SUPPORTING INFORMATION

A tough and sustainable fiber-forming material from lignin and waste poly(ethylene terephthalate)

Kokouvi M. Akato,^{†,‡} Ngoc A. Nguyen,[§] Kalavathy Rajan,[†] David P. Harper,[†] Amit K. Naskar^{*,†,‡,§}

[†]Center for Renewable Carbon, University of Tennessee, Knoxville, Tennessee 37996, United States

^{*}Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States

[§]Carbon and Composites Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

*Corresponding author: <u>naskarak@ornl.gov</u>

Detailed GPC Analysis

GPC was performed for both L and L_{HT} lignins using a Tosoh EcoSEC gel permeation chromatography (GPC) system with a refractive index (RI) detector equipped with a flow reference cell. Prior to measurements, lignin was dissolved in THF at a concentration of 1 mg/mL and filtered using a 0.22 μ m membrane. The instrument and reference cell flow rates were set to 0.35 mL/min and the analysis was performed at 40 °C. Sample injections of 10 μ L were separated using two consecutive Tosoh TSKgel SuperMultiporeHZ-M analytical columns (4.6 mm I.D., 150 mm length, 5 μ m particle size) and a TSKgel SuperMultiporeHZ-M guard column using a total run time of 15 min. Evaluation of the number-average molecular weight (M_n), weight-average molecular weight (M_w) and their ratio (PDI) was complete using in-house polystyrene standard curves in the range of 600-7.5×10⁶ Da.

³¹PMNR

Table S1 Assignment of hydroxyl groups peaks in ³¹P NMR spectroscopy.

Sample name/ mmol per g lignin	Assignments, δ (ppm)
Aliphatic OH	150-146
S-OH condensed	144.5-143.5
S-OH non-condensed	143.5-142.25
G-OH condensed	142.25-141
G-OH non-condensed	141-138.5
Н-ОН	138.5-136.5
СООН	136-133.5

2D ¹H-¹³C HSQC NMR

Figure S1. Lignin substructures detected by 2D HSQC NMR. (A) β -O-4'; (B) β -5' (phenylcoumaran structure); (C) β - β ' (resinol structures); (G) guaiacylpropane unit; (S) syringyl propane unit; (S') syringyl propane unit; (S') syringyl propane unit (1].

Label	δC/δH (ppm)	Assignment		
Β _β	53.1/3.4	C_{β} – H_{β} in phenylcoumaran substructures (B)		
C _β	53.5/3.1	$C_{\beta}-H_{\beta}$ in $\beta-\beta'$ resinol substructures (C)		
-OCH3	55.6/3.73	C–H in methoxyls		
A _v	59.4/3.4 and 3.7	C_v –H _v in y– hydroxylated β-O- 4' substructures (A)		
Ι _γ	61/4.1	C_v –H _v in cinnamyl alcohol end-groups (I)		
Bγ	63.4/3.6	C_{γ} – H_{γ} in phenylcoumaran substructures (B)		
Hkγ	67.5/4.2	C_{v} – H_{v} in Hibbert ketone structuresb		
Cγ	71.2/4.2	C_{γ} -H _{γ} in β - β' resinol substructures (C) ^b		
Aα	71.9/4.9	C_{α} – H_{α} in β -O-4' substructures (A)		
X ₂	73/3.1	C_2 -H ₂ in xylan substructures (X)		
X ₃	74/3.3	C_3 – H_3 in xylan substructures (X)		
X ₄	75.7/3.5	C ₄ –H ₄ in xylan substructures (X)		
	80.4/4.5,			
A _β	84.4/4.4	C_{β} – H_{β} in β -O-4' substructures (A)		
	and 85.6/4.2			
Α _{ox} β	83/5.2	C_{β} – H_{β} in α -oxidized β -O-4' substructures (Aox)		
C _α	85.5/4.6	C_{α} – H_{α} in β – β' resinol substructures (C)		
B _α	87.7/5.5	C_{α} – H_{α} in phenylcoumaran substructures (B)		
T ₈	94.4/6.6	C ₈ –H ₈ in tricin units (T)		
T ₆	99.5/66.2	C ₆ –H ₆ in tricin units (T)		
T _{2,6}	104.5/7.4	C_2 – H_2 and C6-H6 in tricin units (T)		
S _{2,6}	104.2/6.7	C ₂ –H ₂ and C6–H6 in syringyl units (S)		
T ₃	107/7.2	C_3 – H_3 in tricin units (T)		
S' _{2.6}	107.4/7.4	C_2 -H ₂ and C6-H6 in syringyl units with α		
	110 2/5 0			
G ₂	110.2/6.9	C_2 -H ₂ in gualacyl units (G)		
Fa ₂	111.5/7.3	$C_2 - H_2$ in terulate (Fa)		
G ₅ /G ₆	115/6.7 and 119.7/6.8	C_5H_5 and C6–H6 in guaiacyl units (G)		
Fa ₆	123.1/7.1	C ₆ –H ₆ in ferulate (Fa)		
HMF	123.6/7.5	C_3 – H_3 in 5-O-substituted furfurals -like units		
St _{α,β}	126.6/6.9	C_{α} – H_{α} and C_{β} – H_{β} in stilbene structures (St)		
H _{2,6}	128.2/7.2	C _{2,6} –H _{2,6} in p-hydroxyphenyl units (H)		
Ι_α	130.6/6.3	C_{α} – H_{α} in cinnamyl alcohol end-groups (I)		
Pca _{2,6}	130.1/7.5	C_2 – H_2 and C_6 – H_6 in p-coumarate (Pca)		
Pb _{2,6}	131.6/7.7	C_2-H_2 and C_6-H_6 in p-benzoate (Pb)		
HMF	179/9.6	C_{α} – H_{α} in 5-O-substituted furfurals -like units		

