Supplementary Information

Mechanistic insights into tRNA cleavage by a contact-dependent growth inhibitor protein and translation factors

Jing Wang, Yuka Yashiro, Yuriko Sakaguchi, Tsutomu Suzuki, Kozo Tomita

В

Band - I (CdiA-CTEC869)

MGSSSHHHHHHSSGLVPRGSHMVENNYLSKAQKAQKADELAKCQTAACKAQTEAKWTAIDLGQDGSFAAGMIAGVPAGLYDAVDSIVKAGSNPTETLEAMKALFNSGDILGSLSDAVKQSYIDRIDRMEAEYQKAGTSGSFNAGVEGGKLITDIAGLLAGGVGVVKGGAVLTEKVVAKVVGKSESAAAKVGTDIVKTGTVFDSIKATQPAIPGTSIPKSFELHVNGQTVWVNPNATKHMGEYLTRNGLSHSTAEGSQAMLTSLQSAVKDAFSQGLKFNEKMQVGRWELVFSQRSSDPYPVLKHALYKVAVAVAVA

Band - II (Cdil^{EC869})

MKLTVDSVIN EPRSVAITID GYIPVDIKII DSKKLPPLYW RGGDGKKNLL ELAVLPENGF LSSITLVMIA SDSIHKTDSL SVSLPSSECG VPVVNTKLWS HSESDDFSRR FVDDFSLDIE VIISSESMLL TIGENKKVTS WIKCSDNFYL GIDAGRNVVH LYLDKLTPSE VESFFEAVG

Supplementary Figure S1: Purification of recombinant proteins.

(A) Purification of the CdiA-CT^{EC869}:CdiI^{EC869} complex. After size-exclusion column chromatography, the fraction containing the CdiA-CT^{EC869}:CdiI^{EC869} complex was analyzed by electrophoresis on a 5–20% (w/v) SuperSep Ace gel (FujiFilm, Japan), which was stained with Quick-CBB Plus (Wako, Japan). Band-I and Band-II were digested with trypsin, and the peptides were analyzed by LC/MS, as described (1). (**B**) Peptides identified by LC/MS from the trypsin-digested Band-I and Band-II in (A) were mapped onto the amino acid sequences of recombinant CdiA-CT^{EC869} and CdiI^{EC869}, respectively. The amino acid sequences of recombinant CdiA-CT^{EC869} are shown, and the identified peptide sequences are colored red. CdiI^{EC869} was co-purified with histidine-tagged CdiA-CT^{EC869}. (**C**) The purified Tu, Ts, CdiA-CT^{EC869}, and CdiI^{EC869} used for this study were separated by 15% (w/v) SDS PAGE, and the gel was stained with Coomassie Brilliant Blue.

Supplementary Figure S2: Cleavage of tRNA^{Gln} variants by CdiA-CT^{EC869} under acidic conditions.

(A) Time course of cleavage of tRNA^{Gln} variants by CdiA-CT^{EC869} under lower-pH conditions (pH 5.7) in the absence of Tu, Ts, and GTP. The tRNA^{Gln} variants (1.0 μ M) were incubated with 0.1 μ M of CdiA-CT^{EC869} at 37°C. The fraction of cleaved tRNA was quantified at the indicated time points. (B) The cleavage of tRNA^{Gln} variants by CdiA-CT^{EC869} in the absence of Tu, Ts, and GTP. The tRNA^{Gln} transcript variants (1.0 μ M) were incubated with 0.1 μ M of CdiA-CT^{EC869} at 37°C for 10 min. The cleavage level of wild-type tRNA^{Gln} (U1A72) was defined as 1.0. The bars in the graphs are SDs of more than three independent experiments, and the data are presented as mean values ± SD.

