Figure S1

Figure S1. DREADDs function and expression in PV⁺ and SST⁺ interneurons in DG and CA3. Related to Figure 1.

(A, B) Proportion of (A) mCherry⁺ cells in PV⁺ and SST⁺ cells and (B) PV⁺ and SST⁺ cells in mCherry⁺ cells. N = 16 PV-Cre mice, n = 16 SST-Cre mice, and n = 13 PV-Cre/SST-Cre mice. (C) Example of mCherry coexpression with PV (top) and SST (bottom) in DG. Scale bars are 50 μ m.

(D) CNO application to *ex vivo* hippocampal sections from a PV-Cre animal reduces the firing rate and resting membrane potential (black trace) of a PV^+ interneuron expressing hM4D.

(E,F) CNO application to *ex vivo* hippocampal section with PV^+ and SST^+ interneurons expressing hM4D (E) hyperpolarizes cells (1-sample t test, t(9)=6.57, p = 0.0001) and (F) increases input resistance (1-sample Wilcoxon test, W = -55, p = 0.002). N = 4 PV-Cre slices, n = 4 SST-Cre slices, and n = 2 PV-Cre/SST-Cre slices.

Error bars are mean \pm SEM. ***p < 0.001. See also Table S1.

Figure S2

Figure S2. Additional properties of SWRs during interneuron suppression. Related to Figures 3 and 4.

(A) SWR size (PV: p = 0.00048; SST: p = 0.07; PV vs SST: p = 0.011).

(B) Normalized SG power during SWRs in CA3 (PV: $p = 2x10^{-5}$; SST: p = 0.068; PV vs SST: p = 0.

0.96) and DG (PV: $p = 2.2x10^{-5}$; SST: p = 0.0058; PV vs SST: p = 0.95).

(C,D) Change SWR-coincident SG power in CA1 in PV-Cre animals upon CNO treatment predicts

(C) change in SW amplitude (F(1,14) = 17.29, p = 0.001) and (D) change in SWR frequency (F(1,14) = 10.97, p = 0.0051). Pearson correlation.

N = 16 PV-Cre and n = 16 SST-Cre mice. Statistical details in Table S3. F test of the LMM for treatment effects, likelihood ratio test for genotype-treatment interaction effects. **p < 0.01; ***p < 0.001; ****p < 0.0001. See also Tables S2–S7.

Figure S3. Suppressing PV⁺ or SST⁺ interneurons modulate local CA3 SWRs and DG spikes. Related to Figure 3.

(A) Interneurons in DG and CA3 (magenta) were inhibited while SWRs in CA3-pyr and dentate spikes in DG granule cell layer (gc) were assessed. Representative raw traces of a SWR from a CA3-pyr site and a dentate spike from a DG-gc site of a PV-Cre mouse during vehicle treatment. (B) Normalized recruitment of CA3 MUA to CA3 SWRs (PV: p = 0.00044; SST: p = 0.0062; PV vs SST: p = 1).

(C) CA3 SWR rate (PV: p = 0.00072; SST: p = 0.77; PV vs SST: p = 0.28).

- (D) CA3 SWR temporal length (PV: $p = 7.14 \times 10^{-6}$; SST: p = 0.0055; PV vs SST: p = 0.86).
- (E) CA3 SWR instantaneous frequency (PV: p = 0.00057; SST: p = 0.88; PV vs SST: p = 0.42).
- (F) DG MUA during dentate spikes (PV: p = 0.47; SST: p = 0.26; PV vs SST: p = 0.15).
- (G) Dentate spike rate (PV: $p = 3 \times 10^{-19}$; SST: p = 0.0027; PV vs SST: p = 0.27).
- (H) Dentate spike temporal length (PV: $p = 2.6 \times 10^{-11}$; SST: p = 0.26; PV vs SST: p = 0.23).
- (I) Dentate spike amplitude (PV: $p = 1.6 \times 10^{-7}$; SST: p = 0.044; PV vs SST: p = 0.61).

N = 16 PV-Cre and n = 16 SST-Cre mice. Statistical details in Table S3. F test of the LMM for treatment effects, likelihood ratio test for genotype-treatment interaction effects. **p < 0.01; ***p < 0.001; ****p < 0.0001. See also Tables S2–S7.

Figure S4

Figure S4. Properties of SG and FG in DG and CA3 during interneuron suppression. Related to Figures 5 and 6.

(A) SG power in CA3 (PV: p = 0.15; SST: $p = 5.2x10^{-5}$; PV vs SST: p = 0.00088) and DG (PV: p = 0.5; SST: $p = 1.3x10^{-7}$; PV vs SST: p = 0.00042).

(B) SG instantaneous frequency in CA3 (PV: p = 0.00023; SST: p = 0.8; PV vs SST: p = 0.0025) and DG (PV: p = 0.0005; SST: p = 0.37; PV vs SST: p = 0.00015).

(C) Theta modulation of SG power in CA3 (PV: p = 0.0011; SST: p = 0.16; PV vs SST: p = 0.0049) and DG (PV: p = 0.0003; SST: p = 0.22; PV vs SST: p = 0.0054).

(D) FG power in CA3 (PV: p = 0.42; SST: p = 0.0076; PV vs SST: p = 0.0027) and DG (PV: p = 0.81; SST: p = 1.9x10⁻⁵; PV vs SST: p = 0.0025).

(E) Change in SG power in SST-Cre animals upon CNO treatment predicts change in FG power in CA3 (F(1,5) = 20.7, p = 0.0061) and DG (F(1,5) = 26, p = 0.0038). Pearson correlation.

(F) Ratio of SG power to FG power in CA3 (PV: p = 0.00036; SST: p = 0.0071; PV vs SST: p =

0.002) and DG (PV: p = 0.00031; SST: p = 0.002; PV vs SST: p = 0.00064).

(G) FG instantaneous frequency in CA3 (PV: p = 0.02; SST: $p = 2.6x10^{-9}$; PV vs SST: p = 0.12) and DG (PV: p = 0.23; SST: $p = 4.1x10^{-11}$; PV vs SST: p = 0.062).

(H) Theta modulation of FG power in CA3 (PV: p = 0.00041; SST: p = 0.19; PV vs SST: p = 0.0026) and DG (PV: $p = 7.5 \times 10^{-11}$; SST: p = 0.11; PV vs SST: p = 0.00053).

