1 Estimating global economic well-being with unlit settlements

- 2
- 3
- 4
- 5 Ian McCallum¹
- 6 Christopher Conrad Maximillian Kyba²
- 7 Juan Carlos Laso Bayas¹
- 8 Elena Moltchanova³
- 9 Matt Cooper⁴
- 10 Jesus Crespo Cuaresma ^{5, 1}
- 11 Shonali Pachauri¹
- 12 Linda See¹
- 13 Olga Danylo¹
- 14 Inian Moorthy¹
- 15 Myroslava Lesiv¹
- 16 Kimberly Baugh⁶
- 17 Christopher D. Elvidge ⁷
- 18 Martin Hofer¹
- 19 Steffen Fritz¹
- 20
- ¹ International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361, Laxenburg,
- 22 Austria
- ² GFZ, German Research Centre for Geosciences, Telegrafenberg, 14473, Potsdam, Germany
- ³ School of Mathematics & Statistics, University of Canterbury, Private Bag 4800, 8041,
- 25 Christchurch, New Zealand
- ⁴ T.H. Chan School of Public Health, Harvard University, 677 Huntington Ave, 02115, Boston,
- 27 MA, USA
- ⁵ Vienna University of Economics and Business, Welthandelsplatz 1, 1020, Vienna, Austria
- ⁶ Cooperative Institute for Research in the Environmental Sciences, University of Colorado, 216
- 30 UCB, 80309 Boulder, CO, USA
- ⁷ Earth Observation Group, Payne Institute for Public Policy, Colorado School of Mines, 1500
- 32 Illinois St., 80401, Golden, CO, USA
- 33
- 34
- 35
- 36
- 37
- 38

Supplementary Information

Continental and national statistics

43	As a first step, we analyzed the continental statistics for unlit settlements. The following table
44	(Supplementary Table 1) provides, by continent, the total area of all human World Settlement
45	Footprint (WSF) settlements (km ²), the total area of unlit WSF settlements (km ²) the percentage
46	of unlit WSF settlements, the percentage of unlit urban settlements and the percentage of unlit
47	rural settlements. See methods for details on how these were calculated.
48	

49 Supplementary Table 1. Continental statistics of Total WSF settlement area (km²), Unlit WSF

50 settlement area (km²), Total Percent Unlit (%), Urban Unlit (%) and Rural Unlit (%).

Continent	Total_WSF (km2)	Unlit_WSF (km2)	Total Percent Unlit (%)	Urban Unlit (%)	Rural Unlit (%)
Africa	113923	44219	39	14	65
Asia	593547	137584	23	13	40
Europe	290257	47876	16	3	27
North America	202057	12031	6	0	15
Oceania	15733	2179	14	0	33
South America	57024	1202	2	0	8

54	Likewise, for each country, we summarized the total area of human WSF settlements (km ²), the
55	total area of unlit WSF settlements (km ²), the total percentage of the unlit settlements, the
56	percent of urban unlit settlements and the percent of rural unlit settlements (Supplementary
57	Data). These data were used to produce Figure 1 a and b in the main document. Supplementary

- 58 Figs. 1-2 below demonstrate the global country-level unlit settlement percentages for urban and
- 59 rural areas respectively. See methods for details on how these were calculated.

Supplementary Fig. 1. Global country-level unlit settlement percentages for urban areas. a) map
of countries classified according to their percentage of settlements (building footprints) with no
associated satellite-derived nighttime radiance in urban areas; b) African and Asian countries
with population exceeding 50 million ranked according to percentage of urban unlit settlements.

Supplementary Fig. 2. Global country-level unlit settlement percentages for rural areas. a) map of countries classified according to their percentage of settlements (building footprints) with no associated satellite-derived nighttime radiance in rural areas; b) African and Asian countries with population exceeding 50 million ranked according to percentage of rural unlit settlements.

76

77 Urban Population

78

One of the factors playing a potential role in the amount of unlit human settlements within a country is the percentage of the total population that is urban (Supplementary Fig. 3). Clearly visible here are the high rates of urbanization in most of South America which might partially explain the low rates of unlit infrastructure there.