Amino Acid	P	Acc-stem	Ι)-ster	n D-loop	D-ste	m A	c-stem	Ac-loop	Ac-ste	em V-region	T-ster	T-loop	r-stem	Acc-sten	n	CCA
	-1	1	8	10	14	22	26	27	32	39	4.4	49	53	61	66 7	73	74
Asn GTT	_	TCCTCTG	ŤА	GTTC	AGTC-GGT	A GAA	G	GCGGA	CTGTTAA	TCCGT	ATG	IC ACTGG	TTCGAGT	CCAGT	CAGAGGA	G	CCA
Gln CTG	_	TGGGGTA	TC	GCCA	AGCGGT	A AGG	C A	CCGGA	TTCTGAT	TCCGG	САТ	C CGAGG	TTCGAAT	CCTCG	TACCCCA	G	CCA
Gln TTG	_	TGGGGTA	TC	GCCA	AGCGGT	A AGG	C A	CCGGT	TTTTGAT	ACCGG	САТ	IC CCTGG	TTCGAAT	CCAGG	TACCCCA	G	CCA
Ini CAT	_	CGCGGGG	тG	GAGC	AGCCTGGT	A GCT	G	TCGGG	CTCATAA	CCCGA	AGA	IC GTCGG	TTCAAAT	CCGGC	CCCCGCA	A	CCA
Ini CAT	_	CGCGGGG	TG	GAGC	AGCCTGGT	A GCT		TCGGG	CTCATAA	CCCGA	AG	IC GTCGG	TTCAAAT	CCGGC	CCCCGCA	A	CCA
Trp_CCA	_	AGGGGGG	TA	GTTC	AATT-GGT	A GAG	Д	CCGGT	CTCCAAA	ACCGG	GTG	TT GGGAG	TTCGAGT	CTCTC	CGCCCCT	G	CCA
119_0011		1000000	111	0110	001			00001	01001111	10000	0.1	00010	1100101	01010	000001		0024
22.000		0000077	(T) 7	0.050			~ ~	00000		00770				0000m		-	007
Ala_GGC	-	GGGGGCTA	TA	GCTC	AGCT-GGG	A GAG	G	CTTGC	ATGGCAT	GCAAG	AGG	PC AGCGG	TTCGATC	CCGCT	TAGCTCC	A	CCA
Ala_TGC	-	GGGGCTA	TA	GCTC	AGCT-GGG	A GAG	G	CCTGC	TTTGCAC	GCAGG	AGG	rc TGCGG	TTCGATC	CCGCA	TAGCTCC	А	CCA
Arg_ACG	-	GCATCCG	TA	GCTC	AGCT-GGAT-	A GAG	ΓA	CTCGG	CTACGAA	CCGAG	CGG	rc ggagg	TTCGAAT	CCTCC	CGGATGC	A	CCA
Arg_CCG	-	GCGCCCG	ΤA	GCTC	AGCT-GGAT-	A GAG	GG	CTGCC	CTCCGGA	GGCAG	AGG	IC TCAGG	TTCGAAT	CCTGT	CGGGCGC	G	CCA
Arg_CCT	-	GTCCTCT	ΤA	GTTA	AATGGAT-	A TAA	GG	AGCCC	CTCCTAA	GGGCT	ААТ	-T GCAGG	TTCGATT	CCTGC	AGGGGAC	А	CCA
Arg_TCT	-	GCGCCCT	TA	GCTC	AGTT-GGAT-	A GAG	CA	ACGAC	CTTCTAA	GTCGT	GGG	CC GCAGG	TTCGAAT	CCTGC	AGGGCGC	G	CCA
Asp_GTC	-	GGAGCGG	ΤA	GTTC	AGTC-GGTT-	A GAA	ΓA	CCTGC	CTGTCAC	GCAGG	GGG	rc gcggg	TTCGAGT	CCCGT	CCGTTCC	G	CCA
Cys_GCA	-	GGCGCGT	ΤA	ACAA	AGCGGT	T ATG	ΓA	GCGGA	TTGCAAA	TCCGT	СТА	-G TCCGG	TTCGACT	CCGGA	ACGCGCC	Т	CCA
Glu_TTC	-	GTCCCCT	TC	GTCT	AGAGGCCC	A GGA	CA	CCGCC	CTTTCAC	GGCGG	ТАА	-C AGGGG	TTCGAAT	CCCCT	AGGGGAC	G	CCA
Gly_CCC	-	GCGGGCG	ΤA	GTTC	AATGGT	A GAA	GG	AGAGC	TTCCCAA	GCTCT	АТА	-C GAGGG	TTCGATT	CCCTT	CGCCCGC	Т	CCA
Gly_GCC	-	GCGGGAA	ΤA	GCTC	AGTT-GGT	A GAG	CA	CGACC	TTGCCAA	GGTCG	GGG	IC GCGAG	TTCGAGT	CTCGT	TTCCCGC	Т	CCA
Gly_TCC	-	GCGGGCA	TC	GTAT	AATGGCT-	A TTA	CC	TCAGC	CTTCCAA	GCTGA	TGA	-T GCGGG	TTCGATT	CCCGC	TGCCCGC	Т	CCA
His_GTG	G	GTGGCTA	ΤA	GCTC	AGTT-GGT	A GAG	C C	CTGGA	TTGTGAT	TCCAG	TTG	FC GTGGG	TTCGAAT	CCCAT	TAGCCAC	С	CCA
Ile_GAT	-	AGGCTTG	ΤA	GCTC	AGGT-GGTT-	A GAG	C G	CACCC	CTGATAA	GGGTG	AGG	rc ggtgg	TTCAAGT	CCACT	CAGGCCT	А	CCA
Ile_CAT	-	GGCCCCT	ΤA	GCTC	AG-T-GGTt-	A GAG	CA	GGCGA	CTCATAA	TCGCT	TGG	IC GCTGG	TTCAAGT	CCAGC	AGGGGCC	А	CCA
Ile CAT	-	GGCCCTT	ΤA	GCTC	AG-T-GGTt-	A GAG	C A	GGCGA	CTCATAA	TCGCT	TGG	IC GCTGG	TTCAAGT	CCAGC	AAGGGCC	А	CCA
Leu CAA	-	GCCGAAG	ΤG	GCGA	AATC-GGTA-	G ACG	C A	GTTGA	TTCAAAA	TCAAC	CGTAGAAATAC	GT GCCGG	TTCGAGT	CCGGC	CTTCGGC	А	CCA
Leu CAG	-	GCGAAGG	ΤG	GCGG	AATT-GGTA-	G ACG	C G	CTAGC	TTCAGGT	GTTAG	TGTTCTTACGGAC	GT GGGGG	TTCAAGT	ccccc	CCCTCGC	А	CCA