N = 8 PV-Cre and n = 7 SST-Cre mice. Statistical details in Table S3. F test of the LMM for treatment effects, likelihood ratio test for genotype-treatment interaction effects. **p < 0.01; ***p < 0.001; ***p < 0.0001. Central values are means and individual points are mean per animal. See also Tables S3–S7.

Figure S5

Figure S5. Suppressing PV⁺ or SST⁺ interneurons unidirectionally modulates theta during movement. Related to Figures 5 and 6.

(A) Example raw and theta-filtered LFP traces from CA1 pyramidal layer (top) and DG granule cell layer (bottom) sites from a PV-Cre (left) and an SST-Cre (right) mouse.

(B) Theta power in CA1 (PV: p = 0.00032; SST: $p = 4.2x10^{-5}$; PV vs SST: p = 0.52), CA3 (PV: p = 0.81; SST: p = 0.13; PV vs SST: p = 0.3), and DG (PV: p = 0.12; SST: p = 0.0097; PV vs SST: p = 0.85).

(C) Theta frequency band coherence between CA1 and CA3 (PV: p = 0.57; SST: p = 0.047; PV vs SST: p = 0.62) and between CA1 and DG (PV: p = 0.024; SST: p = 0.76; PV vs SST: p = 0.89). (D) Theta instantaneous frequency in CA1 (PV: p = 0.0082; SST: p = 0.29; PV vs SST: p = 0.06), CA3 (PV: p = 0.0077; SST: p = 0.1; PV vs SST: p = 0.3), and DG (PV: p = 0.00061; SST: p = 0.1; PV vs SST: p = 0.67).

N = 8 PV-Cre and n = 7 SST-Cre mice. Statistical details in Table S3. F test of the LMM for treatment effects, likelihood ratio test for genotype-treatment interaction effects. **p < 0.01; ***p < 0.001; ****p < 0.0001. Central values are means and individual points are mean per animal. See also Tables S3–S7.

Figure S6. Suppressing both PV⁺ and SST⁺ interneurons increases CA3 coupling onto CA1. Related to Figures 3–6.

(A) Normalized recruitment to SWRs of MUA in CA1 (PV-Cre/SST-Cre (P/S): p = 0.0074; PV vs
P/S: p = 1; SST vs P/S: p = 1; Empty Vector (EV): p = 0.89), CA3 (P/S: p = 0.0053; PV vs P/S: p = 1; SST vs P/S: p = 1; EV: p = 0.66), and DG (P/S: p = 9x10⁻⁷; PV vs P/S: p = 1; SST vs P/S: p = 1; EV: p = 0.23).
(B) SWR rate (P/S: p = 0.00035; PV vs P/S: p = 0.87; SST vs P/S: p = 0.021; EV: p = 0.74).

(C) Percent of SWRs following another SWR within 200 ms (P/S: $p = 1.4x10^{-5}$; PV vs P/S: p = 1; SST vs P/S: p = 0.82; EV: p = 0.77).

(D) SWR length (P/S: p = 0.49; PV vs P/S: p = 0.8; SST vs P/S: p = 0.089; EV: p = 0.68).

(E) SWR instantaneous frequency (P/S: $p = 4.2x10^{-6}$; PV vs P/S: p = 0.2; SST vs P/S: p = 0.0017; EV: p = 0.62).

(F) SW amplitude (P/S: $p = 5.2x10^{-8}$; PV vs P/S: p = 0.066; SST vs P/S: p = 0.00055; EV: p = 0.47).

(G) Normalized SG power during SWRs in CA1 (P/S: $p = 8.6x10^{-12}$; PV vs P/S: p = 1; SST vs P/S: p = 0.00089; EV: p = 0.13).

(H) Increase during SWRs of SG frequency band coherence between CA1 and CA3 (P/S: p = 0.32; PV vs P/S: p = 1; SST vs P/S: p = 1; EV: p = 0.89 and between CA1 and DG (P/S: p = 0.23; PV vs P/S: p = 1; SST vs P/S: p = 1; EV: p = 0.13).

In A–H, n = 16 PV-Cre, n = 16 SST-Cre, n = 13 PV-Cre/SST-Cre and n = 8 empty vector mice.

(I) MUA during movement in CA1 (P/S: p = 0.033; PV vs P/S: p = 0.98; SST vs P/S: p = 0.15;
EV: p = 0.23), CA3 (P/S: p = 1.1x10⁻⁹; PV vs P/S: p = 0.51; SST vs P/S: p = 0.89; EV: p = 0.36),
and DG (P/S: p = 1.2x10⁻⁹; PV vs P/S: p = 0.43; SST vs P/S: p = 0.031; EV: p = 0.6).

(J) SG power in CA1 (P/S: p = 0.00065; PV vs P/S: p = 0.78; SST vs P/S: p = 0.73; EV: p = 0.067). (K) SG frequency band coherence between CA1 and CA3 (P/S: p = 0.00058; PV vs P/S: p = 0.6; SST vs P/S: p = 0.45; EV: p = 0.13) and between CA1 and DG (P/S: p = 0.00098; PV vs P/S: p = 0.95; SST vs P/S: p = 0.26; EV: p = 0.3).

(L) SG instantaneous frequency in CA1 (P/S: p = 0.0001; PV vs P/S: p = 0.95; SST vs P/S: p = 0.036; EV: p = 0.28).

(M) Theta modulation of SG power in CA1 (P/S: $p = 7.2 \times 10^{-7}$; PV vs P/S: p = 0.66; SST vs P/S: p = 0.93; EV: p = 0.87).

(N) FG power in CA1 (P/S: $p = 1.6x10^{-6}$; PV vs P/S: p = 0.05; SST vs P/S: p = 1; EV: p = 0.71).

(O) Ratio of SG power to FG power in CA1 (P/S: $p = 3.8 \times 10^{-6}$; PV vs P/S: p = 0.5; SST vs P/S: p = 0.00086; EV: p = 0.92).

(P) FG frequency band coherence between CA1 and CA3 (P/S: p = 0.68; PV vs P/S: p = 0.54; SST vs P/S: p = 0.1; EV: p = 0.1) and between CA1 and DG (P/S: p = 0.68; PV vs P/S: p = 0.13; SST vs P/S: p = 0.16; EV: p = 0.82).

(Q) FG instantaneous frequency in CA1 (P/S: p = 0.00012; PV vs P/S: p = 0.51; SST vs P/S: p = 0.0056; EV: p = 0.44).

