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Fig. S1 A microwave-assisted hydrothermal system for KCC-1 fabrication. Organic 

phase mainly is cyclohexane (See synthesis process of experimental details). 
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Fig. S2 Diameter distribution curve of KCC-1 extracted from SEM image with a large 

scale of 5 μm (b) where over 350 nanospheres are counted and analyzed. SEM (b-d) 

and TEM (e-g) images of KCC-1 prepared by following the same synthesis process of 

the milestone investigation from Polshettiwar et al [1].
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Fig. S3 A one-pot rotating hydrothermal system for KCC-1 fabrication. Organic 

phase mainly is cyclohexane (See synthesis process of experimental details).
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Table S1 The range value of diameter distribution (the interval difference Δ), the 

symmetry of distribution percentage referred to the fitted line, KCC-1 uniformity, the 

top three percentages in diameter distribution range, and peculiar morphology 

evaluation (broken or immature) of KCC-1 synthesized by a facile one-pot rotating 

hydrothermal approach with different stirring rates.

Stirring rate 

(rpm)
0 30 60 90 120 150

Range value (nm)

(interval Δ)

200-725

(525)

275-650

(375)

275-575

(300)

300-575

(275)

375-775

(400)

350-650

(300)

Symmetry medium medium excellent medium good good

Uniformity poor medium excellent good good good

Top three 

percentages

575-600

(16.0%);

550-575

(15.7%);

525-550

(15.4%)

450-475 

(20.4%); 

500-525 

(16.4%);

550-575

(16.4%)

450-475

(27.8%);

425-450

(16.3%);

475-500

(14.2%)

400-425

(23.4%);

425-450

(15.7%);

500-525

(14.6%)

500-525

(29.5%);

450-475

(23.0%);

475-500

(18.9%)

500-525

(21.3%);

450-475

(18.5%);

475-500

(17.5%)

Broken particles some none none none none some

Immature 

particles

some few few few some some



6

Fig. S4 SEM images of KCC-1 synthesized by a facile one-pot rotating hydrothermal 

approach with different stirring rates of 0 (a), 150 (b), 30 (c), 60 (d), 90 (e), and 120 

rpm (f), respectively.
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Fig. S5 Some typically simulated 3D structural models of KCC-1 nanosphere from 

teams of Vivek Polshettiwa (a) [2] Dongyuan Zhao (b) [3], Xin Du (c) [4], 

Chengzhong Yu (d) [5], and Jin Soo Kang (e) [6], respectively. Actual seaurchin-like 

silica nanoparticles of rambutan-like morphologies with spike-type subunit from team 

of Chengzhong Yu (f) [5]. Reproduced from ref. 2 with permission from American 

Chemical Society, copyright 2016. Reproduced from ref. 3 with permission from 

American Chemical Society, copyright 2014. Reproduced from ref. 4 with permission 

from John Wiley and Sons, copyright 2017. Reproduced from ref. 5 with permission 

from American Chemical Society, copyright 2017. Reproduced from ref. 6 with 

permission from Springer Nature Limited, copyright 2016.
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Fig. S6 N2 adsorption-desorption isotherms of KCC-1 synthesized by a facile one-pot 

rotating hydrothermal approach with different stirring rates 0 (a), 30 (b), 60 (c), 90 (d), 

120 (e), and 150 rpm (f), respectively.
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Table S2 The BET surface area (SBET), pore volume (VP), and the main pore 

distribution of KCC-1 synthesized by a facile one-pot rotating hydrothermal 

approach with different stirring rates.

Stirring rate 

(rpm)
0 30 60 90 120 150

SBET (m2/g) 202.562 402.676 421.374 387.642 389.467 413.774

VP (cm3/g) 0.4973 1.163 1.314 1.274 1.078 1.221

Main pore 

distribution (nm)

2-5;

11-15

2-5;

11-15

2-5;

11-15

2-5;

11-15

2-5;

11-15

2-5;

11-15
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Fig. S7 SEM images of a KCC-1 nanosphere with different magnifications of 200 nm 

(a), 100 nm (b), and 50 nm (c).
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Fig. S8 SEM images of KCC-1 nanospheres from random four parallel tests.
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