Leu CAG	-	GCGAAGG	ΤG	GCGG	AATT-GGTA-	G ACG	C G	CTAGC	TTCAGGT	GTTAG	TGTCCTTACGGAC	GT GGGGG	TTCAAGT	ccccc	CCCTCGC	А	CCA
Leu GAG	-	GCCGAGG	ΤG	GTGG	AATT-GGTA-	G ACA	C G	CTACC	TTGAGGT	GGTAG	TGCCCAATAGGGC	TT ACGGG	TTCAAGT	CCCGT	CCTCGGT	А	CCA
Leu TAA	-	GCCCGGA	ΤG	GTGG	AATC-GGTA-	G ACA	C A	AGGGA	TTTAAAA	TCCCT	CGGCGTTCGCGCT	GT GCGGG	TTCAAGT	CCCGC	TCCGGGT	А	CCA
Leu TAG	-	GCGGGAG	ΤG	GCGA	AATT-GGTA-	G ACG	C A	CCAGA	TTTAGGT	TCTGG	CGCCGCAAGGT	GT GCGAG	TTCAAGT	CTCGC	CTCCCGC	А	CCA
Lvs TTT	_	GGGTCGT	TA	GCTC	AGTT-GGT	A GAG	C A	GTTGA	CTTTTAA	TCAAT	TGG	C GCAGG	TTCGAAT	CCTGC	ACGACCC	А	CCA
Met CAT	_	GGCCCCT	TА	GCTC	AGTGGTT-	A GAG	CA	GGCGA	CTCATAA	TCGCT	ТGG	IC GCTGG	TTCAAGT	CCAGC	AGGGGCC	A	CCA
Met CAT	_	GGCCCTT	TА	GCTC	AGTGGTT-	A GAG	C A	GGCGA	СТСАТАА	TCGCT	ТGG	IC GCTGG	TTCAAGT	CCAGC	AAGGGCC	A	CCA
Met CAT	_	GGCTACG	TΑ	GCTC	AGTT-GGTT-	A GAG	A	CATCA	CTCATAA	TGATG	666	C ACAGG	TTCGAAT	CCCGT	CGTAGCC	A	CCA
Phe GAA	_	GCCCGGA	TΔ	GCTC	AGTC-GGT	A GAG		GGGGA	TTGAAAA	TCCCC	GTG	C CTTGG	TTCGATT	CCGAG	TCCGGGC	A	CCA
Pro_CGG	_	CGGTGAT	TG	0100	AGCCTGGT			CTTCG	TTCGGGA	CGAAG	666		TTCGAAT	CCTCT	ATCACCG	D	CCA
Pro_CCC	_	CCCCACC	TΔ	acac	ACCCTCCT			CCGTC	ATCCCCT	GTCGG	666		TTCALAT	CCTCT	CGTGCCG	Δ	CCA
Pro_TGG	_	CCCCCAC	TΠ ΤΠ	GCGC	ACCTTCCT			ACTCC	TTTCCCA	CCAGT	666	C CGACC	TTCCAAT	CCTCT	CTCGCCG	A	CCA
FIO_IGG		CCACACA	TA	CCCC	AGCIIGGI			ACIGO	CTCCADA	ACCCC		C CCCCC	TTCGAAT	CCCCC	TCTCGCCG	A C	CCA
Ser_CGA	-	CCTCACC	TG	CCGG	AGCGGCIG	A ACG		CCGGI	CICGAAA	ACCGG	AGIAGGG-GCAA-CICIAC		TICAAAI	CCCCC	CCTCACC	G	CCA
Ser_GCI	-	GGIGAGG	TG	GCCG	AGAGGCIG	A AGG		CICCC	CIGCIAA	GGGAG	TAIGCGGICAAA-AGCIGCAI		TICGAAI	CCCCG	CCTCACC	G	CCA
Ser_GGA	_	GGIGAGG	TG	CCCG	AGIGGCIG	A AGG	A G	CACGC	CIGGAAA	GIGIG	TATACGGCAACGTAT	C GBGGGG	TICGAAI	CUCCU	CCTCACC	G	CCA
Ser_IGA	-	GGAAGTG	TG	GCCG	AGCGGTTG	A AGG		CCGGT	CIIGAAA	ACCGG	CGACCCGAAAGGGTT	-C CAGAG	TTCGAAT	CICIG	CGCTTCC	G	CCA
Thr_CGT	-	GCTCAAG	TA	GTTA	AAAA-TGCA-	T TAA	C A	TCGCA	TTCGTAA	TGCGA	AGG	IC GTAGG	TTCGACT	CCTAT	TATCGGC	А	CCA
Thr_CGT	-	GCCGATA	ΤA	GCTC	AGTT-GGT	A GAG	CA	GCGCA	TTCGTAA	TGCGA	AGG	I'C G'I'AGG	TTCGACT	CCTAT	TATCGGC	А	CCA
Thr_GGT	-	GCTGATA	ΤG	GCTC	AGTT-GGT	A GAG	GG	CACCC	TTGGTAA	GGGTG	AGG	IC CCCAG	TTCGACT	CTGGG	TATCAGC	Α	CCA
Thr_GGT	-	GCTGATA	ΤA	GCTC	AGTT-GGT	A GAG	G	CACCC	TTGGTAA	GGGTG	AGG	I'C GGCAG	TTCGAAT	CTGCC	TATCAGC	А	CCA
Thr_TGT	-	GCCGACT	ΤA	GCTC	AGTA-GGT	A GAG	C A	ACTGA	CTTGTAA	TCAGT	AGG	rc accag	TTCGATT	CCGGT	AGTCGGC	Α	CCA
Tyr_GTA	-	GGTGGGG	ΤT	CCCG	AGCGGCCA	A AGG	G A	GCAGA	CTGTAAA	TCTGC	CGTCATCGACT	IC GAAGG	TTCGAAT	CCTTC	CCCCACC	Α	CCA
Tyr_GTA	-	GGTGGGG	TΤ	CCCG	AGCGGCCA	A AGG	G A	GCAGA	CTGTAAA	TCTGC	CGTCACAGACT	IC GAAGG	TTCGAAT	CCTTC	CCCCACC	А	CCA
Val_GAC	-	GCGTTCA	ΤA	GCTC	AGTT-GGTT-	A GAG	CA	CCACC	TTGACAT	GGTGG	GGG	IC GTTGG	TTCGAGT	CCAAT	TGAACGC	А	CCA
Val_GAC	-	GCGTCCG	ΤA	GCTC	AGTT-GGTT-	A GAG	CA	CCACC	TTGACAT	GGTGG	GGG	rc ggtgg	TTCGAGT	CCACT	CGGACGC	Α	CCA
Val_TAC	-	GGGTGAT	ΤA	GCTC	AGCT-GGG	A GAG	CA	CCTCC	CTTACAA	GGAGG	GGG	rc ggcgg	TTCGATC	CCGTC	ATCACCC	А	CCA