(R) Theta modulation of FG power in CA1 (P/S: p = 0.00019; PV vs P/S: p = 0.53; SST vs P/S: p = 0.00017; EV: p = 0.91).

In I–R, n = 8 PV-Cre, n = 7 SST-Cre, n = 7 PV-Cre/SST-Cre and n = 8 empty vector mice.

Statistical details in Table S5. F test of the LMM for treatment effects, likelihood ratio test for genotype-treatment interaction effects. **p < 0.01; ***p < 0.001; ***p < 0.0001. Central values are LMM fixed effect coefficients $\beta \pm 95\%$ confidence intervals and individual points are the fitted conditional response for each mouse. See also Figures S7 and Table S5.

Figure S7. Additional properties demonstrating suppressing both PV⁺ and SST⁺ interneurons increases CA3 coupling onto CA1. Figures 3–6 and S2–S4.

(A) SWR size (PV-Cre/SST-Cre (P/S): p = 7.2x10⁻⁶; PV vs P/S: p = 0.56; SST vs P/S: p = 0.031; Empty Vector (EV): p = 0.48).

(B) Normalized SG power during SWRs in CA3 (P/S: $p = 1.1x10^{-6}$; PV vs P/S: p = 1; SST vs P/S: p = 1; EV: p = 0.062) and DG (P/S: p = 0.00013; PV vs P/S: p = 1; SST vs P/S: p = 1; EV: p = 0.22).

(C) Normalized recruitment of CA3 MUA to CA3 SWRs (PV/SST: $p = 4.2 \times 10^{-5}$; PV vs PV/SST: p = 0.12; SST vs PV/SST: p = 0.23; EV: p = 0.86).

(D) CA3 SWR rate (PV/SST: p = 0.0066; PV vs PV/SST: p = 0.43; SST vs PV/SST: p = 0.52; EV: p = 1).

(E) CA3 SWR temporal length (PV/SST: p = 0.0031; PV vs PV/SST: p = 0.36; SST vs PV/SST: p = 0.3; EV: p = 1).

(F) CA3 SWR instantaneous frequency (PV/SST: p = 0.00039; PV vs PV/SST: p = 0.55; SST vs PV/SST: p = 0.062; EV: p = 0.076).

(G) DG MUA during dentate spikes (PV/SST: p = 0.0013; PV vs PV/SST: p = 0.94; SST vs PV/SST: p = 1; EV: p = 0.98).

(H) Dentate spike rate (PV/SST: p = 0.00094; PV vs PV/SST: p = 0.3; SST vs PV/SST: p = 0.87;
EV: p = 0.67).

(I) Dentate spike temporal length (PV/SST: p = 0.45; PV vs PV/SST: p = 0.017; SST vs PV/SST: p = 0.62; EV: p = 0.64).

(J) Dentate spike amplitude (PV/SST: p = 0.0033; PV vs PV/SST: p = 0.82; SST vs PV/SST: p = 0.97; EV: p = 0.31).

In A–J, n = 16 PV-Cre, n = 16 SST-Cre, n = 13 PV-Cre/SST-Cre and n = 8 empty vector mice.

(K) SG power in CA3 (P/S: p = 0.84; PV vs P/S: p = 0.47; SST vs P/S: p = 0.49; EV: p = 0.087) and DG (P/S: p = 0.017; PV vs P/S: p = 0.35; SST vs P/S: p = 0.69; EV: p = 0.63).

(L) SG instantaneous frequency in CA3 (P/S: p = 0.0029; PV vs P/S: p = 0.7; SST vs P/S: p = 0.012; EV: p = 0.32) and DG (P/S: p = 0.0045; PV vs P/S: p = 0.8; SST vs P/S: p = 0.00055; EV: p = 0.27).

(M) Theta modulation of SG power in CA3 (P/S: p = 0.00036; PV vs P/S: $p = 7.3 \times 10^{-5}$; SST vs P/S: p = 0.0048; EV: p = 0.63) and DG (P/S: $p = 8.4 \times 10^{-11}$; PV vs P/S: p = 0.00018; SST vs P/S: p = 0.28; EV: p = 1).

(N) FG power in CA3 (P/S: p = 2x10⁻⁶; PV vs P/S: p = 0.037; SST vs P/S: p = 0.00023; EV: p = 0.36) and DG (P/S: p = 1x10⁻¹⁰; PV vs P/S: p = 0.018; SST vs P/S: p = 0.00019; EV: p = 0.64).
(O) Ratio of SG power to FG power in CA3 (P/S: p = 0.39; PV vs P/S: p = 0.52; SST vs P/S: p = 0.022; EV: p = 0.23) and DG (P/S: p = 0.29; PV vs P/S: p = 0.66; SST vs P/S: p = 0.012; EV: p = 0.15).

(P) FG instantaneous frequency in CA3 (P/S: p = 0.0013; PV vs P/S: p = 0.39; SST vs P/S: p = 0.092; EV: p = 0.51) and DG (P/S: $p = 8.6 \times 10^{-5}$; PV vs P/S: p = 0.061; SST vs P/S: p = 0.0089; EV: p = 0.74).

(Q) Theta modulation of FG power in CA3 (P/S: p = 0.0024; PV vs P/S: p = 0.68; SST vs P/S: p = 0.79; EV: p = 0.22) and DG (P/S: $p = 8.6x10^{-5}$; PV vs P/S: p = 0.75; SST vs P/S: p = 0.96; EV: p = 0.35).

(R) Theta power in CA1 (P/S: $p = 2.8 \times 10^{-8}$; PV vs P/S: p = 0.69; SST vs P/S: p = 0.51; EV: p = 0.1), CA3 (P/S: p = 0.35; PV vs P/S: p = 0.004; SST vs P/S: p = 0.018; EV: p = 0.67), and DG (P/S: p = 0.014; PV vs P/S: p = 0.013; SST vs P/S: p = 0.028; EV: p = 0.61).

(S) Theta frequency band coherence between CA1 and CA3 (P/S: p = 0.0064; PV vs P/S: p = 0.66; SST vs P/S: p = 1; EV: p = 0.36) and between CA1 and DG (P/S: p = 0.66; PV vs P/S: p = 0.9; SST vs P/S: p = 0.91; EV: p = 0.59).