Table S2. ¹³C and ¹H assignments of the lignin signals in 2D HSQC spectra [2].

Figure S2 DSC thermograms of L and L_{HT} in nitrogen atmosphere showing the glass transition temperatures (Tg).

Figure S3. TGA and derivative weight thermograms of L and L_{HT} in nitrogen atmosphere showing the effect of thermal treatment on lignin thermal stability.

Samples	T _m (°C) ^a	ΔH_m (J/g) ^a	T _{rec} (°C)	ΔH _{rec} (J/g)	X _c (%) ^b	X _c (%) ^a
PET	247	46	208	53	57	33
PET _{PL}	239	41	202	49	23	29
PET _{PL} /10L	237	33	209	44	23	24
PET _{PL} /20L	232	32	203	39	31	23
PET _{PL} /30L	229	29	198	33	30	21
PET _{PL} /10L _{HT}	236	36	208	41	30	26
PET _{PL} /20L _{HT}	233	29	203	38	23	21
$PET_{PL}/30L_{HT}$	231	24	199	32	20	17

Table S3 Thermal behavior temperatures, calorimetric values, and degree of crystallinity of PET and its lignin derived blends.

^a Values obtained from second heating curves ^b Computed using first heating curves

The degree of crystallinity (χ_c) was computed using the first heating curves information and applying the following equation.

$$\chi_c = \frac{\Delta H_m}{W_f \times \Delta H_{100}} \times 100\%$$
(S1)

where ΔH_m is the melting enthalpy from the first heating curve, W_f is the PET weight fraction in each composition and ΔH_{100} is the theoretical fusion enthalpy of 100% crystalline PET (140 J/g) [3]

Figure S4. Thermal decomposition of PET and its lignin derived blends at 30 wt.% lignin contents in oxidative atmosphere at 20°C/min.

- Nguyen, N.A., et al., An Acrylonitrile–Butadiene–Lignin Renewable Skin with Programmable and Switchable Electrical Conductivity for Stress/Strain-Sensing Applications. Macromolecules, 2018.
 51(1): p. 115-127.
- 2. Constant, S., et al., *New insights into the structure and composition of technical lignins: a comparative characterisation study.* Green Chemistry, 2016. **18**(9): p. 2651-2665.
- 3. Wunderlich, B. Chapter 2 The basis of thermal analysis. In Thermal Analysis, Wunderlich, B., Ed.; Academic Press: 1990; pp 1-36.