Supplementary Figure S3: Sequence alignments of *E. coli* tRNA genes (2).

В

С

D

Е

Supplementary Figure S4: Cleavage sites in tRNAf^{Met} and tRNA^{Trp} by CdiA-CT^{EC869} in vitro.

(A) Clover-leaf structures of *E. coli* tRNA^{Gln}CUG, tRNA^{Trp}CCA, and tRNA^{fMet}CAU. Cleavage sites in tRNAs are indicated by arrows. (B)-(D) Whole-mass analysis of CdiA-CT-treated tRNAs for Gln (B), Trp (C), and fMet (D). After tRNA cleavage by CdiA-CT in the presence of Tu, Ts and GTP, the cleaved products were separated by PAGE, purified, and analyzed. Left and right panels show ESI-MS of intact and CdiA-CT-treated tRNAs, respectively. A series of multiply charged negative ions (black) with charge values (blue) are shown in each mass spectrum. The deconvoluted molecular mass (Observed) and calculated value (Calculated) are shown in the inset. MS peaks of HFIP adducts are asterisked. The molecular mass reductions of tRNAs upon CdiA treatment indicated that these tRNAs are cleaved between positions 71 and 72, yielding terminal 2'-3' cyclic phosphate ends. (E) Time courses of the cleavage of tRNA^{Trp} and tRNA_f^{Met} by CdiA-CT^{EC869} in the presence of Tu, Ts, and GTP at pH 7.4. The tRNAs (1.0 μ M) were incubated with 0.6 μ M of CdiA-CT^{EC869} at 37°C in the presence of 0.6 μ M Tu, 0.6 μ M Ts, and 1 mM GTP. The fraction of each cleaved tRNA was quantified at the indicated time points. The bars in the graphs are SDs of more than three independent experiments.

Supplementary Figure S5: Changes of aa-tRNA levels after CdiA-CT^{EC869} expression.

(A) LC/MS analyses of RNase I–digested RNAs prepared from *E. coli* with or without CdiA-CT^{EC869} induction. The amount of each Ac-aa-A76 derived from the aminoacyl-tRNA prepared from cells, with or without induction of CdiA-CT^{EC869}, is expressed relative to the amount of Ac-Ala-A76 in each cell, with or without induction of CdiA-CT^{EC869}, respectively. (**B**) Quantification of relative amounts of each aa-tRNA (or formyl-Met-tRNA_f^{Met}: fMet) in *E. coli* with (pBAD33_CdiA-CT) or without (pBAD33_empty) induction of CdiA-CT^{EC869}. The amount of Ala-tRNA^{Ala} in each cell with or without CdiA-CT^{EC869} induction was set to 1.0. Lys-2 and Tyr-2 correspond to the products acetylated at the amino group and hydroxy group of the side chains, respectively, in addition to the α -amino groups. The bars in the graphs are SDs of more than three independent experiments.

Supplementary Figure S6: Uncharged- and aminoacylated-tRNAs are cleaved by CdiA-CT^{EC869} in the presence of translation factors.

tRNA^{Gln} (tRNA, open box) and Gln-tRNA^{Gln} (aa-tRNA, closed box) cleavage by CdiA-CT^{EC869} in the presence of Tu, Ts, and GTP at 37°C. For cleavage of Gln-tRNA^{Gln}, 1.0 μ M tRNA^{Gln} was first aminoacylated by GlnRS (1.0 μ M) for 60 min in buffer containing 20 mM Tris-Cl, pH 7.4, 150 mM KCl, 5 mM MgCl₂, 10 mM β -mercaptoethanol, 4 mM ATP, and 200 μ M glutamine, and was then cleaved by increasing amounts of CdiA-CT^{EC869} (0.05, 0.1, 0.2, and 0.3 μ M), in the presence of translation factors (0.05, 0.1, 0.2, and 0.3 μ M each) and GTP (1 mM) for 10 min. The tRNA cleavage levels were quantified. The bars in the graphs are SDs of more than three independent experiments.

Supplementary Figure S7: Purification of Tu and Ts variants used in this study.

(A) Tu variants and (B) Ts variants were separated by 15% (w/v) SDS PAGE, and the gels were stained with Coomassie Brilliant Blue. Tu_wt* and H84A* in (A) were purified as previously described (3).

Supplementary Figure S8: The role of Tu_H84A in the enhancement of tRNA cleavage by CdiA-CT^{EC869}. (A) GTP requirement for the enhancement of tRNA cleavage by CdiA-CT^{EC869} in the presence of Tu_H84A and Ts. The tRNA^{Gln} transcript (1.0 μ M) was incubated at 37°C with 0.1 μ M of CdiA-CT^{EC869} in the presence of Tu_H84A (0.1 μ M) and Ts (0.1 μ M) with or without GTP (1 mM). (B) Ts requirement for the enhancement of tRNA cleavage by CdiA-CT^{EC869} in the presence of Tu_H84A and GTP. The tRNA^{Gln} transcript (1.0 μ M) was incubated at 37°C with 0.1 μ M of CdiA-CT^{EC869} in the presence of Tu_H84A and GTP. The tRNA^{Gln} transcript (1.0 μ M) was incubated at 37°C with 0.1 μ M of CdiA-CT^{EC869} in the presence of Tu_H84A (0.1 μ M) and GTP (1 mM), with or without Ts (0.1 μ M).

Supplementary Figure S9: Excess Tu does not compensate for the absence of Ts.

Cleavage of tRNA^{Gln} by CdiA-CT^{EC869} in the presence of increasing amounts of Tu and GTP, in the absence of Ts. The tRNA^{Gln} transcript (1.0 μ M) was incubated at 37°C with 0.2 μ M of CdiA-CT^{EC869} in the presence of Tu (0.2–2.0 μ M) and GTP (1 mM). Addition of 0.2 μ M Ts promoted cleavage of tRNA^{Gln} at pH 7.4.

Supplementary Figure S10: Interaction between CdiA-CT^{EC869} and Tu, Ts, and tRNA.