(T) Theta instantaneous frequency in CA1 (P/S: $p = 1.4x10^{-8}$; PV vs P/S: p = 0.056; SST vs P/S: p = 0.55; EV: p = 0.68), CA3 (P/S: $p = 5.7x10^{-8}$; PV vs P/S: p = 0.16; SST vs P/S: p = 0.86; EV: p = 0.74), and DG (P/S: $p = 9.4x10^{-12}$; PV vs P/S: p = 0.69; SST vs P/S: p = 0.54; EV: p = 0.8). In K–T, n = 8 PV-Cre, n = 7 SST-Cre, n = 7 PV-Cre/SST-Cre and n = 8 empty vector mice. Statistical details in Table S5. F test of the LMM for treatment effects, likelihood ratio test for genotype-treatment interaction effects. **p < 0.01; ***p < 0.001; ****p < 0.0001. Central values are LMM fixed effect coefficients $\beta \pm 95\%$ confidence intervals and individual points are the fitted conditional response for each mouse. See also Table S5.

Table S1. Specificity of viral expression to PV⁺ and SST⁺ interneurons. Related to Figures 1

and S1.

Cohort	Animal	Genotype	(mCherry+	(mCherry+	(mCherry+	(mCherry+
			PV+)/ PV+	SST+)/	PV+)/	SST+)/
				551+	mCherry+	mCherry+
1	Beverly	PV-Cre	0.997	-	0.909	-
1	Bones	PV-Cre	0.993	-	0.993	-
1	Chakotay	PV-Cre	0.923	-	0.923	-
1	Nerys	PV-Cre	0.944	-	0.944	-
1	Odo	PV-Cre	0.882	-	0.938	-
1	Rain	PV-Cre	0.867	-	0.929	-
1	SevenOfNine	PV-Cre	0.875	-	0.981	-
1	Sulu	PV-Cre	0.875	-	0.997	-
1	Worf	PV-Cre	0.982	-	0.969	-
2	Adobo	PV-Cre	0.882	-	0.917	-
2	Caraway	PV-Cre	0.951	-	0.958	-
2	Chives	PV-Cre	0.958	-	0.933	-
2	Cinnamon	PV-Cre	0.919	-	0.983	-
2	Fenugreek	PV-Cre	0.951	-	0.951	-
2	Garam Masala	PV-Cre	0.933	-	0.994	-
2	Salt	PV-Cre	0.988	-	0.938	-
3	Aphid	PV-Cre	0.944	-	0.944	-
3	Fruitfly	PV-Cre	0.933	-	0.966	-
3	Grasshopper	PV-Cre	0.982	_	0.964	-
3	Honeybee	PV-Cre	0.952	_	0.952	-
3	Rolypoly	PV-Cre	0.906	-	0.967	-
1	Garrett	SST-Cre	-	0.800	-	0.996
1	Guinan	SST-Cre	-	0.850	-	0.985
1	Keeler	SST-Cre	-	0.826	-	0.995
1	Kes	SST-Cre	-	0.906	-	0.988
1	Neelix	SST-Cre	-	0.960	-	0.990
1	OBrien	SST-Cre	-	0.977	-	0.973
1	Picard	SST-Cre	-	0.987	-	0.974
1	Quark	SST-Cre	-	0.920	-	0.986
1	Riker	SST-Cre	-	0.904	-	0.992
1	Sato	SST-Cre	-	0.917	-	0.946
2	Baharat	SST-Cre	-	0.862	-	0.986
2	Cardamom	SST-Cre	-	0.912	-	0.978

2	Jerk	SST-Cre	-	0.963	-	0.981
2	Mace	SST-Cre	-	0.932	-	0.983
2	Tarragon	SST-Cre	-	0.864	-	0.989
2	Vanilla	SST-Cre	-	0.970	-	0.931
3	Cicada	SST-Cre	-	0.946	-	0.992
3	Cricket	SST-Cre	-	0.858	-	0.979
3	Ladybug	SST-Cre	-	0.906	-	0.992
3	Mantis	SST-Cre	-	0.948	-	0.977
1	Bashir	PV-Cre/	0.944	0.965	0.439	0.625
		SST-Cre				
1	Dax	PV-Cre/	0.929	0.977	0.451	0.663
		SST-Cre				
1	Doctor	PV-Cre/	0.926	0.906	0.387	0.666
		SST-Cre				
1	Scotty	PV-Cre/	0.947	0.953	0.295	0.760
		SST-Cre				
1	TPol	PV-Cre/	0.984	0.975	0.417	0.647
		SST-Cre				
1	Tuvok	PV-Cre/	0.833	0.966	0.619	0.483
		SST-Cre				
2	Basil	PV-Cre/	0.945	0.962	0.433	0.698
		SST-Cre				
2	Cumin	PV-Cre/	0.937	0.970	0.547	0.489
		SST-Cre				
2	Dill	PV-Cre/	0.981	0.944	0.484	0.600
		SST-Cre				
2	Nutmeg	PV-Cre/	0.960	0.923	0.414	0.667
		SST-Cre				
2	Paprika	PV-Cre/	0.938	0.967	0.535	0.563
		SST-Cre				
2	Parsley	PV-Cre/	0.981	0.989	0.461	0.636
		SST-Cre				
2	Sumac	PV-Cre/	0.944	0.931	0.466	0.596
		SST-Cre				

