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I. SIMULATION METHODS

Contact function

The contact function is a sigmoidal function that cuts off interactions between distant

monomers, and this is used to calibrate the contact probability between genomic segments

[1]. The contact function f(ri,j) is defined as:

f(ri,j) =
1

2
(1 + tanh [µ(rc − ri,j]) (1)

where µ = 3.22 ad rc = 1.78 are used following previous calibration with experimental Hi-C

maps [1]. Note, the qualitative results discussed in the main text are not sensitive to small

changes in these parameters.

Interaction potential

Homopolymer

The homopolymer potential (UHP ) models a generic bead-spring polymer in which each

bead represents a genomic segment containing 20-50 Kb of DNA, where chromosome topol-

ogy fluctuations are controlled by using an energy barrier. This potential consists of the

following five terms, UFENE , UAngle , Uhc and, Usc:

UHP =
∑

i∈{Loci}

UFENE(ri,i+1) +
∑

i∈{Loci}

Uhc(ri,i+1) +
∑

i∈{Angles}

UAngle(θi) +
∑

i,j∈{Loci}
j>i+2

Usc(ri,j),

where,

UFENE(ri,j) =

−
1
2
kbR

2
0 ln
[
1−

(
ri,j
R0

)]
ri,j ≤ R0

0 ri,j > R0

UFENE (Finite Extensible Nonlinear Elastic potential) is the bonding term applied between

two consecutive monomers of a chromosome.

Uhc(ri,j) =


4ε

[(
σ
ri,j

)12
−
(

σ
ri,j

)6
+ 1

4

]
ri,j ≤ σ2

1
6

0 ri,j > σ2
1
6
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Uhc(ri,j) is the hard-core repulsive potential, include to avoid overlap between the bonded

nearest neighbor monomers.

UAngle(θi) = ka[1− cos(Θi − θ0)],

a three-body potential applied to all connected three consecutive monomers of a chromosome,

where Θi is the angle defined by two vectors ~ri,i+1 and ~ri,i−1, and θ0 = 0 is the equilibrium

angle.

The non-bonded pairs is defined by a soft-core repulsive interaction in the following form:

Usc(ri,j) =


1
2
Ecut

[
1 + tanh

(
2ULJ (ri,j)

Ecut
− 1
)]

ri,j ≤ r0

ULJ(ri,j) r0 ≤ ri,j ≤ σ2
1
6

0 ri,j > σ2
1
6

The expression ULJ correspond to the Lennard-Jones potential:

ULJ(ri,j) = 4ε

[(
σ

ri,j

)12

−
(
σ

ri,j

)6

+
1

4

]
,

capped off at a finite distance, thus allowing for chain crossing at finite energetic cost. The

parameter r0 is chosen as the distance at which ULJ(ri,j) = 1
2
Ecut. Note that this potential

is applied across all non-neighboring monomers of the system.

Lengthwise Compaction

We implement lengthwise compaction of the polymer as a sum of two terms:

ULC =
∑

i,j∈{Cis-loci}
j>i+3

− AL√
|i− j|

− AS exp(−|i− j|/`) (2)

where ` = 10 is the characteristic length of short-range compaction. The potential is applied

between intra-chain monomers that are more than 3 monomers apart, and underlies a looping

tendency. The first term with amplitude AL > 0 controls the long range compaction, while

the second term with amplitude AS > 0 controls the short-range compaction. Note that the

intensity of lengthwise compaction depends on the genomic distance between the two loci,

and that this potential does not act across chromosomes. Different values of AL and AS
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leads to the structural phenotypes described in the main text: SAW (AL = 0.05, AS = 0.05),

Globular (AL = 0.4, AS = 0.05), String-like (AL = 0.05, AS = 0.4), and Rope-like (AL = 0.4,

AS = 0.4).

Phase Separation

The potential associated with phase separation is self-adhesion among monomers. There

is a generic adhesion between any two monomers of intensity χ = −0.2. This implies

whenever two monomers come within interaction distance of one another the energy of the

system lowers by χ (where the units are in simulation energy scale ε = kBT ). The centromere

monomers adhere to other centromere monomers with an enhanced adhesive interaction χC .

The interaction potential is represented as follows:

UPS =
∑

i,j∈{all loci}

χ+
∑

i,j∈{centromere loci}

(χC − χ) (3)

Lamina Adhesion

We place static monomers at a distance R0 from the center of mass of the genome, such

as to form a rigid spherical shell of radius R0 encapsulating the genome. The numerical

value of R0 is decided from the requirement of physiological volume fraction (φ ≈ 0.1) of the

genome inside the nucleus: R0 = σ(N/(8φ))1/3, where N is the total number of monomers

in the genome, and σ = 1 is the monomer diameter.

While all the lamina beads and genome beads experience a soft-core repulsion, a randomly

selected subgroup of 30% of the surface beads interact favorably with the centromere with

an interaction strength χL ≤ 0. The nuclear envelope contains many elements like the

nuclear pores that cover a significant portion of the surface area that are not adhesive to

the chromosome segments. Given the genome volume fraction is about 10%, using a sub

population of surface beads made the competition between phase separation and lamina

adhesion occur for similar values of χL and χC . The lamina interaction potential may be

expressed as follows:

ULam =
∑

i∈{Loci}
j∈{Lamina}

Usc(ri,j) +
∑

i∈{centromere}
j∈{adh-lamina}

χL (4)
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where ‘adh-lamina’ refers to the subgroup of lamina monomers that adhere to the centromere.