(A) Histidine-tagged CdiA-CT^{EC869} (5 µM, His₆-CdiA-CT) was mixed with equal amounts of Tu and Ts (and Cdil^{EC869}) in 200 μl of A-buffer, containing 20 mM Tris-Cl, pH 7.0, 150 mM NaCl, 5 mM β-mercaptoethanol, and 20 mM imidazole (input), and the mixture was loaded onto Ni-NTA resin (150 ul) in a Poly-Prep chromatography column (Bio-Rad, Japan). The flow-through (FT) was collected, and the Ni-NTA was washed three times with 500 µl of A-buffer (washes 1, 2, and 3). His₆-CdiA-CT was eluted from the resin with 200 µl of buffer, containing 20 mM Tris-Cl, pH 7.0, 150 mM NaCl, 5 mM β-mercaptoethanol, and 500 mM imidazole (elution). The samples were separated by 15% (w/v) SDS-PAGE and the gel was stained with Coomassie Brilliant Blue. (B) His-tagged CdiA-CT(H281A) was mixed with Tu and Ts in the presence or absence of tRNA or GTP, and the mixture was loaded onto a Ni-NTA column. The column was washed, and finally, CdiA-CT was eluted from the column. Proteins were visualized by SDS-PAGE and staining with CBB, and tRNA was visualized by PAGE and staining with ethidium bromide as in Figure 5G. (C) His-tagged CdiA-CT(H281A) was mixed with Tu or Tu and Ts (or Ts Δ CC) in the presence of tRNA and GTP under two different salt conditions (upper panel: 50 mM NaCl and lower panel: 150 mM NaCl), and the mixture was loaded onto a Ni-NTA column. The column was washed, and finally, CdiA-CT was eluted from the column as in (B). (D) His-tagged CdiA-CT(H281A) was mixed with sg-Tu-Ts (or sgEF-Tu-Ts Δ CC) in the presence of tRNA and GTP. The column was washed, and finally, CdiA-CT was eluted from the column as in (B). For the experiments in (B)-(D), we used catalytically inactive CdiA-CT with H281A mutation, CdiA-CT (H281A), instead of using wild-type CdiA-CT, because tRNA could be cleaved during the pre-incubation of tRNA with wild-type CdiA-CT.

Supplementary Figure S11: Electron density map.

Stereoviews of the 2mFo-DFc electron densities of the residues around the CdiA-CT and Tu interface are shown in blue contoured at 1.0 σ .

Supplementary Figure S12: (**A**) Structural comparison of CdiA-CT:CdiI complexes from *E. coli* EC869 (cyan), NC101 (green) (4), *Klebsiella pneumoniae* 342 (yellow) (5), and *E. coli* EC3006 (magenta) (5). For clarity, CdiA-CTs are colored in gray. (**B**, **C**) Interactions between CdiA-CT^{EC869} (cyan) and CdiI^{EC869} (magenta). (**D**, **E**) Interactions between CdiA-CT^{EC869} (cyan) and domain II of Tu (yellow). Tu secondary structure elements are labeled according to the literature (6).

Supplementary Figure S13: CdiA-CT^{EC869} variants with reduced toxicity and tRNase activity.

(A) Amino acid sequence of CdiA-CT^{EC869}. The VENN motif (green), filamentous domain (red) and toxin domain (cyan) of CdiA-CT^{EC869} are depicted. (B) The cytotoxic activity of CdiA-CT^{EC869} is reduced by the His281Ala mutation (H218A) or deletion of five C-terminal amino acid residues (Δ C5). Overnight cultures of *E. coli* MG1655 transformed with pBAD33_CdiA-CT^{EC869}, pBAD33_CdiA-CT^{EC869}_H281A, and pBAD33_CdiA-CT^{EC869}_ Δ C5 were serially diluted, and the dilutions were spotted on LB agar plates containing 50 µg/ml chloramphenicol supplemented with 1% (w/v) arabinose (lower panel) or 1% (w/v) glucose (upper panel). (C) The His281Ala mutation (H281A) or deletion of the C-terminal five amino acids (Δ C5) decreased tRNA cleavage activity *in vitro*. Reactions were performed in the presence of Tu, Ts, and GTP, and the tRNA^{Gln} transcript was used as the substrate. The tRNA^{Gln} transcript (1.0 µM) was incubated at 37°C for 10 min with 0.5 µM of CdiA-CT^{EC869} or its variants in the presence of Tu (0.5 µM), and GTP (1 mM). The arrow indicates tRNA^{Gln} cleaved by CdiA-CT^{EC869}.

Supplementary Table S1

Gene	Nucleotide sequence
tRNA ^{Gln} U1A72 (wt)	5'-
	gaattcTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGATGG
	GGTATCGCCAAGCGGTAAGGCACCGGATTCTGATTCCGGCATTCCGAGGTT
	CGAATCCTCGTACCCCAGCCAggctagctaCATCCAAGCTT-3'
tRNA ^{Gln} U1G72	5'-
	gaattcTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGATGG
	GGTATCGCCAAGCGGTAAGGCACCGGATTCTGATTCCGGCATTCCGAGGTT
	CGAATCCTCGTACCCCGGCCAggctagctaCATCCAAGCTT-3'
tRNA ^{Gln} U1C72	5'-
	gaattcTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGATGG
	GGTATCGCCAAGCGGTAAGGCACCGGATTCTGATTCCGGCATTCCGAGGTT
	CGAATCCTCGTACCCCGCCAggctagctaCATCCAAGCTT-3'
tRNA ^{Gln} U1U72	5'-
	gaattcTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGATGG
	GGTATCGCCAAGCGGTAAGGCACCGGATTCTGATTCCGGCATTCCGAGGTT
	CGAATCCTCGTACCCCTGCCAggctagctaCATCCAAGCTT-3'
tRNA ^{Gln} A1A72	5'-
	gaattcTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAGG
	GGTATCGCCAAGCGGTAAGGCACCGGATTCTGATTCCGGCATTCCGAGGTT
	CGAATCCTCGTACCCCAGCCAggctagctaCATCCAAGCTT-3'
tRNA ^{Gln} G1A72	5'-
	gaattcTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAGGG
	GGTATCGCCAAGCGGTAAGGCACCGGATTCTGATTCCGGCATTCCGAGGTT
	CGAATCCTCGTACCCCAGCCAggctagctaCATCCAAGCTT-3'
tRNA ^{Gln} C1A72	5'-
	gaattcTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGACGG
	GGTATCGCCAAGCGGTAAGGCACCGGATTCTGATTCCGGCATTCCGAGGTT
	CGAATCCTCGTACCCCAGCCAggctagctaCATCCAAGCTT-3'
tRNA ^{Gln} A1U72	5'-
	gaattcTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAGG
	GGTATCGCCAAGCGGTAAGGCACCGGATTCTGATTCCGGCATTCCGAGGTT
	CGAATCCTCGTACCCCTGCCAggctagctaCATCCAAGCTT-3'
tRNA ^{Gln} G1C72	5'-
	gaattcTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAGGG

Nucleotide sequences of the synthetic *E. coli* tRNAs and CdiA-CT/CdiI^{EC869} genes