Feature	Layer	Genotype	Veh.	CNO	statistic	df	test	р
			Mean	Mean			value	
Ripple Freq.	CA1-pyr	PV-Cre	72.39	70.96	Ζ	NA	1.6	0.1
Mean (µV)		SST-Cre	61.53	58.67	Ζ	NA	1.24	0.2
Ripple Freq. SD	CA1-pyr	PV-Cre	77.3	76.69	t	15	0.32	0.8
(µV)		SST-Cre	64.04	65.76	t	15	0.66	0.5
Fast Ripple Rate	CA1-pyr	PV-Cre	0.0004	0.0035	Z	NA	2.93	0.003
(Hz)		SST-Cre	0.0015	0.0013	Ζ	NA	1.17	0.2
Rest MUA (Hz)	CA1-pyr	PV-Cre	10.61	10.91	Ζ	NA	-0.41	0.68
		SST-Cre	12.28	11.49	Ζ	NA	-0.16	0.88
	CA3-pyr	PV-Cre	8.1	7.4	Ζ	NA	1.71	0.09
		SST-Cre	6.58	5.75	Ζ	NA	1.6	0.11
	DG-gc	PV-Cre	7.05	6.51	Ζ	NA	0.98	0.33
		SST-Cre	5.78	5.91	Ζ	NA	0.21	0.84
Rest SG Freq.	CA1-sr	PV-Cre	109.51	127.6	t	15	4.03	0.001
Mean (μV^2)		SST-Cre	114.49	104.57	t	15	1.8	0.09
	CA3	PV-Cre	152.26	157.61	t	15	1.49	0.2
		SST-Cre	140	138.21	t	15	0.6	0.6
	DG	PV-Cre	353.58	352.37	t	15	0.15	0.9
		SST-Cre	338	338.89	t	15	0.1	0.94
Rest SG Freq.	CA1-sr	PV-Cre	109.06	226.98	Z	NA	3.52	0.0004
$SD(\mu V^2)$		SST-Cre	130.07	130.39	t	15	0.1	0.96
	CA3	PV-Cre	161.1	252.93	t	15	3.94	0.001
		SST-Cre	158.63	180.56	Ζ	NA	1.4	0.16
	DG	PV-Cre	343.52	450.84	t	15	3.47	0.003
		SST-Cre	355.87	382.82	t	15	1.4	0.19
CA3 Ripple	CA3-pyr	PVCre	81.72	79.63	Ζ	NaN	1.49	0.14
Freq. Mean (µV)		SSTCre	73.57	68.7	t	30	0.58	0.57
CA3 Ripple	CA3-pyr	PVCre	46.96	49	Ζ	NaN	0.06	0.95
Freq. SD (µV)		SSTCre	42.88	42.01	t	30	0.16	0.88
DS Freq. Mean	DG-gc	PVCre	0	-0.05	Ζ	NaN	2.43	0.02
(µV)		SSTCre	0	0.01	Ζ	NaN	-0.43	0.66
DS Freq. SD	DG-gc	PVCre	1903.24	1984.49	t	30	-0.56	0.58
(µV)		SSTCre	1807.8	1891.84	t	30	-0.38	0.71

Table S2. Effects of suppressing PV^+ or SST^+ interneurons on SWR and SG detection.

Related to Figures 3, 4, S2, and S3.

Paired t tests when the test statistic given is t and Wilcoxon matched pairs signed rank test when the test statistic given is Z. Significant comparisons are bolded. N = 16 PV-Cre and n = 16 SST-Cre mice.

Rest Features	PV-Cre (n = 16)	SST-Cre (n	= 16)	PV-Cre v	vs SST-Cre	
	df	F	df	F	df	χ^2	
CA1-sr CSD Source	28124	11.72	44670	16.59	9	-52369.26	
CA1-sr CSD Sink	28124	14.72	44670	59.61	9	-37362.77	
CA1 MUA during SWRs (Z-score)	112503	2.33	124415	0.54	9	19.33	
CA3 MUA during SWRs (Z-score)	112503	11.36	124415	11.33	9	14.84	
DG MUA during SWRs (Z-score)	112503	20.64	124415	17.21	9	16.38	
SWR Rate (Hz)	4023	22.81	4496	16.65	9	27.92	
% SWR in Chains	112503	10.79	124415	17.78	9	2.32	
SWR Length (ms)	112503	4.54	124415	9.3	9	30.65	
SWR Frequency (Hz)	112503	10.48	124415	4.56	9	19.96	
SW Amplitude (µV)	381794	115.42	428868	1.34	9	23.57	
SWR CA1 SG Power (Z-score)	381794	99.81	428868	2.14	9	27.9	
SWR CA1–CA3 Delta Coh.	903633	10.59	1182100	1.89	9	39.49	
SWR CA1–DG Delta Coh.	843957	10.89	866644	0.61	9	24.47	
SWR Size (SD)	112503	12.2	124415	3.28	9	21.36	
SWR CA3 SG Power (Z-score)	360566	18.19	453379	3.32	9	3.15	
SWR DG SG Power (Z-score)	327914	17.98	317642	7.61	9	3.3	
CA3 MUA during CA3 SWRs	82196	12.34	95385	7.5	9	-50950.7	
(Z-score)							
CA3 SWR Rate (Hz)	4023	11.45	4496	0.09	9	11	
CA3 SWR Length (ms)	82196	54.88	95381	13.42	9	7.27	
CA3 SWR Frequency (Hz)	82196	9.7	95381	0.35	9	11.02	
DG MUA during DS (Hz)	2245583	0.53	2272359	1.26	9	13.35	
DS Rate (Hz)	4023	81.28	4497	9.02	9	11.03	
DS Length (ms)	2245583	44.43	2272359	1.25	9	11.77	
DS Amplitude (µV)	2245583	27.49	2272359	4.04	9	7.28	
Run Features	PV-Cre	(n = 8)	SST-Cre (r	n = 7)	PV-Cre v	vs SST-Cre	
	df	F	df	F	df	χ^2	
CA1 MUA (Hz)	92444	0.13	145684	0.01	9	10.15	
CA3 MUA (Hz)	92444	12.06	145684	7.89	9	4.55	
DG MUA (Hz)	92444	13.62	145684	7.47	9	7.44	
CA1 SG Power (μV^2)	31496	22.12	51582	2.33	9	41.12	
CA1–CA3 SG Coh.	110477	13.23	166284	0.27	9	7.77	
CA1–DG SG Coh.	116710	2.96	185217	1.07	9	11.26	
CA1 SG Freq. (Hz)	1038019	22.17	1888216	0.33	9	23.06	
CA1 Theta–SG Comod.	31496	2.43	51582	11.2	9	3.26	
CA1 FG Power (μV^2)	31496	1.21	51582	17.24	9	29.45	
CA1 SG/FG ratio	31496	105.64	51582	14.67	9	40.05	
CA1–CA3 FG Coh.	105772	0.04	185217	1.66	9	11.57	
CA1–DG FG Coh.	95893	1.21	166284	3.15	9	8.66	

Table S3. Statistical details for Figures 2–6 and S2–S5.

