Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information (ESI†)

A coumarin–dihydroperimidine dye as a fluorescent chemosensor for hypochlorite in 99% water

Yasuhiro Shiraishi,* Chiharu Yamada and Takayuki Hirai

Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan

shiraish@cheng.es.osaka-u.ac.jp

CONTENTS

		Page
Table S1	TD-DFT calculation results for 1, 1' and 1"	2
Fig. S1	¹ H NMR chart of 1	4
Fig. S2	¹³ C NMR chart of 1	5
Fig. S3	FAB-MS chart of 1	6
Fig. S4	Absorption spectra of 1	7
Fig. S5	¹ H NMR chart of 1'	8
Fig. S6	¹³ C NMR chart of 1'	9
Fig. S7	FAB-MS chart of 1'	10
Fig. S8	¹ H– ¹ H COSY chart of 1	11
Fig. S9	$^{1}\text{H}^{-1}\text{H}$ COSY chart of 1'	12
Fig. S10	Effect of water content on the fluorescence intensity of 1	13
Cartesia	n coordinates for respective compounds	14

compound		Main orbital transition (CIC ^[b])	$E (eV) [\lambda (nm)]$	f
	$S_0 \mathop{\rightarrow} S_1$	$HOMO \rightarrow LUMO (0.70571)$	2.2918 eV [540.99 nm]	0.0023
	$S_0 \mathop{\rightarrow} S_2$	HOMO-1 \rightarrow LUMO (0.70440)	3.0942 eV [400.70 nm]	0.0000
	$S_0 \mathop{\rightarrow} S_3$	HOMO \rightarrow LUMO+1 (0.70406)	3.3076 eV [374.84 nm]	0.0008
	C . C	HOMO \rightarrow LUMO+2 (0.65062)	2 7500 - 34 [220 92]	0 1 (0 1
1	$S_0 \rightarrow S_4$	HOMO \rightarrow LUMO+4 (-0.10429)	5.7590 ev [329.85 nm]	0.1081
1		HOMO \rightarrow LUMO+3 (0.66998)		
	$S_0 \mathop{\rightarrow} S_5$	HOMO \rightarrow LUMO+5 (-0.13878)	3.8658 eV [320.72 nm]	0.0014
		HOMO \rightarrow LUMO+6 (-0.12101)		
		HOMO-2 \rightarrow LUMO (0.67869)		0.0021
	$S_0 \rightarrow S_6$	HOMO \rightarrow LUMO+5 (-0.16381)	3.9242 eV [315.95 nm]	0.0031
	a a	HOMO \rightarrow LUMO (0.67202)	2.5.(22. 1) [402.00.]	0.0071
	$S_0 \rightarrow S_1$	HOMO \rightarrow LUMO+1 (0.15556)	2.5622 eV [483.90 nm]	0.0271
		HOMO \rightarrow LUMO (-0.18684)	0.0054 N.1400 17	0.0150
	$S_0 \rightarrow S_2$	HOMO \rightarrow LUMO+1 (0.66377)	2.8956 eV [428.17 nm]	0.0152
		HOMO-2 \rightarrow LUMO+3 (-0.10524)		
		HOMO-1 \rightarrow LUMO+1 (0.12636)		0.0705
	$S_0 \rightarrow S_3$	HOMO \rightarrow LUMO+2 (0.62423)	3.7678 eV [329.06 nm]	0.2785
		HOMO \rightarrow LUMO+3 (-0.10333)		
		HOMO-3 \rightarrow LUMO (0.13294)		
	a a	HOMO-3 \rightarrow LUMO+4 (-0.11075)		
1′	$S_0 \rightarrow S_4$	HOMO-1 \rightarrow LUMO (0.58062)	3.8169 eV [324.83 nm]	0.172
		HOMO-1 \rightarrow LUMO+1 (0.26085)		
		HOMO-2 \rightarrow LUMO+2 (0.20599)		
	$S_0 \mathop{\rightarrow} S_5$	HOMO-1 \rightarrow LUMO+1 (0.29346)	3.9169 eV [316.53 nm]	0.0572
		HOMO \rightarrow LUMO+3 (0.56823)		
		HOMO-3 \rightarrow LUMO (0.14907)		
		HOMO-2 \rightarrow LUMO+2 (-0.11040)		
	a a	HOMO-1 \rightarrow LUMO (-0.26941)		0.0065
	$S_0 \rightarrow S_6$	HOMO-1 \rightarrow LUMO+1 (0.51253)	3.9693 eV [312.36 nm]	0.2865
		HOMO \rightarrow LUMO+2 (-0.13810)		
		HOMO \rightarrow LUMO+3 (-0.24763)		
1″	$S_0 \to S_1$	HOMO \rightarrow LUMO (0.66986)	2.8187 eV [439.87 nm]	0.0095