	GGTATCGCCAAGCGGTAAGGCACCGGATTCTGATTCCGGCATTCCGAGGTT
	CGAATCCTCGTACCCCGCCAggctagctaCATCCAAGCTT-3'
tRNA ^{Gln} A73	5'-
	gaattcTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGATGG
	GGTATCGCCAAGCGGTAAGGCACCGGATTCTGATTCCGGCATTCCGAGGTT
	CGAATCCTCGTACCCCAACCAggctagctaCATCCAAGCTT-3'
tRNA ^{Gln} U73	5'-
	gaattcTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGATGG
	GGTATCGCCAAGCGGTAAGGCACCGGATTCTGATTCCGGCATTCCGAGGTT
	CGAATCCTCGTACCCCATCCAggctagctaCATCCAAGCTT-3'
tRNA ^{Trp}	5'-
	GAATTCTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAA
	GGGGCGTAGTTCAATTGGTAGAGCACCGGTCTCCAAAACCGGGTGTTGGGA
	GTTCGAGTCTCTCCGCCCTGCCAGGCTAGCTACATCCAAGCTT-3'
CdiA-CT ^{EC869} (amino acid	5'-
residues 1-286) and	GTTGAGAATAACTATCTGAGTAAAGCCCAGAAAGCTCAAAAAGCCGATGA
CdiI ^{EC869} (blue letters;	GCTGGCTAAATGTCAGACTGCTGCCTGTAAGGCTCAGACAGA
amino acid residues 1–	GGACGGCAATTGACCTGGGGCAGGATGGTAGCTTTGCTGCAGGAATGATTG
179) coding sequences	CTGGGGTTCCTGCCGGGCTGTATGATGCTGTGGATAGTATTGTAAAAGCAG
	GTTCTAACCCGACGGAAACCCTGGAGGCAATGAAAGCGCTGTTTAACAGC
	GGCGATATCTTGGGTTCGTTATCGGATGCGGTTAAGCAATCTTATATAGAC
	CGTATTGACCGAATGGAAGCCGAATATCAGAAAGCTGGTACCAGCGGTTC
	GTTTAATGCAGGCGTTGAAGGCGGTAAGCTGATTACTGATATTGCCGGGCT
	GCTGGCTGGCGGCGTTGGCGTTGTGAAAGGTGGTGCGGTACTGACGGAGA
	AGGTTGTTGCTAAGGTTGTGGGTAAGTCTGAATCAGCAGCGGCAAAAGTTG
	GTACAGATATTGTTAAAACAGGAACCGTTTTCGACTCAATTAAAGCGACTC
	AACCTGCGATACCAGGAACATCCATTCCAAAAATCTTTTGAATTACATGTTA
	ACGGACAAACCGTTTGGGTAAACCCAAATGCAACTAAACATATGGGCGAA
	TATTTAACACGGAATGGATTGTCTCACAGTACAGCAGAAGGAAG
	CATGCTGACCAGTCTTCAAAGTGCGGTTAAAGATGCATTTTCGCAGGGATT
	AAAATTTAACGAAAAAATGCAAGTTGGACGCTGGGAACTGGTATTTAGCC
	AACGGTCTTCAGATCCTTATCCAGTATTAAAGCATGCGTTGTATAAATAA
	GAAATTAACTGTAGATAGCGTTATTAATGAACCTAGAAGCGTAGCCATTAC
	TATTGATGGTTATATTCCCGTTGATATAAAGATTATTGATTCTAAAAAGCTT
	CCGCCTTTGTATTGGCGGGGGGGGGGGGGGGGGGGGGGG
	GCTGTACTACCAGAAAATGGTTTTTTATCATCCATCACATTGGTAATGATAG
	CATCAGACTCAATTCATAAAACAGACTCCTTGTCAGTATCTTTACCAAGCA
	GTGAGTGTGGAGTTCCTGTAGTGAATACAAAACTGTGGAGCCACTCAGAAA
	GTGATGATTTTAGTCGTCGTTTTGTTGACGATTTTAGCCTTGATATTGAGGT
	GATTATATCATCAGAGTCTATGTTATTAACGATTGGAGAGAATAAAAAGGT

AACTAGCTGGATAAAATGTAGCGATAATTTTTATCTCGGGATAGATGCAGG
AAGAAATGTCGTTCATTTGTATTTGGATAAGTTAACACCAAGTGAAGTGGA
AAGTTTTTTGAGGCAGTAGGTTAG-3'