- 85 Supplementary Fig. 3. Urban population (% of total population). Source:
- 86 <u>https://data.worldbank.org/indicator</u>
- 87
- 88

89 **Consumption and Unlit Settlements**

90 The World Bank's Living Standards Measurement Study (LSMS) allows for the computation of 91 consumption spending from geocoded household surveys. Similar to a recent study on poverty 92 prediction¹, we have generated a comparison between percent unlit infrastructure and 93 consumption for four African countries (Supplementary Fig. 4). The majority of the rural 94 household clusters experience high levels of unlit settlements and low levels of consumption. 95 Urban households tend to experience higher levels of consumption and lower levels of unlit 96 settlements, while generally remaining above the extreme poverty line. Nonetheless, some urban 97 households are found to be associated with higher levels of unlit settlements, possibly pointing to 98 urban slum areas recorded during surveys.

Supplementary Fig. 4. Relationship between daily per capita consumption expenditure (measured
in 2011 U.S. dollars) and unlit settlements (%) at the cluster level for four African countries (ad), based on LSMS household surveys. Vertical black lines show the official international
extreme poverty line (\$1.90 per person per day), and colored lines (red, blue) are fits to the data
points for rural and urban clusters with corresponding 95% confidence intervals in grey.

108 **Bivariate regressions**

Comparable to studies with established relationships between economic indicators and radiance²⁻ 110 111 ⁷, we find significant relationships by continent between unlit settlement footprint fraction and 112 GDP (per capita), along with electricity consumption (per capita), secondary school enrollment 113 (% gross) and urban population (%) (Supplementary Fig. 5). Bivariate regressions (log-log) were 114 used to model relationships within continents, treating each country as a unique observation (see 115 Methods). In particular, the relationships are found to be statistically significant for Africa and 116 Asia across all four indicators with large effect sizes, but less so for other continents 117 (Supplementary Table 3). 118 119 For Africa and Asia, a 10% increase in the GDP per capita was associated with an average 10% 120 and 9% decrease in the odds of the area being unlit, respectively. A 10% increase in per capita 121 electricity consumption was associated with, on average, a 6% and 7% decrease in the odds of 122 the area being unlit, for Africa and Asia, respectively. An increase of 10% in the odds of school 123 enrollment was associated with, on average, a 3% and 2% decrease in the odds of the area being 124 unlit, while an extra 10% in the odds of the population being urban was associated with, on 125 average, a 4% and 3% decrease in the odds of the area being unlit, for Africa and Asia, 126 respectively. Across all economic indicators, Africa and Asia have notably a higher share of unlit 127 settlements than other continents, along with generally lower levels of GDP per capita, electricity 128 consumption, school enrollment and urban population. 129

132 Supplementary Fig. 5. Observed trends between unlit settlement footprints and world 133 development indicators by continent, namely, a) GDP per capita; b) electricity consumption 134 (kWh per capita); c) school enrollment (% gross); and d) urban population (%). Oceania was 135 excluded from 2b) having only two data points. School enrollment 2c) may exceed 100% due to 136 over enrollment. Colors refer to continents with dot area proportional to population size 137 (millions). Lines represent modeled trends (bivariate regressions log-log). Countries with more 138 than 200 million inhabitants are labeled. Logit transformations are applied for school enrollment 139 and urban population, whereas log transformations for GDP and electricity consumption.

Bivariate regressions (log-log) were used to model relationships by continent between the unlit
settlement footprint fraction and GDP (per capita), electricity consumption (per capita), school
enrollment (%) and urban population (%), with results of bivariate regressions by continent and
indicator provided in Supplementary Tables 2-5.

Supplementary Table 2. The effects of a 10% increase in GDP (per capita) on the odds of an areabeing unlit (%).

Continent	Estimate	95% CI	p-value	
Africa	-9.81	(-12.55; -6.99)	< 0.0001	
Asia	-9.25	(-12.75; -5.62)	< 0.0001	
Europe	-1.07	(-5.9; 4.01)	0.6755	
North America	-5.43	(-11.5; 1.05)	0.1012	
Oceania	-1.81	(-7.8; 4.57)	0.5705	
South America	-4.05	(-17.39; 11.45)	0.5896	

Supplementary Table 3. The effects of a 10% increase in electricity consumption (per capita) on
the odds of an area being unlit (%). As Oceania contained only two data points, its results can be
ignored.