Table S1. Calculated excitation energy (*E*), wavelength (λ), and oscillator strength (*f*) for lowlaying singlet state (S_n) of **1**, **1'** and **1''**.^[a]

	$HOMO \rightarrow LUMO+1 (0.12792)$		
C . C	HOMO \rightarrow LUMO (-0.14003)	2 2522 aV [291 22 nm]	0.0010
$\mathbf{S}_0 \rightarrow \mathbf{S}_2$	HOMO \rightarrow LUMO+1 (0.68548)	5.2525 eV [561.22 IIII]	0.0010
C. S.	HOMO-1 \rightarrow LUMO (0.59565)	2 2670 aV [270 50 nm]	0 2727
$\mathbf{S}_0 \rightarrow \mathbf{S}_3$	HOMO-1 \rightarrow LUMO+1 (0.29465)	5.2070 ev [579.50 mil]	0.2737
C. C.	HOMO-1 \rightarrow LUMO (-0.27485)	2 6412 oV [240 50 nm]	0 2661
$S_0 \rightarrow S_4$	HOMO-1 \rightarrow LUMO+1 (0.58007)	5.0415 ev [540.50 mm]	0.3001
	HOMO-7 \rightarrow LUMO (0.10009)		
$S_0 \mathop{\rightarrow} S_5$	HOMO-3 \rightarrow LUMO+3 (0.11442)	3.8806 eV [319.49 nm]	0.1753
	HOMO \rightarrow LUMO+2 (0.63331)		
$S_0 \mathop{\rightarrow} S_6$	HOMO-3 \rightarrow LUMO+1 (-0.29114)		
	HOMO-1 \rightarrow LUMO+2 (-0.11142)	4.0682 eV [304.76 nm]	0.1186
	HOMO \rightarrow LUMO+3 (0.61780)		

[a] The optimized structures for the respective models are summarized in the end of this ESI.

[b] CI expansion coefficients for the main transitions.

Fig. S1 1 H NMR chart of 1 (24 mM, DMSO–d₆, 400 MHz).

DPTLE
201812.05
CMMP Carbon-1-1.jdf

TMYTM
201812.05
CMMP Carbon-1-1.jdf

TMYTM
201812.05
CMMP Carbon-1-1.jdf

TMYTM
201812.05
21139.49

DEMNC
132
2139.49

DEMNC
132
2139.49

DEMNC
132
2169.49

DEMNC
132
2.35

DEMNC
100.53
MHz

DEMNC
120.53
MHz

DEMNC
120.53
MHz

DEMNC
120.54
HHz

DEMNC
141.04
HHz

DEMNC
141.04
HHz

DEMNC
140.14
HHZ

DEMNC
141.04
HHZ

DEMNC
141.04
HHZ

DEMNC
130.0
C

DEMNC
110.0
HHZ

DEMNC
120.0
HHZ

DEMNC
120.0
HHZ

DEMNC
120.0
HHZ

DEMNC
120.0
HHZ<

Fig. S2 13 C NMR chart of 1 (48 mM, DMSO–d₆, 100 MHz).

Fig. S3 FAB–MS chart of 1. (top) full and (bottom) partial charts.

Fig. S4 (a) Change in absorption spectra of **1** measured at 25 °C in 1% MeCN solutions (HEPES 0.1 M, pH 7.0) with different concentration of **1**. (b) Change in the absorbance at 325 nm as a function of the concentration of **1**.