Nucleotide sequences of Tu and Ts

Tu (amino acid residues 1-	5'-
394) coding sequence	TCTAAAGAAAAGTTTGAACGTACAAAACCGCACGTTAACGTCGGTACTAT
	CGGCCACGTTGACCATGGTAAAACAACGCTGACCGCTGCAATCACTACCG
	TACTGGCTAAAACCTACGGCGGTGCTGCTCGCGCATTCGACCAGATCGAT
	AACGCGCCGGAAGAAAAAGCTCGTGGTATCACCATCAACACTTCTCACGT
	TGAATACGACACCCCGACCCGTCACTACGCACACGTAGACTGCCCGGGGC
	ACGCCGACTATGTTAAAAACATGATCACCGGTGCTGCGCAGATGGACGG
	CGCGATCCTGGTAGTTGCTGCGACTGACGGCCCGATGCCGCAGACTCGTG
	AGCACATCCTGCTGGGTCGTCAGGTAGGCGTTCCGTACATCATCGTGTTC
	CTGAACAAATGCGACATGGTTGATGACGAAGAGCTGCTGGAACTGGTTG
	AAATGGAAGTTCGTGAACTTCTGTCTCAGTACGACTTCCCGGGCGACGAC
	ACTCCGATCGTTCGTGGTTCTGCTCTGAAAGCGCTGGAAGGCGACGCAGA
	GTGGGAAGCGAAAATCCTGGAACTGGCTGGCTTCCTGGATTCTTACATTC
	CGGAACCAGAGCGTGCGATTGACAAGCCGTTCCTGCTGCCGATCGAAGA
	CGTATTCTCCATCTCCGGTCGTGGTACCGTTGTTACCGGTCGTGTAGAACG
	CGGTATCATCAAAGTTGGTGAAGAAGTTGAAATCGTTGGTATCAAAGAG
	ACTCAGAAGTCTACCTGTACTGGCGTTGAAATGTTCCGCAAACTGCTGGA
	CGAAGGCCGTGCTGGTGAGAACGTAGGTGTTCTGCTGCGTGGTATCAAAC
	GTGAAGAAATCGAACGTGGTCAGGTACTGGCTAAGCCGGGCACCATCAA
	GCCGCACACCAAGTTCGAATCTGAAGTGTACATTCTGTCCAAAGATGAAG
	GCGGCCGTCATACTCCGTTCTTCAAAGGCTACCGTCCGCAGTTCTACTTCC
	GTACTACTGACGTGACTGGTACCATCGAACTGCCGGAAGGCGTAGAGAT
	GGTAATGCCGGGCGACAACATCAAAATGGTTGTTACCCTGATCCACCCGA
	TCGCGATGGACGACGGTCTGCGTTTCGCAATCCGTGAAGGCGGCCGTACC
	GTTGGCGCGGGCGTTGTAGCAAAAGTTCTGAGCTAA-3'
Ts (amino acid residues 1–	5'-
283) coding sequence	GCTGAAATTACCGCATCCCTGGTAAAAGAGCTGCGTGAGCGTACTGGCG
	CAGGCATGATGGATTGCAAAAAAGCACTGACTGAAGCTAACGGCGACAT
	CGAGCTGGCAATCGAAAACATGCGTAAGTCCGGTGCTATTAAAGCAGCG
	AAAAAAGCAGGCAACGTTGCTGCTGACGGCGTGATCAAAAACCAAAATCG
	ACGGCAACTACGGCATCATTCTGGAAGTTAACTGCCAGACTGACT
	GCAAAAGACGCTGGTTTCCAGGCGTTCGCAGACAAAGTTCTGGACGCAG
	CTGTTGCTGGCAAAATCACTGACGTTGAAGTTCTGAAAGCACAGTTCGAA
	GAAGAACGTGTTGCGCTGGTAGCGAAAATTGGTGAAAACATCAACATTC

GCCGCGTTGCTGCGCTGGAAGGCGACGTTCTGGGTTCTTATCAGCACGGT
GCGCGTATCGGCGTTCTGGTTGCTGCTAAAGGCGCTGACGAAGAGCTGGT
TAAACACATCGCTATGCACGTTGCTGCAAGCAAGCCAGAATTCATCAAA
CCGGAAGACGTATCCGCTGAAGTGGTAGAAAAAGAATACCAGGTACAGC
TGGATATCGCGATGCAGTCTGGTAAGCCGAAAGAAATCGCAGAGAAAAT
GGTTGAAGGCCGCATGAAGAAATTCACCGGCGAAGTTTCTCTGACCGGT
CAGCCGTTCGTTATGGAACCAAGCAAAACTGTTGGTCAGCTGCTGAAAG
AGCATAACGCTGAAGTGACTGGCTTCATCCGCTTCGAAGTGGGTGAAGG
CATCGAGAAAGTTGAGACTGACTTTACAGCAGAAGTTGCTGCGATGTCC
AAGCAGTCTTGA-3'

Supplementary Table S2: Oligonucleotide sequences

Oligonucleotide	Sequence (5' to 3' direction)
GlnRS-for_NdeI	AGCTAGCTCATATGAGTGAGGCAGAAGCCCG
GlnRS-rev_XhoI	AGCTCTCGAGCTCGCCTACTTTCGCCCAGGTA
Tu_N51A-for	gcgGCGCCGGAAGAAAAAGCTCGTGGTATCACC
Tu_N51A-rev	ATCGATCTGGTCGAATGCGCGAGCAGCACC
Tu_E54A-for	gcgGAAAAAGCTCGTGGTATCACCATCAACACTTC
Tu_E54A-rev	CGGCGCGTTATCGATCTGGTCGAATGCGCGAGC
Tu_R58A-for	gcgGGTATCACCATCAACACTTCTCACGTTG
Tu_R58A-rev	AGCTTTTTCTTCCGGCGCGTTATCGATCTGGTCG
Tu_H66A-for	gcgGTTGAATACGACACCCCGACCCGTCACTACG
Tu_H66A-rev	AGAAGTGTTGATGGTGATACCACGAGCTTTTTC
Tu_H84A-for	gcgGCCGACTATGTTAAAAACATGATCACCGG
Tu_H84A-rev	CCCCGGGCAGTCTACGTGTGCGTAGTGACGGGTC
Tu_Y87A-for	gcgGTTAAAAACATGATCACCGGTGCTGCGCAGA
Tu_Y87A-rev	GTCGGCGTGCCCCGGGCAGTCTACGTGTGC
Tu_K89A N90A-for	gcggcgATGATCACCGGTGCTGCGCAGATGGAC
Tu_K89A N90A-rev	AACATAGTCGGCGTGCCCCGGGCAGTCTACGTG
Tu_N135A-for	gcgAAATGCGACATGGTTGATGACGAAGAGCTGC
Tu_N135A-rev	CAGGAACACGATGATGTACGGAACGCCTACCTG
Tu_F218A-for	gcgTCCATCTCCGGTCGTGGTACCGTTGTTACCGG
Tu_F218A-rev	TACGTCTTCGATCGGCAGCAGGAACGGCTTG
Tu_R223A-for	gcgGGTACCGTTGTTACCGGTCGTGTAGAACGCGG
Tu_R223A-rev	ACCGGAGATGGAGAATACGTCTTCGATCGGCAGC
Tu_E259A-for	gcgATGTTCCGCAAACTGCTGGACGAAGGCCG
Tu_E259A-rev	AACGCCAGTACAGGTAGACTTCTGAGTCTCTTTG
Tu_R262A-for	gcgAAACTGCTGGACGAAGGCCGTGCTGGTGAG
Tu_R262A-rev	GAACATTTCAACGCCAGTACAGGTAGACTTCTGAG
Tu_R283A-for	gcgGAAGAAATCGAACGTGGTCAGGTACTGGC
Tu_R283A-rev	TTTGATACCACGCAGCAGAACACCTACGTTCTC
Tu_R288A-for	gcgGGTCAGGTACTGGCTAAGCCGGGCACCATC
Tu_R288A-rev	TTCGATTTCTTCACGTTTGATACCACGCAGCAG
Tu_R318A H319A-for	gcggcgACTCCGTTCTTCAAAGGCTACCGTCCGC
Tu_R319A H319A-rev	GCCGCCTTCATCTTTGGACAGAATGTACACTTCAG
Tu_T320A-for	gcgCCGTTCTTCAAAGGCTACCGTCCGCAG
Tu_T320A-rev	ATGACGGCCGCCTTCATCTTTGGACAGAATGTAC
Ts_A202E-for	gaaATGCAGTCTGGTAAGCCGAAAGAAATC
Ts_A202E-rev	GATATCCAGCTGTACCTGGTATTCTTTTTCTACC

