SUPPORTING INFORMATION

A tough and sustainable fiber-forming material from lignin and waste poly(ethylene terephthalate)

Kokouvi M. Akato,^{†,‡} Ngoc A. Nguyen,[§] Kalavathy Rajan,[†] David P. Harper,[†] Amit K. Naskar*,^{†,‡,§}

†Center for Renewable Carbon, University of Tennessee, Knoxville, Tennessee 37996, United States

‡Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States

§Carbon and Composites Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

*Corresponding author: naskarak@ornl.gov

Detailed GPC Analysis

GPC was performed for both L and L_{HT} lignins using a Tosoh EcoSEC gel permeation chromatography (GPC) system with a refractive index (RI) detector equipped with a flow reference cell. Prior to measurements, lignin was dissolved in THF at a concentration of 1 mg/mL and filtered using a 0.22 μm membrane. The instrument and reference cell flow rates were set to 0.35 mL/min and the analysis was performed at 40 °C. Sample injections of 10 μL were separated using two consecutive Tosoh TSKgel SuperMultiporeHZ-M analytical columns (4.6 mm I.D., 150 mm length, 5 μm particle size) and a TSKgel SuperMultiporeHZ-M guard column using a total run time of 15 min. Evaluation of the number-average molecular weight (M_n) , weight-average molecular weight (M_w) and their ratio (PDI) was complete using in-house polystyrene standard curves in the range of 600-7.5×10⁶ Da.

³¹PMNR

Table S1 Assignment of hydroxyl groups peaks in ³¹P NMR spectroscopy.

2D ¹H−¹³C HSQC NMR

Figure S1. Lignin substructures detected by 2D HSQC NMR. (A) β-O-4'; (B) β-5' (phenylcoumaran structure); (C) β-β' (resinol structures); (G) guaiacylpropane unit; (S) syringyl propane unit; (S') syringyl propane unit with carbonyl at Cα; (H) p-hydroxyphenolpropane unit [1].

Label	$\delta C/\delta H$ (ppm)	Assignment		
B_{β}	53.1/3.4	C_8 -H ₈ in phenylcoumaran substructures (B)		
C_{β}	53.5/3.1	C_{β} -H _B in β - β' resinol substructures (C)		
$-OCH3$	55.6/3.73	C-H in methoxyls		
A_{γ}	59.4/3.4 and 3.7	C_v -H _v in γ - hydroxylated β -O-4' substructures (A)		
I_{γ}	61/4.1	C_v -H _v in cinnamyl alcohol end-groups (I)		
B_{ν}	63.4/3.6	C_v -H _v in phenylcoumaran substructures (B)		
Hk_{v}	67.5/4.2	C_v -H _v in Hibbert ketone structuresb		
C_{γ}	71.2/4.2	C_v -H _v in β - β' resinol substructures (C) ^b		
A_α	71.9/4.9	C_{α} -H _α in β-O-4' substructures (A)		
X_2	73/3.1	C_2 -H ₂ in xylan substructures (X)		
X_3	74/3.3	C_3 -H ₃ in xylan substructures (X)		
X_4	75.7/3.5	C_4 -H ₄ in xylan substructures (X)		
	$80.4/4.5$,			
A_{β}	84.4/4.4	C_{β} -H _{β} in β -O-4' substructures (A)		
	and 85.6/4.2			
$A_{ox} \beta$	83/5.2	C_{β} -H _{β} in α -oxidized β -O-4' substructures (Aox)		
C_α	85.5/4.6	C_{α} -H _a in β - β' resinol substructures (C)		
B_{α}	87.7/5.5	C_{α} -H _{α} in phenylcoumaran substructures (B)		
T_8	94.4/6.6	C_8 -H ₈ in tricin units (T)		
T_6	99.5/66.2	C_6 -H ₆ in tricin units (T)		
$T_{2,6}$	104.5/7.4	C_2 -H ₂ and C6-H6 in tricin units (T)		
$S_{2,6}$	104.2/6.7	C_2 -H ₂ and C6-H6 in syringyl units (S)		
T_3	107/7.2	C_3 -H ₃ in tricin units (T)		
$\mathsf{S'}_{2,6}$	107.4/7.4	C_2 -H ₂ and C6-H6 in syringyl units with α		
		oxidization(S')		
G ₂	110.2/6.9	C_2 -H ₂ in guaiacyl units (G)		
Fa ₂	111.5/7.3	C_2-H_2 in ferulate (Fa)		
G_5/G_6	$115/6.7$ and 119.7/6.8	C_5 –H ₅ and C6–H6 in guaiacyl units (G)		
Fa ₆	123.1/7.1	C_6 -H ₆ in ferulate (Fa)		
HMF	123.6/7.5	C_3 – H ₃ in 5-O-substituted furfurals -like units		
$St_{\alpha,\underline{\beta}}$	126.6/6.9	C_{α} -H _{α} and C _B -H _B in stilbene structures (St)		
$H_{2,6}$	128.2/7.2	$C_{2,6}$ -H _{2,6} in p-hydroxyphenyl units (H)		
I_{α}	130.6/6.3	C_{α} -H _a in cinnamyl alcohol end-groups (I)		
Pca _{2,6}	130.1/7.5	C_2 -H ₂ and C_6 -H ₆ in p-coumarate (Pca)		
$Pb_{2,6}$	131.6/7.7	C_2-H_2 and C_6-H_6 in p-benzoate (Pb)		
HMF	179/9.6	C_{α} -H _{α} in 5-O-substituted furfurals -like units		