II. TRAJECTORY ANALYSIS

The analysis were done on an ensemble of simulated trajectories. We simulated each

parameter set for 2 × 107 time-steps (dt = 10−3), and generated 10 replicas of each tra-

jectory with randomized initial configurations. We use high temperature annealing of the

homopolymer model to generate many random structures that are used to initialize the

simulations. We then neglect the initial 106 time steps from our analysis, to ensure the

steady-state nature of our trajectories (Fig. S13).

Contact probability matrices

Contact probability matrices, the analogue of HiC-maps, are calculated using the contact

function. For every frame, we compute the pairwise distance between monomers and then use

the contact function to convert the distance into contact probability, following our previous

approach [1]. All the snapshots corresponding to a parameter set are then averaged to

generate the contact maps shown in the main and supplementary figures.

Principal component eigenvector

The outer product of the contact probability matrices were used to generate the cor-

relation matrix. The eigenvector corresponding to the largest eigenvalue is the principal

component eigenvector shown along with the contact maps. These principal components

have been used to annotate compartments in HiC experiments [1, 2].

Voronoi tessellation: Territory strength and trans-centromere contacts

One snapshot of the trajectory can be considered to be a discrete distribution of points in

3D space. Using Voronoi tessellation, the empty space between points maybe filled by non-

overlapping polyhedrons, each encapsulating one bead. Each surface of a polyhedron is such

that it is a plane perpendicularly bisecting the line connecting a bead to its neighbor. The

number of surfaces of the polyhedron defines the number of neighbors for the encapsulated
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bead. We use the python package: Scipy.spatial.Voronoi [3] to compute the Voronoi diagram

in our simulated trajectories.

Using this scheme, we identify neighbors of a monomer, and then classify the ratio of

number of intra-chain contacts to the total number of contacts per chain as the strength of the

chromosome territory. Similarly, the proportion of trans-centromere contacts is computed

from the ratio of number of inter-chromosome centromere contacts to the total number of

centromere-centromere contacts.

Shape analysis: Gyration tensor

Attributes of chromosome shape, like the radius of gyration and the shape anisotropy,

are calculated using the gyration tensor G, defined as follows for a set of coordinates:

G =


∑

i(xi − xcm)2
∑

i(xi − xcm)(yi − ycm)
∑

i(xi − xcm)(zi − zcm)∑
i(xi − xcm)(yi − ycm)

∑
i(yi − ycm)2

∑
i(yi − ycm)(zi − zcm)∑

i(xi − xcm)(zi − zcm)
∑

i(yi − ycm)(zi − zcm)
∑

i(zi − zcm)2

 (5)

Here the i-sum is over all the monomers of the polymer whose shape we are interested in,

and (xcm, ycm, zcm) is the center of mass of the polymer. Once this matrix is computed

for a given snapshot, we compute the eigenvalues of the gyration tensor λ1, λ2, λ3 (note,

λ1 ≥ λ2 ≥ λ3 > 0) and then calculate the shape descriptors as follows [4]:

Rg =
√
λ1 + λ2 + λ3 (6)

c = λ2 − λ3 (7)

κ2 =
3(λ21+λ

2
2+λ

2
3)

2(λ1+λ2+λ3)2
− 1

2
(8)

where Rg is the radius of gyration. c is the acylindricity, which is lower if there is cylindrical

symmetry in the conformation. And, κ2 is the relative shape anisotropy that is bound

between 0 and 1, and is higher for anisotropic structures.

Hierarchical clustering: Number of centromere clusters

Clusters of centromeres and telomeres were defined using the hierarchical clustering al-

gorithm via constructing a dendrogram. At the first step, each centromere monomer is
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considered a cluster, this is the largest possible number of clusters in the genome. Itera-

tively, clusters are merged, following a condition that the shift in the centroid of the cluster

due to the merge is smaller than a cut-off value. We choose this cut-off to be twice the

radius of gyration of the cluster (note, using a slightly different value, like three times the

radius of gyration, does not change the qualitative nature of our results). When merging

two clusters is shifts the centroid to larger than the cut-off, those two clusters are identified

as two individual clusters. We use the python module Scipy.cluster [3] to implement hier-

archical clustering. The number of clusters obtained from every snapshot is then plotted

using a histogram.

Radial density distribution

Radial distribution of monomers is calculated from the snapshots. The volume occupied

by the genome is divided into concentric shells centered at the centroid of the genome, then

the number of monomers is each cell is counted. To obtain the density, the number is divided

by the volume of the shell.

Gauss linking number: inter chromosome entanglements

The Gauss linking number between two chromosomes, counts the number of signed cross-

ings between the them, and measures their entanglement. We use the ”method 1a”, as pre-

scribed in Ref. [5], to compute the linking number. Since linking number is defined only for

closed curves, we simply connect the two ends of each chromosome to close the curve during

our computation. We calculate entanglement for each snapshot of an ensemble and then

plot the histogram of linking number values, showing the distribution of linking numbers.

