2 M+Na+	Pos	1095.36	550.17	50	80	3.8	6
50	GM2 hex3-hexNAc3 M+H+	Pos	1114.42	204.09	80	45	3.8	6
51	GM2 hex3-hexNAc3 M+H+	Pos	1114.42	911.34	30	15	3.8	6
52	GM2 hex3-hexNAc4 M+H+	Pos	1317.49	204.09	80	50	3.8	6
53	GM2 hex3-hexNAc4 M+H+	Pos	1317.49	1114.42	30	20	3.8	6

	Compound	Polarity	Q1	Q3	Cone (V)	Collision (eV)	RT start, min	RT end, min
54	GM1 hex5-hexNAc3 M+H+	Pos	1438.52	204.08	100	50	3.8	6
55	GM1 hex5-hexNAc3 M+H+	Pos	1438.52	366.14	100	35	3.8	6
56	Hexose M-H	Neg	179	58.9	32	16	0.4	2.5
57	Hexose M-H	Neg	179	88.93	32	6	0.4	2.5
58	Galactitol M-H	Neg	181.05	58.97	5	20	0.4	2.5
59	Galactitol M-H	Neg	181.05	100.91	5	14	0.4	2.5
60	MPS 6 hexNAc-4-6-disulfate M-2H	Neg	189.49	96.96	10	10	0.4	2.5
61	MPS 6 hexNAc-4-6-disulfate M-2H	Neg	189.49	138.97	10	10	0.4	2.5
62	MPS 3 hexN-sulfate M-H	Neg	258.02	79.95	30	30	0.4	2.5
63	MPS 3 hexN-sulfate M-H	Neg	258.02	119.05	30	30	0.4	2.5
64	MPS 3 hexN-sulfate M-H	Neg	258.02	137.98	30	25	0.4	2.5
65	MPS 4 hex-S-hexNAc-S M-2H	Neg	270.51	96.96	40	20	0.4	2.5
66	MPS 4 hex-S-hexNAc-S M-2H	Neg	270.51	259.01	40	10	0.4	2.5
67	hexNAc-x-sulfate M-H	Neg	300.03	96.96	10	20	0.4	2.5
68	hexNAc-x-sulfate M-H	Neg	300.03	138.98	10	20	0.4	2.5
69	MPS 6 hexNAc-4-6-disulfate M-H	Neg	379.99	300.03	10	10	0.4	2.5
70	Sialic acid M-H	Neg	308.1	87.01	30	16	0.8	3.6
71	Sialic acid M-H	Neg	308.1	170.05	30	12	0.8	3.6
72	MPS 7 UA-hexNAc-S M-H	Neg	476.07	96.96	40	40	0.8	3.6
73	MPS 7 UA-hexNAc-S M-H	Neg	476.07	193.03	40	20	0.8	3.6
74	MPS 7 UA-hexNAc-S M-H	Neg	476.07	254.98	40	20	0.8	3.6
75	MPS 7 UA-hexNAc-S M-H	Neg	476.07	300.03	40	20	0.8	3.6
76	Aspartyl glcNAc-Asn M-H	Neg	334.13	113.04	40	15	2.2	6
77	Aspartyl glcNAc-Asn M-H	Neg	334.13	196.07	40	15	2.2	6
78	Aspartyl hex-glcNAc-Asn M-H	Neg	496.18	196.07	25	30	2.2	6
79	Aspartyl hex-glcNAc-Asn M-H	Neg	496.18	214.08	25	20	2.2	6
80	hexose3 M-H	Neg	503.16	88.98	35	48	2.2	6
81	hexose3 M-H	Neg	503.16	161.04	35	20	2.2	6
82	hexose3 M-H	Neg	503.16	179.07	35	30	2.2	6
83	MOGS Pompe hexose4 M-H	Neg	665.21	88.98	44	48	2.2	6
84	MOGS Pompe hexose4 M-H	Neg	665.21	161.04	44	20	2.2	6