CA1 FG Freq (Hz)	2150099	3.52	3752150	70.63	9	16.11
CA1 Theta–FG Comod.	31496	6.68	51582	83.1	9	33.69
CA3 SG Power (μV^2)	34017	2.07	48268	16.36	9	28.22
DG SG Power (μV^2)	34037	0.45	49647	27.87	9	30.09
CA3 SG Freq. (Hz)	1218601	13.56	1864300	0.07	9	25.49
DG SG Freq. (Hz)	1230393	12.13	1924686	0.81	9	32.71
CA3 Theta–SG Comod.	34017	10.62	48268	1.99	9	23.64
DG Theta–SG Comod.	34037	13.1	49647	1.48	9	23.38
CA3 FG Power (μV^2)	34017	0.64	48268	7.12	9	25.22
DG FG Power (μV^2)	34037	0.06	49647	18.28	9	25.42
CA3 SG/FG ratio	34017	12.72	48268	7.24	9	26.11
DG SG/FG ratio	34037	13	49647	9.51	9	29.04
CA3 FG Freq. (Hz)	2593454	5.43	3656285	35.46	9	14.05
DG FG Freq. (Hz)	2577250	1.42	3768666	43.56	9	16.25
CA3 Theta–FG Comod.	34017	12.5	48268	1.72	9	25.31
DG Theta–FG Comod.	34037	42.41	49647	2.51	9	29.54
CA1 Theta Power (μV^2)	31496	12.96	51582	16.78	9	8.15
CA3 Theta Power (μV^2)	34017	0.06	48268	2.25	9	10.68
DG Theta Power (μV^2)	34037	2.4	49647	6.69	9	4.84
CA1–CA3 Theta Coh.	95893	0.32	166284	3.94	9	7.13
CA1–DG Theta Coh.	105772	5.11	185217	0.09	9	4.29
CA1 Theta Freq. (Hz)	308329	6.99	574674	1.13	9	16.36
CA3 Theta Freq. (Hz)	296280	7.11	416176	2.68	9	10.69
DG Theta Freq. (Hz)	297566	11.76	432042	2.68	9	6.64

F test of the LMM for treatment effects, likelihood ratio test for genotype-treatment interaction

effects.

Table S4. Differences between genotypes during vehicle treatment. Related to Figures 3–6

and S	S2–S5.
-------	--------

Rest Features	PV mean	SST mean	df	F	р
	(n = 16)	(n = 16)			
CA1 MUA during SWRs (Z-score)	2.64	1.44	138109	2.2	0.14
CA3 MUA during SWRs (Z-score)	1.89	0.88	138109	4.1	0.042
DG MUA during SWRs (Z-score)	1.74	0.51	138109	0.082	0.77
SWR Rate (Hz)	0.45	0.44	4757	1.5	0.22
% SWR in Chains	0.2	0.21	137661	0.26	0.61
SWR Length (ms)	102.99	101.34	137661	0.0073	0.93
SWR Frequency (Hz)	156.24	156.15	137661	0.0004	0.98
SW Amplitude (µV)	375.21	384.95	471767	0.13	0.72
SWR CA1 SG Power (Z-score)	1.31	1.25	471767	0.045	0.83
SWR CA1–CA3 Delta Coh.	0.013	0.011	1189551	0.19	0.66
SWR CA1–DG Delta Coh.	0.011	0.0088	976070	2.4	0.12
SWR Size (SD)	5.93	5.93	137661	0.052	0.82
SWR CA3 SG Power (Z-score)	0.91	0.85	473237	3	0.085
SWR DG SG Power (Z-score)	0.65	0.67	359153	0.29	0.59
CA3 MUA during CA3 SWRs					
(Z-score)	1.07	0.93	103414	0.23	0.63
CA3 SWR Rate (Hz)	0.33	0.33	4831	0.029	0.86
CA3 SWR Length (ms)	82.64	85.44	105233	1.1	0.29
CA3 SWR Frequency (Hz)	150.22	151.34	105233	0.58	0.45
DG MUA during DS (Hz)	97.11	83.92	2637957	0.13	0.72
DS Rate (Hz)	9.18	8.45	4832	5.2	0.022
DS Length (ms)	18.67	18.93	2637957	3.4	0.066
DS Amplitude (µV)	2822.72	2441.86	2637957	2.8	0.092
Run Features	PV mean	SST mean	df	F	р
	(n = 8)	(n = 7)			
CA1 MUA (Hz)	87.61	136.28	155440	2.38	0.12
CA3 MUA (Hz)	283.88	216.70	155440	1.79	0.18
DG MUA (Hz)	294.51	296.34	155400	0.00	0.99
CA1 SG Power (μV^2)	512.08	400.01	28766	0.77	0.38
CA1–CA3 SG Coh.	0.6	0.6	100543	4.20x10 ⁻⁵	0.99
CA1–DG SG Coh.	0.59	0.58	114500	0.04	0.84
CA1 SG Freq. (Hz)	40.24	41.2	1066217	4.6	0.032
CA1 Theta–SG Comod.	0.0051	0.0049	28766	0.0015	0.97
CA1 FG Power (μV^2)	79.36	63.72	28766	0.34	0.56
CA1 SG/FG ratio	6.35	5.71	28766	1	0.32
CA1–CA3 FG Coh.	0.54	0.56	110360	0.81	0.37
CA1–DG FG Coh.	0.52	0.53	95023	0.31	0.58

CA1 FG Freq (Hz)	79.7	78.93	2095627	1.3	0.25
CA1 Theta–FG Comod.	0.0079	0.0074	28766	0.036	0.85
CA3 SG Power (μV^2)	115.94	134.21	31822	1.2	0.28
DG SG Power (μV^2)	313.19	303.08	31169	0.11	0.74
CA3 SG Freq. (Hz)	40.54	41.9	1089935	12	0.00042
DG SG Freq. (Hz)	41.06	42.4	1241681	13	0.00025
CA3 Theta–SG Comod.	0.0049	0.0053	31822	2.2	0.14
DG Theta–SG Comod.	0.0047	0.0053	31169	4.5	0.034
CA3 FG Power (μV^2)	18.3	27.1	31822	5.6	0.018
DG FG Power (μV^2)	64.54	73.9	31169	2.3	0.13
CA3 SG/FG ratio	6.2	3.99	31822	11	0.00078
DG SG/FG ratio	5.16	3.4	31169	11	0.00071
CA3 FG Freq. (Hz)	81.99	80.18	2155990	5.2	0.022
DG FG Freq. (Hz)	81.75	80.42	2381526	6.7	0.0095
CA3 Theta–FG Comod.	0.007	0.0085	31822	4	0.046
DG Theta–FG Comod.	0.0086	0.009	31169	0.94	0.33
CA1 Theta Power (μV^2)	811.3	613.97	28766	0.21	0.64
CA3 Theta Power (μV^2)	878.78	1090.14	31822	2.3	0.13
DG Theta Power (μV^2)	2036.8	1927.36	31169	0.35	0.56
CA1–CA3 Theta Coh.	0.81	0.8	95023	0.046	0.83
CA1–DG Theta Coh.	0.79	0.77	110360	0.39	0.53
CA1 Theta Freq. (Hz)	9.18	9.09	312211	0.34	0.56
CA3 Theta Freq. (Hz)	9.15	9.03	246172	0.38	0.54
DG Theta Freq. (Hz)	9.24	9.21	270460	0.056	0.81

F test of the LMM for genotype effects. Significant comparisons are bolded.