20180208 cmmp-8eq_Froton-1-1_2_'1_p.als aingle_pulse 2018-02-08 16:56:53 1H	Protein_134P = 2019;718 MMz = 4_13127 = 13127 = 13127 = 13127 = 13127 = 13127 = 13124 = 13124 = 1324 = 1324 = 132 = 13 = 13	
DFILE COMNT DATIM OBNUC	EXMOD OBFIN OBFIN OBFIN POLNT FRAQU SCAME ACQTM FD FD FD FD FD FNUC CTEMP EXLREF BF CTTEMP EXLREF FD FD FD FD FD FD FD FD FD FD FD FD FD	

Fig. S5 1 H NMR chart of 1' (24 mM, DMSO–d₆, 400 MHz).

20181225_CMMP-CIO_Carbon-1-1_PDP-p.als single pulse decoupled gated NOE 2018-12-25_21:09:32	carbon.jrp 100.53 MHz 5.35 MHz 5.86 Hz 56214	25125.63 Hz 4096 1.0433 sec 2.0000 sec 3.80 usec	до.0 с DMDO 39.50 ррт 1.20 Нд
DFILE COMNT DATIM OBNUC	CORPECT CORPECT CORPECT CORPECT POINT	PREQU SCANS ACQTM PD PD IRNUC	CTEMP SLVNT EXREP BF RGAIN

Fig. S6 13 C NMR chart of 1' (49 mM, DMSO–d₆, 100 MHz).

Fig. S7 FAB–MS chart of 1'. (top) full and (bottom) partial charts.

Fig. S8 1 H- 1 H COSY chart of **1** (30 mM, DMSO–d₆, 400 MHz). Colored circles indicate the observed cross peaks. The texts next to the circle mean the coupling protons.

Fig. S9 ${}^{1}\text{H}{}^{-1}\text{H}$ COSY chart of **1'** (30 mM, DMSO–d₆, 400 MHz). Colored circles indicate the observed cross peaks. The texts next to the circle mean the coupling protons.

Fig. S10 Time-dependent change in the fluorescence intensity of **1** at 462 nm (10 μ M) after addition of OCl⁻ (50 equiv) measured at 25 °C in MeCN solutions (HEPES 0.1 M, pH 7.0) with different water contents.

С	-2.59998	2.665419	-0.00016	С	3.059685	-0.05288	-2.43551
С	-1.30104	2.122463	-0.00013	Н	-2.72707	3.746045	-0.00022
С	-1.10217	0.727232	-3.1E-05	Н	-4.69881	2.275944	-0.00012
С	-2.25129	-0.08475	0.000018	Н	-5.22576	-2.56471	0.000175
С	-3.5653	0.436016	-1.2E-05	Н	0.169034	-0.99211	0.000113
С	-3.70712	1.835229	-0.0001	Н	-0.49296	3.859368	-0.00026
0	-2.04423	-1.43422	0.000097	Н	-6.29185	0.645239	0.883376
С	-3.08388	-2.37208	0.00018	Н	-6.29183	0.645076	-0.88353
С	-4.4286	-1.82921	0.00013	Н	-6.81258	-0.8015	0.000053
С	-4.68196	-0.4931	0.000039	Н	0.53197	0.374526	2.045974
С	0.283028	0.10234	0.000012	Н	0.531927	0.374141	-2.046
0	-0.21267	2.930196	-0.00019	Н	2.539396	0.096748	3.379357
С	-6.09647	0.0244	-1.8E-05	Н	4.939409	-0.5332	3.380705
0	-2.7745	-3.54241	0.000175	Н	6.165051	-0.8784	1.257772
Ν	1.043652	0.518103	1.182202	Н	6.165027	-0.87863	-1.25769
С	2.379962	0.110716	1.236732	Н	4.939344	-0.53382	-3.38066
С	3.066915	-0.08666	0	Н	2.539331	0.096131	-3.37938
С	2.379938	0.110493	-1.23675				
Ν	1.043627	0.517892	-1.18227				
С	3.059732	-0.05244	2.435509				
С	4.426643	-0.40805	2.429927				
С	5.113351	-0.60361	1.248362				
С	4.452032	-0.44108	0.00002				
С	5.113327	-0.60384	-1.24831				
С	4.426596	-0.4085	-2.42989				

