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Detailed GPC Analysis
GPC was performed for both L and LHT lignins using a Tosoh EcoSEC gel permeation chromatography 
(GPC) system with a refractive index (RI) detector equipped with a flow reference cell. Prior to 
measurements, lignin was dissolved in THF at a concentration of 1 mg/mL and filtered using a 0.22 μm 
membrane. The instrument and reference cell flow rates were set to 0.35 mL/min and the analysis was 
performed at 40 °C. Sample injections of 10 μL were separated using two consecutive Tosoh TSKgel 
SuperMultiporeHZ-M analytical columns (4.6 mm I.D., 150 mm length, 5 μm particle size) and a TSKgel 
SuperMultiporeHZ-M guard column using a total run time of 15 min. Evaluation of the number-average 
molecular weight (Mn), weight-average molecular weight (Mw) and their ratio (PDI) was complete using 
in-house polystyrene standard curves in the range of 600-7.5×106 Da.
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               Table S1 Assignment of hydroxyl groups peaks in 31P NMR spectroscopy.

Sample name/ mmol per g lignin Assignments, δ (ppm)

Aliphatic OH 150-146

S-OH condensed 144.5-143.5

S-OH non-condensed 143.5-142.25

G-OH condensed 142.25-141

G-OH non-condensed 141-138.5

H-OH 138.5-136.5

COOH 136-133.5
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2D 1H−13C HSQC NMR

Figure S1. Lignin substructures detected by 2D HSQC NMR. (A) β-O-4’; (B) β-5’ (phenylcoumaran 
structure); (C) β-β’ (resinol structures); (G) guaiacylpropane unit; (S) syringyl propane unit; (S’) syringyl 
propane unit with carbonyl at Cα; (H) p-hydroxyphenolpropane unit [1].
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Table S2. 13C and 1H assignments of the lignin signals in 2D HSQC spectra [2].

Label δC/δH (ppm) Assignment

Bβ 53.1/3.4 Cβ−Hβ in phenylcoumaran substructures (B)
Cβ 53.5/3.1 Cβ−Hβ in β−β′ resinol substructures (C)
−OCH3 55.6/3.73 C−H in methoxyls
Aγ 59.4/3.4 and 3.7 Cγ−Hγ in γ− hydroxylated β-O- 4′ substructures (A)
Iγ 61/4.1 Cγ−Hγ in cinnamyl alcohol end-groups (I)
Bγ 63.4/3.6 Cγ−Hγ in phenylcoumaran substructures (B)
Hkγ 67.5/4.2 Cγ−Hγ in Hibbert ketone structuresb
Cγ 71.2/4.2 Cγ−Hγ in β−β′ resinol substructures (C)b

Aα 71.9/4.9 Cα−Hα in β-O-4′ substructures (A)
X2 73/3.1 C2−H2 in xylan substructures (X)
X3 74/3.3 C3−H3 in xylan substructures (X)
X4 75.7/3.5 C4−H4 in xylan substructures (X)

Aβ

80.4/4.5, 
84.4/4.4
and 85.6/4.2

Cβ−Hβ in β-O-4’ substructures (A)

Aoxβ 83/5.2 Cβ−Hβ in α-oxidized β-O-4′ substructures (Aox)
Cα 85.5/4.6 Cα−Hα in β−β′ resinol substructures (C)
Bα 87.7/5.5 Cα−Hα in phenylcoumaran substructures (B)
T8 94.4/6.6 C8−H8 in tricin units (T)
T6 99.5/66.2 C6−H6 in tricin units (T)
T2,6 104.5/7.4 C2−H2 and C6-H6 in tricin units (T)
S2,6 104.2/6.7 C2−H2 and C6−H6 in syringyl units (S)
T3 107/7.2 C3−H3 in tricin units (T)

S’2,6 107.4/7.4 C2−H2 and C6−H6 in syringyl units with α 
oxidization(S’)

G2 110.2/6.9 C2−H2 in guaiacyl units (G)
Fa2 111.5/7.3 C2−H2 in ferulate (Fa)

G5/G6
115/6.7 and 
119.7/6.8 C5−H5 and C6−H6 in guaiacyl units (G)

Fa6 123.1/7.1 C6−H6 in ferulate (Fa)
HMF 123.6/7.5 C3− H3 in 5-O-substituted furfurals -like units
Stα,β 126.6/6.9 Cα−Hα and Cβ−Hβ in stilbene structures (St)
H2,6 128.2/7.2 C2,6−H2,6 in p-hydroxyphenyl units (H)
Iα 130.6/6.3 Cα−Hα in cinnamyl alcohol end-groups (I)
Pca2,6 130.1/7.5 C2−H2 and C6−H6 in p-coumarate (Pca)
Pb2,6 131.6/7.7 C2−H2 and C6−H6 in p-benzoate (Pb)
HMF 179/9.6 Cα−Hα in 5-O-substituted furfurals -like units
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Figure S2 DSC thermograms of L and LHT in nitrogen atmosphere showing the glass transition 
temperatures (Tg).

Figure S3. TGA and derivative weight thermograms of L and LHT in nitrogen atmosphere showing the 
effect of thermal treatment on lignin thermal stability.
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Table S3 Thermal behavior temperatures, calorimetric values, and degree of crystallinity of PET and its 
lignin derived blends.

Samples Tm (°C) a ΔHm (J/g) a Trec (°C) ΔHrec (J/g) Χc (%) b Χc (%) a

PET 247 46 208 53 57 33

PETPL 239 41 202 49 23 29

PETPL/10L 237 33 209 44 23 24

PETPL/20L 232 32 203 39 31 23

PETPL/30L 229 29 198 33 30 21

PETPL/10LHT 236 36 208 41 30 26

PETPL/20LHT 233 29 203 38 23 21

PETPL/30LHT 231 24 199 32 20 17
a Values obtained from second heating curves   b Computed using first heating curves

The degree of crystallinity (χc) was computed using the first heating curves information and applying the 
following equation.

                                                                                     (S1)
𝜒𝑐 =

Δ𝐻𝑚

𝑊𝑓 ×  Δ𝐻100
 ×  100%

where ΔHm is the melting enthalpy from the first heating curve, Wf is the PET weight fraction in each 
composition and ΔH100 is the theoretical fusion enthalpy of 100% crystalline PET (140 J/g) [3]
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Figure S4. Thermal decomposition of PET and its lignin derived blends at 30 wt.% lignin contents in 
oxidative atmosphere at 20°C/min.
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