Table S5. Statistical details for Figures S6 and S7. Related to Figures 3-6 and Figures S6 and

S7.

Rest Features	PV-Cre/	SST-	P	V-Cre vs	SST-Cre vs		Empty Vector	
	Cre (n =	= 13)	F	PV-Cre/	PV	V-Cre/	(n = 8)	
			S	ST-Cre	SS	T-Cre		
	df	F	df	χ^2	df	χ^2	df	F
MUA during SWRs (Z-score)	76435	7.16	9	-68724	9	-54461	21480	0.02
MUA during SWRs (Z-score)	76435	7.78	9	-49460	9	-19733	21480	0.19
MUA during SWRs (Z-score)	76435	24.13	9	-120845	9	-6232	21480	1.42
SWR Rate (Hz)	2709	12.79	9	4.51	9	19.54	892	0.11
% SWR in Chains	75927	18.82	9	1.45	9	5.19	21310	0.08
SWR Length (ms)	75927	0.48	9	5.36	9	15.06	21310	0.17
SWR Frequency (Hz)	75927	21.2	9	12.28	9	26.56	21310	0.25
SW Amplitude (µV)	255972	29.64	9	16.03	9	29.41	66351	0.52
CA1-sr SG Power (Z-score)	255972	46.62	9	-26019	9	28.18	66351	2.33
SWR Delta SG Coherence	750476	0.99	9	-40005	9	-35500	168587	0.02
SWR Delta SG Coherence	524754	1.44	9	-97130	9	-63661	142513	2.35
SWR Size (SD)	75927	20.15	9	7.7	9	18.37	21310	0.49
SG Power (Z-score)	303136	23.76	9	-15146	9	-26292	84625	3.48
SG Power (Z-score)	209470	14.65	9	-5617	9	-291	68253	1.5
CA3 MUA during CA3	51194	16.77	9	14.11	9	11.76	17339	0.03
SWRs (Z-score)								
CA3 SWR Rate (Hz)	2709	7.4	9	9.08	9	8.17	872	0
CA3 SWR Length (ms)	51194	8.74	9	9.87	9	10.7	16608	0
CA3 SWR Frequency (Hz)	51194	12.6	9	7.86	9	16.23	17335	3.16
DG MUA during DS (Hz)	1484214	10.31	9	3.57	9	1.58	424321	0
DS Rate (Hz)	2709	10.96	9	10.7	9	4.52	892	0.18
DS Length (ms)	1484214	0.58	9	20.09	9	7.12	424321	0.22
DS Amplitude (µV)	1484214	8.66	9	5.21	9	2.75	424321	1.02
Run Features	PV-Cre/	SST-	P	V-Cre vs	SST	C-Cre vs	Empty V	vector
	Cre (n	= 7)	F	PV-Cre/	PV	V-Cre/	(n =	8)
			S	ST-Cre	SS	T-Cre		
	df	F	df	χ^2	df	χ^2	df	F
CA1 MUA (Hz)	140065	4.54	9	2.69	9	13.32	120735	1.44
CA3 MUA (Hz)	140065	37.10	9	8.28	9	4.24	120735	0.85
DG MUA (Hz)	140065	36.95	9	9.11	9	18.41	120735	0.27
CA1 SG Power (μV^2)	50966	11.62	9	5.56	9	6.07	45384	3.36
CA1–CA3 SG Coh.	204656	11.84	9	7.35	9	8.89	178143	2.26
CA1–DG SG Coh.	170411	10.86	9	3.28	9	11.26	167832	1.06
CA1 SG Freq. (Hz)	1817692	15.1	9	3.34	9	17.93	1649935	1.14
CA1 Theta–SG Comod.	50966	24.58	9	6.73	9	3.76	45384	0.02

CA1 FG Power (µV ²)	50966	23.04	9	16.9	9	1.37	49047	0.13
CA1 SG/FG ratio	50966	21.37	9	8.33	9	28.28	49047	0.01
CA1–CA3 FG Coh.	170411	0.17	9	7.95	9	14.52	173082	2.64
CA1–DG FG Coh.	204656	0.17	9	13.66	9	12.98	185143	0.05
CA1 FG Freq (Hz)	3744547	14.73	9	8.25	9	23.3	3333362	0.61
CA1 Theta–FG Comod.	50966	13.94	9	7.99	9	32.4	45384	0.01
CA3 SG Power (μV^2)	58724	0.04	9	8.69	9	8.4	59762	2.92
DG SG Power (μV^2)	48576	5.71	9	9.99	9	6.48	51661	0.24
CA3 SG Freq. (Hz)	2137020	8.89	9	6.36	9	21.1	2220964	1
DG SG Freq. (Hz)	1790505	8.08	9	5.33	9	29.44	1961970	1.2
CA3 Theta–SG Comod.	58724	12.75	9	34.51	9	23.71	59762	0.23
DG Theta–SG Comod.	48576	42.17	9	32.26	9	10.98	51661	0
CA3 FG Power (μV^2)	58724	22.57	9	17.82	9	31.67	59762	0.86
DG FG Power (μV^2)	48576	41.75	9	19.95	9	32.09	51661	0.21
CA3 SG/FG ratio	58724	0.74	9	8.14	9	19.44	59762	1.42
DG SG/FG ratio	48576	1.11	9	6.75	9	21.1	51661	2.11
CA3 FG Freq. (Hz)	4425768	10.28	9	9.55	9	14.96	4511384	0.43
DG FG Freq. (Hz)	3665938	15.43	9	16.3	9	22	3911662	0.11
CA3 Theta–FG Comod.	58724	9.18	9	6.54	9	5.48	59762	1.48
DG Theta–FG Comod.	48576	15.43	9	5.86	9	3.03	51661	0.88
CA1 Theta Power (μV^2)	50966	30.84	9	6.49	9	8.21	49047	2.7
CA3 Theta Power (μV^2)	58724	0.86	9	24.22	9	20.06	59762	0.18
DG Theta Power (μV^2)	48576	6.03	9	20.96	9	18.68	51661	0.26
CA1–CA3 Theta Coh.	204656	7.44	9	6.77	9	1.07	185143	0.84
CA1–DG Theta Coh.	170411	0.19	9	4.17	9	3.98	173082	0.29
CA1 Theta Freq. (Hz)	529462	32.2	9	16.59	9	7.85	473424	0.17
CA3 Theta Freq. (Hz)	508905	29.47	9	13.03	9	4.72	513283	0.11
DG Theta Freq. (Hz)	421267	46.45	9	6.52	9	7.92	451191	0.06