Simulation snapshots

The simulation snapshot images are made using the VMD software [6].

III. SUPPLEMENTARY FIGURES

See Figures S1-S13.
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FIG. S1. Lengthwise compaction controls chromosome territories. Contact maps corre-

sponding to (A) SAW, (B) Globular (C) Rope, (D) String phenotypes are shown for chromosomes

with χC = χT = 0. Below each contact map are representative structures. A chromosome when

renormalized by 20 monomers, shows the underlying backbone. This backbone is shown as a tube

in blue-to-red coloration.
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FIG. S2. Lengthwise compaction shapes chromosomes. (A) Contact probability of intra-

chromosome segments as a function of contour distance. The contact probability of a monomer

with its neighbors, up to 3 or 4 monomers are mainly controlled by the angle-restrain part of

of the homopolymer potential. The contact probability between the monomers beyond about 5

monomers is controlled by lengthwise compaction. (B) Acylindricity and (C) Shape anisotropy cal-

culated from the Gyration tensor for chromosomes with different lengthwise compaction intensity:

SAW, Globular Rope, and String phenotypes. Higher lengthwise compaction introduces cylindrical

asymmetry in chromosomes structure.
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FIG. S3. Centromere clustering is enhanced by centromere self-adhesion and counter-

acted by lengthwise compaction. (A) Number of centromere clusters and (B) Proportion of

trans-centromere contacts, shown under different centromere self-adhesive interaction χC , for vari-

ous long- and short-range lengthwise compacted chromosomes. (C) Number of centromere clusters

and (D) Trans-centromere contacts under χC = −0.3 for various lengthwise compaction.
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FIG. S4. Contact matrices for different lengthwise compaction with centromere adhe-

sion. Contact matrices and principal eigenvectors for SAW, G, R and S states with (A) strong

(χC = −0.3) and (B) moderate (χC = −0.25) centromere adhesion.
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FIG. S5. Compact centromeres with strong self-adhesion move to the center of the

nucleus. Radial probability density of centromeres under various self-adhesion and lengthwise

compaction shown. Note that the compact centromeres corresponding to Globular, Rope, and

String-phenotypes when strongly adhere to other centromeres tend to localize near the center of

the nucleus.
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FIG. S6. Telomere clustering is enhanced by telomere self-adhesion and counteracted

by lengthwise compaction. (A) Number of telomere clusters (B) Proportion of trans-telomere

contacts shown for various telomere adhesive interactions χT and under different lengthwise com-

paction. Number of telomere clusters and trans-telomere contacts for (C) χT = −0.3 and (D)

χT = −0.25 compared for SAW, G, R and S-states.
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FIG. S7. Radial density profile of telomeres. Radial probability density of telomeres un-

der various self-adhesion and lengthwise compaction shown. Telomeres without preferential self-

adhesion reside near the periphery when lengthwise compaction is high. This is likely due to the

stiffness of the chromosome backbone that tends to place its ends near the periphery. However,

upon strong self-adhesion, the telomeres move to the interior, much like the centromeres under

similar conditions.
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FIG. S8. Lamina adhesion of centromeres counteract their clustering. (A) Number of cen-

tromeres and (B) Proportion of trans-centromere contacts for moderate (χC = −0.25) centromere

self-adhesion but various lamina-tethering intensity χL, showing higher χL increases the number

of centromere clusters, and reduces the propensity of inter-centromere contacts.

FIG. S9. Lengthwise compaction counteracts centromere clustering in presence of lam-

ina adheison. Number of centromere clusters for chromosomes with moderate lamina adhesion

of centromeres (χL = −0.25) and centromere self adhesion (χC = −0.25) under various lengthwise

compaction.
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FIG. S10. Radial density profile of centromeres with lamina adhesion. Radial density

profile is shown for centromeres with self-adhesive intensity χC = −0.25. Centromeres tend to

move to the periphery when interacting favorably with the lamina.
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FIG. S11. In presence of strong lamina tethering of centromeres and telomeres, length-

wise compaction may aid fold over. Fold over angles: θcentro and θarm for various cases, legend

is the same as the Fig. 4D,E. The three panels correspond to different lengthwise compaction states,

the rope-like phenotype is shown in Fig. 4.

16



Uniform lamina Polar laminaA B

FIG. S12. Contact maps showing fold over for polar and uniform lamina interactions.

The contact maps for (A) uniform and (B) polar lamina interactions of strnegth χL = −0.3 for

various lengthwise compaction states. All the panels correspond to strong centromere and telomere

adhesion (χC = χT = −0.3).

FIG. S13. Steady state trajectories. The territory signal is shown for a single replica as a

function of simulation time. The system was initialized as a SAW (hence the low territory at zero

time), but simulated under the potential for G. The system reaches its steady state corresponding

to G chromosomes in less than 106 time steps. We exclude the initial one million time steps from

our analysis (dashed line), to ensure that the memory of the initial configuration is completely lost,

and we are capturing the steady state.
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