Ts_K207A K209A-for	gcgCCGgcgGAAATCGCAGAGAAAATGGTTGAAGGC
Ts_K207A K209A-rev	ACCAGACTGCATCGCGATATCCAGCTGTACC
Ts_K214E-for	gaaATGGTTGAAGGCCGCATGAAGAAATTCACC
Ts_K214E-rev	CTCTGCGATTTCTTTCGGCTTACCAGACTGCATC
Ts_R219P-for	ccgATGAAGAAATTCACCGGCGAAGTTTCTCTG
Ts_R219P-rev	GCCTTCAACCATTTTCTCTGCGATTTCTTTCGG
Ts_R219A K221A K222A-	gcgATGgcggcgTTCACCGGCGAAGTTTCTCTG
for	
Ts_R219A K221A K222A-	GCCTTCAACCATTTTCTCTGCGATTTCTTTCGG
rev	
CdiA-for_NdeI	AGCTAGCTCATATGGTTGAGAATAACTATCTGAGTAAAGCC
CdiA-rev_XhoI_HindIII	AGCTAAGCTTCTCGAGTTATTTATACAACGCATGCTTTAATACTGG
CdiI-for_NdeI	AGCTAGCTCATATGAAATTAACTGTAGATAGCGTT
CdiI-rev_XhoI	AGCTCTCGAGCTAACCTACTGCCTCAAA
CdiA_H281A-for	gctGCGTTGTATAAATAATGAAATTAACTG
CdiA_H281A-rev	CTTTAATACTGGATAAGGATCTG
CdiA Δ C5-rev_XhoI_HindIII	AGCTAAGCTTCTCGAGTTACTTTAATACTGGATAAGGATCTGAAGACCG
CdiA_H216A-for	GCGATGGGCGAATATTTAACACGGAATGG
CdiA_H216A-rev	TTTAGTTGCATTTGGGTTTACCCAAACGG
CdiA_Y220F-for	TTTTTAACACGGAATGGATTGTCTCACAG
CdiA_Y220F-rev	TTCGCCCATGTGTTTAGTTGCATTTGGG
CdiA_R263A-for	gccTGGGAACTGGTATTTAGCCAACGG
CdiA_R263A-rev	TCCAACTTGCATTTTTCGTTAAATTTTAATCC
CdiA_R271A-for	gcgTCTTCAGATCCTTATCCAGTATTAAAG
CdiA_R271A-rev	TTGGCTAAATACCAGTTCCCAGCGTCC
Ala_probe	TGGAGCTAAGCGGGATCGAACCGCTGaCCTCTTGC
Asn_probe	CTCCTCTGACTGGACTCGAACCAGTGaCATACGGA
Gln_probe	CTGGGGTACGAGGATTCGAACCTCGGaATGCCGGA
Met_probe	TGGCTACGACGGGATTCGAACCTGTGACCCCATCA
fMet_probe	TTGCGGGGGCCGGATTTGAACCGACGaCCTTCGGG
Trp_probe	CAGGGGCGGAGAGACTCGAACTCCCAaCACCCGGT
Infusion_sumo_TsTu_For	aacagattggtggtCATATGGCTGAAATTACCGCATCCCTG
Infusion_sumo_TsTu_Rev	ccctcgagcccgggCATATGTTAGCTCAGAACTTTTGCTACAACG

Supplementary References

- Suzuki, T., Terasaki, M., Takemoto-Hori, C., Hanada, T., Ueda, T., Wada, A. and Watanabe, K. (2001) Proteomic Analysis of the Mammalian Mitochondrial Ribosome: IDENTIFICATION OF PROTEIN COMPONENTS IN THE 28 S SMALL SUBUNIT*. *Journal of Biological Chemistry*, 276, 33181-33195.
- 2. Chan, P.P. and Lowe, T.M. (2015) GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. *Nucleic Acids Res.*, **44**, D184-D189.
- Wieden, H.-J., Gromadski, K., Rodnin, D. and Rodnina, M.V. (2002) Mechanism of Elongation Factor (EF)-Ts-catalyzed Nucleotide Exchange in EF-Tu: CONTRIBUTION OF CONTACTS AT THE GUANINE BASE*. *Journal of Biological Chemistry*, 277, 6032-6036.
- Michalska, K., Gucinski, G.C., Garza-Sanchez, F., Johnson, P.M., Stols, L.M., Eschenfeldt, W.H., Babnigg, G., Low, D.A., Goulding, C.W., Joachimiak, A. *et al.* (2017) Structure of a novel antibacterial toxin that exploits elongation factor Tu to cleave specific transfer RNAs. *Nucleic Acids Res*, 45, 10306-10320.
- Gucinski, G.C., Michalska, K., Garza-Sánchez, F., Eschenfeldt, W.H., Stols, L., Nguyen, J.Y., Goulding, C.W., Joachimiak, A. and Hayes, C.S. (2019) Convergent Evolution of the Barnase/EndoU/Colicin/RelE (BECR) Fold in Antibacterial tRNase Toxins. *Structure (London, England : 1993)*, 27, 1660-1674.e1665.
- Nissen, P., Thirup, S., Kjeldgaard, M. and Nyborg, J. (1999) The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. *Structure*, 7, 143-156.