F test of the LMM for treatment effects, likelihood ratio test for genotype-treatment interaction

effects.

Table S6. Sex differences across all mice during vehicle treatment. Related to Figures 3–6

and S2–S7.

Rest Features	F mean	M mean	df	F	р
	(n = 26)	(n = 27)			
CA1 MUA during SWRs (Z-score)	1.97	1.86	189147	3.2	0.074
CA3 MUA during SWRs (Z-score)	1.28	1.13	189147	0.35	0.56
DG MUA during SWRs (Z-score)	0.98	0.96	189147	2.1	0.15
SWR Rate (Hz)	0.42	0.44	6724	0.89	0.34
% SWR in Chains	0.21	0.21	189147	0.16	0.69
SWR Length (ms)	101.02	102.9	189147	0.31	0.58
SWR Frequency (Hz)	155.74	155.45	189147	0.07	0.79
SW Amplitude (µV)	356.84	416.36	642232	4.6	0.032
SWR CA1 SG Power (Z-score)	1.31	1.22	642232	1.2	0.27
SWR CA1–CA3 Delta Coh.	0.01	0.01	1666279	0.16	0.69
SWR CA1–DG Delta Coh.	0.01	0.01	1323512	0.28	0.6
SWR Size (SD)	6.36	5.92	189147	8	0.0046
SWR CA3 SG Power (Z-score)	0.89	0.92	679511	0.51	0.48
SWR DG SG Power (Z-score)	0.66	0.69	506782	0.07	0.79
CA3 MUA during CA3 SWRs					
(Z-score)	1.08	0.93	141580	0.51	0.47
CA3 SWR Rate (Hz)	0.31	0.32	6795	0.2	0.65
CA3 SWR Length (ms)	79.98	84.81	143326	5.9	0.015
CA3 SWR Frequency (Hz)	151.34	151.15	143326	0.023	0.88
DG MUA during DS (Hz)	63.96	115.84	3704734	3.6	0.058
DS Rate (Hz)	8.35	8.82	6799	1.7	0.19
DS Length (ms)	19.04	18.8	3704734	3.3	0.069
DS Amplitude (µV)	2611.7	2704.53	3704734	0.23	0.63
Run Features	F mean	M mean	df	F	р
	(n = 15)	(n = 15)			
CA1 MUA (Hz)	93.65	121.75	304843	0.19	0.67
CA3 MUA (Hz)	316.81	263.00	304843	4.36	0.04
DG MUA (Hz)	329.59	296.09	304803	4.32	0.04
CA1 SG Power (μV^2)	485.49	482.7	66893	0.016	0.9
CA1–CA3 SG Coh.	0.61	0.61	250460	0	0.99
CA1–DG SG Coh.	0.58	0.57	244915	0.2	0.65
CA1 SG Freq. (Hz)	40.48	40.76	2465138	0.33	0.56
CA1 Theta–SG Comod.	0	0.01	66893	2.2	0.14
CA1 FG Power (μV^2)	74.66	72.33	66893	0.36	0.55
CA1 SG/FG ratio	6.17	6.37	66893	0.35	0.55
CA1–CA3 FG Coh.	0.56	0.56	242401	0.0066	0.94
CA1–DG FG Coh.	0.53	0.53	246436	0.026	0.87

CA1 FG Freq (Hz)	79.12	78.93	4907656	0.0021	0.96
CA1 Theta–FG Comod.	0.01	0.01	66893	1.3	0.25
CA3 SG Power (μV^2)	133.15	135.51	77230	0.0069	0.93
DG SG Power (μV^2)	367.43	336.19	80834	1.1	0.3
CA3 SG Freq. (Hz)	41.03	41.11	2806688	0.034	0.85
DG SG Freq. (Hz)	41.49	41.81	2717918	0.49	0.48
CA3 Theta–SG Comod.	0.01	0.01	77230	0.22	0.64
DG Theta–SG Comod.	0.01	0.01	80834	0.62	0.43
CA3 FG Power (μV^2)	25.11	23.56	77230	0.026	0.87
DG FG Power (μV^2)	85.72	75.36	80834	0.4	0.53
CA3 SG/FG ratio	5.53	5.27	77230	0.12	0.73
DG SG/FG ratio	4.7	4.27	80834	0.64	0.42
CA3 FG Freq. (Hz)	81.24	80.63	5598054	0.27	0.6
DG FG Freq. (Hz)	80.65	80.91	5337353	0.7	0.4
CA3 Theta–FG Comod.	0.01	0.01	77230	1.3	0.26
DG Theta–FG Comod.	0.01	0.01	80834	0.16	0.69
CA1 Theta Power (μV^2)	795.65	885.27	66893	0.19	0.66
CA3 Theta Power (μV^2)	1153.66	1005.65	77230	1.1	0.29
DG Theta Power (μV^2)	2545.05	1940.38	80834	4.6	0.032
CA1–CA3 Theta Coh.	0.79	0.81	246436	0.88	0.35
CA1–DG Theta Coh.	0.78	0.77	280238	0.18	0.67
CA1 Theta Freq. (Hz)	9.16	9.13	713763	0.0071	0.93
CA3 Theta Freq. (Hz)	9.11	9.09	641545	0.12	0.73
DG Theta Freq. (Hz)	9.16	9.27	611269	0.37	0.54

F test of the LMM for sex effects. Significant comparisons are bolded.