С	-2.39828	2.535728	0.004035	0	0.468111	-3.3021	0.001439
С	-3.77172	2.877929	0.004016	Н	-1.63685	3.314675	0.005575
С	-4.76072	1.911836	0.002177	Н	-4.04639	3.932516	0.005508
С	-4.41637	0.529281	0.000242	Н	-5.81255	2.196413	0.002197
С	-3.03233	0.179967	0.00024	Н	-6.43152	-0.28443	-0.00179
С	-2.04167	1.196913	0.002172	Н	-5.69292	-2.64723	-0.00507
С	-5.36951	-0.52877	-0.00175	Н	-3.26806	-3.23395	-0.00498
С	-4.95165	-1.84821	-0.00358	Н	4.800607	-2.23354	0.002606
С	-3.57993	-2.1905	-0.00354	Н	2.934406	-3.84995	0.002979
С	-2.62046	-1.18539	-0.00166	Н	4.992548	2.628992	-0.00221
Ν	-1.25928	-1.49611	-0.00159	Н	6.247798	-0.50404	0.88488
С	-0.35063	-0.54241	0.000165	Н	6.248926	-0.5056	-0.88068
Ν	-0.7061	0.774861	0.002072	Н	6.670849	0.977479	0.00106
С	1.076946	-0.95218	0.000509	Н	-0.4405	-2.81595	-9.1E-05
С	2.178517	-0.05788	-0.00022	Н	0.02803	1.473898	0.003469
С	3.521757	-0.47823	0.000672				
С	3.776708	-1.86895	0.001968				
С	2.744403	-2.77822	0.002216				
С	1.40121	-2.34592	0.001351				
0	1.90004	1.282537	-0.00205				
С	2.871409	2.285091	-0.00329				
С	4.236283	1.846849	-0.00165				
С	4.569175	0.521925	0.000124				
С	6.01435	0.103494	0.001417				
0	2.454138	3.435226	-0.00571				

С	-2.37416	2.522559	-0.00129	0	0.483158	-3.3102	-0.00283
С	-3.7451	2.878156	-0.00031	Н	-1.60664	3.295546	-0.0021
С	-4.74181	1.92105	0.000792	Н	-4.00934	3.935198	-0.00041
С	-4.4108	0.53598	0.000971	Н	-5.7911	2.214756	0.001571
С	-3.03094	0.177156	-3.5E-05	Н	-6.43313	-0.259	0.002969
С	-2.03019	1.183408	-0.00114	Н	-5.71618	-2.62907	0.003345
С	-5.37365	-0.51358	0.002171	Н	-3.29944	-3.23985	0.001656
С	-4.96965	-1.83544	0.002371	Н	4.815675	-2.22837	0.002315
С	-3.59918	-2.1923	0.001382	Н	2.979776	-3.86025	0.000617
С	-2.64666	-1.18944	0.00016	Н	4.980906	2.638133	0.002026
Ν	-1.27325	-1.46935	-0.00077	Н	6.249434	-0.48788	0.885605
С	-0.30687	-0.53777	-0.00158	Н	6.251229	-0.48776	-0.87957
Ν	-0.68937	0.758337	-0.00192	Н	6.661218	0.997367	0.003554
С	1.084074	-0.97029	-0.0016	Н	0.044764	1.459333	-0.00241
С	2.183708	-0.0667	-0.00094	Н	-0.89967	-2.44376	-0.00078
С	3.526125	-0.47506	0.000374				
С	3.786633	-1.87659	0.001054				
С	2.77247	-2.79149	0.000165				
С	1.386249	-2.4033	-0.00182				
0	1.897803	1.271479	-0.00137				
С	2.864031	2.286576	-0.00023				
С	4.225091	1.855903	0.001149				
С	4.56151	0.526302	0.001369				
С	6.01094	0.118632	0.00282				
0	2.429016	3.432491	-0.00014				