85	MOGS Pompe hexose4 M-H	Neg	665.21	179.07	44	30	2.2	6
86	hexose5 M-H	Neg	827.27	88.98	45	48	2.2	6
87	hexose5 M-H	Neg	827.27	161.04	45	20	2.2	6
88	hexose5 M-H	Neg	827.27	179.07	45	30	2.2	6
89	MPS 4 and 6 hexNAc-S-UA-hexNAc-S M- 2H	Neg	379.04	96.96	40	30	1.2	3
90	MPS 4 and 6 hexNAc-S-UA-hexNAc-S M- 2H	Neg	379.04	198.99	40	20	1.2	3
91	MPS 4 and 6 hexNAc-S-UA-hexNAc-S M- 2H	Neg	379.04	300.03	40	10	1.2	3

	Compound	Polarity	Q1	Q3	Cone (V)	Collision (eV)	RT start, min	RT end, min
92	MPS 7 UA-hexNAc M-H	Neg	396.11	113.02	50	10	1.2	3
93	MPS 7 UA-hexNAc M-H	Neg	396.11	193.03	50	10	1.2	3
94	MPS 3 hexN-S-UA M-H	Neg	434.06	113	40	25	1.2	3
95	MPS 3 hexN-S-UA M-H	Neg	434.06	131.03	40	25	1.2	3
96	MPS 3 hexN-S-UA M-H	Neg	434.06	157	40	20	1.2	3
97	MPS 3 hexN-S-UA M-H	Neg	434.06	175.02	40	20	1.2	3
98	MPS 4 neuAC-hex-hexNAc-S M-H	Neg	753.18	96.96	20	60	1.2	3
99	MPS 4 neuAC-hex-hexNAc-S M-H	Neg	753.18	282.02	20	40	1.2	3
100	MPS 4 neuAC-hex-hexNAc-S M-H	Neg	753.18	462.09	20	20	1.2	3
101	MPS 4 and 6 hexNAc-S-UA-hexNAc-S M- H	Neg	759.1	175.02	40	50	1.2	3
102	MPS 4 and 6 hexNAc-S-UA-hexNAc-S M- H	Neg	759.1	396.11	40	40	1.2	3
103	MPS 4 and 6 hexNAc-S-UA-hexNAc-S M- H	Neg	759.1	599.2	40	30	1.2	3
104	MPS 1 UA-hexNAc-S-UA-hexNAc-S M- 2H	Neg	467.06	198.99	25	30	1.7	4.4
105	MPS 1 UA-hexNAc-S-UA-hexNAc-S M- 2H	Neg	467.06	300.03	55	15	1.7	4.4
106	MPS 7 hexNAc-UA-hexNAc M-H	Neg	599.19	175.02	60	20	1.7	4.4
107	MPS 7 hexNAc-UA-hexNAc M-H	Neg	599.19	396.11	60	20	1.7	4.4
108	MPS 1 and 2 UA-hexNAc-S-UA M-H	Neg	652.1	175.02	55	40	1.7	4.4
109	MPS 1 and 2 UA-hexNAc-S-UA M-H	Neg	652.1	193.03	55	40	1.7	4.4
110	MPS 1 and 2 UA-hexNAc-S-UA M-H	Neg	652.1	396.11	55	30	1.7	4.4
111	MPS 1 and 2 UA-hexNAc-S-UA M-H	Neg	652.1	572.14	55	10	1.7	4.4
112	MPS 3 813	Neg	813.16	175.02	40	40	1.7	4.4
113	MPS 3 813	Neg	813.16	557.18	40	30	1.7	4.4
114	MPS 3b hexNAc-S-UA-hexNAc-UA M-H	Neg	855.18	175.02	15	45	1.7	4.4
115	MPS 3b hexNAc-S-UA-hexNAc-UA M-H	Neg	855.18	775.2	20	15	1.7	4.4
116	MPS 4 hex3-hexNAc2-S M-H	Neg	989.26	96.96	80	70	1.7	4.4
117	MPS 4 hex3-hexNAc2-S M-H	Neg	989.26	989.27	80	12	1.7	4.4