Continent	Estimate	95% CI	p-value	
Africa	-6.27	(-9.12; -3.33)	0.0001	
Asia	-7.33	(-10.25; -4.33)	< 0.0001	
Europe	-2.97	(-7.39; 1.65)	0.2064	
North America	-3.4	(-7.23; 0.6)	0.0977	
Oceania	55.02	(-85.98; 1614.65)	0.7215	
South America	-1.1	(-11.47; 10.48)	0.8448	

159 Supplementary Table 4. The effects of a 10% increase in the odds of school enrollment

160 (secondary) on the odds of an area being unlit (%).

Continent	Estimate	95% CI	p-value
Africa	-3.05	(-4.66; -1.41)	0.0006
Asia	-1.25	(-2.64; 0.15)	0.085
Europe	0.54	(-2.8; 3.99)	0.7567
North America	-0.6	(-3.19; 2.07)	0.6599
Oceania	0.96	(-2.97; 5.06)	0.638
South America	-0.34	(-3.87; 3.33)	0.8553

164 Supplementary Table 5. The effects of a 10% increase in the odds of an urban population on the

165 odds of an area being unlit (%).

	Continent	Estimate	95% CI	p-value			
	Africa	-3.69	(-5.12; -2.24)	<0.0001			
	Asia	-3.52	(-5.17; -1.85)	0.0001			
	Europe	-0.37	(-1.9; 1.18)	0.6363			
	North America	-2.9	(-7.09; 1.48)	0.194			
	Oceania	-0.6	(-2.85; 1.69)	0.6039			
	South America	-0.74	(-3.23; 1.81)	0.5657			
167							
168							
169	Demographic and Health So	urveys					
170							
171	The relationship between the percentage of unlit settlements and a harmonized geo-spatial wealth						
172	index (DHS) was used to dev	elop our appr	oach. The DHS locations we used	are shown in			

173 Supplementary Fig. 6.

Supplementary Fig. 6. Locations of 100,602 harmonized DHS geo-located villages (blue dots)
used in this study. A total of ~2,400,000 households were used as input to create the village-level
data across 51 countries.

180 Category-specific accuracies were determined for each country using Naïve Bayes with 10-fold

181 cross-validation. The results by continent and country are presented in Supplementary Tables 6-8

182 for Africa, Asia and the Americas respectively. We present results by aggregated wealth class,

along with an overall value for each country. Supplementary Figs. 7, 8 and 9 present boxplots of

184 the country-level results for Africa, Asia and the Americas, split by urban and rural

185 classification, respectively. Supplementary Table 9 presents the overall accuracy by continent for

rural and urban areas.

187

Supplementary Fig. 7. Boxplots for African countries showing the mean percentage area of unlit settlements within a 2 km buffer (urban) or 5 km buffer (rural) of a DHS household cluster against the mode of the wealth indices of all households assigned to the household cluster. The midline represents the median with the lower and upper limits of the box being the 1st and 3rd quartiles.

194

195 Supplementary Table 6. Category-specific accuracy by country for Africa.

	Poorer	Average	Richer	Overall
Angola	99	91.2	89.6	95.5
Benin	99.4	68.6	73.8	95
Burkina	98.2	84.6	88.7	93.9
Faso				
Burundi	98.4	76.8	89.2	94.9
Cameroon	100	90	100	98.9
Chad	99.3	78.6	100	95.9
Comoros	96.6	78	90.3	90
Congo	99	81.6	73.6	96.7
Democratic				
Republic				
Cote d'Ivoire	100	53.9	99.3	94.7
Ethiopia	99.2	87.3	93.9	97
Gabon	95.3	83.9	82.1	90.7
Ghana	50	96.9	70.4	81.4
Guinea	98.4	85.2	84.6	94.8
Kenya	71.2	71.5	90.9	72.6
Lesotho	100	90	100	96.9
Liberia	99.3	65.5	92.5	93
Madagascar	99.9	52.9	87	92.5
Malawi	98.8	72.6	73.3	96.1
Mali	99.4	76.6	91.7	96.6
Morocco	96	73.6	81.9	84.7
Mozambique	100	100	100	100
Namibia	98.7	83.6	86.1	96.3