Table S2. ¹³C and ¹H assignments of the lignin signals in 2D HSQC spectra [2].

Figure S2 DSC thermograms of L and L_{HT} in nitrogen atmosphere showing the glass transition temperatures (T_g) .

Figure S3. TGA and derivative weight thermograms of L and L_{HT} in nitrogen atmosphere showing the effect of thermal treatment on lignin thermal stability.

Samples	T_m (°C) ^a	ΔH_m (J/g) ^a	T_{rec} ($°C$)	ΔH_{rec} (J/g)	X_c (%) b	X_c (%) a
PET	247	46	208	53	57	33
PET _{PL}	239	41	202	49	23	29
$PET_{PL}/10L$	237	33	209	44	23	24
$PET_{PL}/20L$	232	32	203	39	31	23
$PET_{PL}/30L$	229	29	198	33	30	21
$PET_{PL}/10L_{HT}$	236	36	208	41	30	26
$PET_{PL}/20L_{HT}$	233	29	203	38	23	21
$PET_{PL}/30L_{HT}$	231	24	199	32	20	17

Table S3 Thermal behavior temperatures, calorimetric values, and degree of crystallinity of PET and its lignin derived blends*.*

^a Values obtained from second heating curves b Computed using first heating curves

The degree of crystallinity (χ_c) was computed using the first heating curves information and applying the following equation.

$$
\chi_c = \frac{\Delta H_m}{W_f \times \Delta H_{100}} \times 100\%
$$
\n(51)

where ΔH_m is the melting enthalpy from the first heating curve, W_f is the PET weight fraction in each composition and ΔH_{100} is the theoretical fusion enthalpy of 100% crystalline PET (140 J/g) [3]

Figure S4. Thermal decomposition of PET and its lignin derived blends at 30 wt.% lignin contents in oxidative atmosphere at 20°C/min.

- 1. Nguyen, N.A., et al., *An Acrylonitrile–Butadiene–Lignin Renewable Skin with Programmable and Switchable Electrical Conductivity for Stress/Strain-Sensing Applications.* Macromolecules, 2018. **51**(1): p. 115-127.
- 2. Constant, S., et al., *New insights into the structure and composition of technical lignins: a comparative characterisation study.* Green Chemistry, 2016. **18**(9): p. 2651-2665.
- 3. Wunderlich, B. Chapter 2 The basis of thermal analysis. In Thermal Analysis, Wunderlich, B., Ed.; Academic Press: 1990; pp 1-36.