Nigeria	99.5	74.9	93.6	93
Rwanda	96.5	68.7	83.2	87.2
Senegal	50	100	92.3	89.3
Sierra Leone	98.5	79.6	85.7	94
Tanzania	98.4	74.6	79.4	93.4
Togo	97.9	78.3	88.8	94.6
Uganda	100	85.7	97.6	94.6
Zambia	99.1	85.7	81.9	96.9
Zimbabwe	100	76	75	84.1
All	94.8	79.8	87.4	92.6

Supplementary Fig. 8. Boxplots for Asian countries showing the mean percentage area of unlit
settlements within a 2 km buffer (urban) or 5 km buffer (rural) of a DHS household cluster
against the mode of the wealth indices of all households assigned to the household cluster. The
midline represents the median with the lower and upper limits of the box being the 1st and 3rd
quartiles.

	Poorer	Average	Richer	Overall
Bangladesh	98.5	76.9	61.9	96.5
Cambodia	78.6	38.1	49.9	62
India	94.6	92.1	85.6	91.2
Indonesia	46.4	94.3	81.5	77.4
Myanmar	57.1	100	80	87.7
Nepal	97.3	70.6	88.5	89.8
Pakistan	51.6	91.2	85.8	85.7
Philippines	96	95.1	69	94.2
Tajikistan	90.9	90.1	89.5	89.8
Timor-Leste	97.8	58.7	100	88.2
All	80.9	80.7	79.2	86.2

206 Supplementary Table 7. Category-specific accuracy by country for Asia.

210	Supplementary Fig. 9. Boxplots for the Americas showing the mean percentage area of unlit
211	settlements within a 2 km buffer (urban) or 5 km buffer (rural) of a DHS household cluster
212	against the mode of the wealth indices of all households assigned to the household cluster. The
213	midline represents the median with the lower and upper limits of the box being the 1^{st} and 3^{rd}
214	quartiles.

216 Supplementary Table 8. Category-specific accuracy by country for the Americas.

	Poorer	Average	Richer	Overall
Bolivia	0	100	83.3	78.6
Colombia	31.7	83.8	87.3	82.3
Dominican Republic	66.7	99.3	88.9	94
Guatemala	68.8	89.9	94.6	91.6
Guyana	100	100	100	100
Haiti	45	90.6	76	77.8
Honduras	96.9	75.1	78	87.5
Peru	89.2	59.1	67.8	73.6
All	62.3	87.2	84.5	85.7

218 Supplementary Table 9. Overall continent-specific accuracy (for urban and rural settlements)

Continent	Rural Accuracy (%)	Urban Accuracy (%)
Africa	92.5	84.4
Asia	82.4	86.2
North America	82.2	83.6
South America	71.4	82.6

221 Supplementary References

1. Jean, N. et al. Combining satellite imagery and machine learning to predict poverty. Science

, 790 (2016).

- 225 2. Chen, X. & Nordhaus, W. D. Using luminosity data as a proxy for economic statistics. *Proc*226 *Natl Acad Sci USA* 108, 8589 (2011).
- 227 3. Proville, J., Zavala-Araiza, D. & Wagner, G. Night-time lights: A global, long term look at
- links to socio-economic trends. *PLOS ONE* **12**, e0174610 (2017).
- 4. Doll, C. N. H., Muller, J.-P. & Morley, J. G. Mapping regional economic activity from night-
- time light satellite imagery. *Ecological Economics* **57**, 75–92 (2006).
- 5. Henderson, J. V., Storeygard, A. & Weil, D. N. Measuring Economic Growth from Outer
 Space. *American Economic Review* 102, 994–1028 (2012).
- 233 6. Pinkovskiy, M. & Sala-i-Martin, X. Lights, Camera ... Income! Illuminating the National
- Accounts-Household Surveys Debate *. *The Quarterly Journal of Economics* 131, 579–631
 (2016).
- 7. Kyba, C. C. M. *et al.* Artificially lit surface of Earth at night increasing in radiance and extent. *Sci Adv* 3, (2017).
- 238