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Supplemental Material
Supplementary Note 1: Modelling a mechanical system of coupled mass-spring-damper

The coupled mechanical mass-spring-damper system is a classical problem that represents a simple
harmonic oscillator. Here, we use this example as a mechanical analog to describe the problem of
synchronization of generators in an electric power system, as depicted in Supplementary Figure 1.
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Supplementary Figure 1: Coupled mechanical mass-spring damper system with two carts, two
dampers, and a spring connected between them..

The simultaneous differential equations that describe the motion of the masses in the system
depicted in Supplementary Figure 1, assuming initial values equivalent to zero, are:

m1ẍ1 + d1ẋ1 = k(x2 − x1)
m2ẍ2 + d2ẋ2 = −k(x2 − x1) + F

(1)

Assuming F = 0, in order to study the natural modes, they can be rewritten as

ẍ1 + d1

m1
ẋ1 = 1

m1
k(x2 − x1)

ẍ2 + d2

m2
ẋ2 = k

m2
(x1 − x2)

(2)

In matrix form, defining x =
[
x1 x2

]T
, they are:

ẍ+ D

M
· ẋ+ K

M
· x = 0 (3)
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with D
M

= diag{
[
d1
m1

d2
m2

]
} and K

M
=

[
k
m1

− k
m1

; − k
m2

k
m2

]
. By defining v1 = ẋ1 and v2 = ẋ2, a first

order state space model is created:

ẋ1 = v1

ẋ2 = v2

v̇1 = − d1

m1
v1 + k

m1
x2 − k

m1
x1

v̇2 = − d2

m2
v2 + k

m2
x1 − k

m2
x2

(4)

Solving this system of differential equations yields the dynamical equations governing the speed
as a function of time, v1(t) and v2(t), respectively. Then kinetic energy as a function of time can be
computed by E(t) = 1

2 m1 · v2
1(t) + 1

2 m2 · v2
2(t). Supplementary Table I summarizes the mechanical

and electrical analogous variables.

Supplementary Table I: Summary of mechanical and electrical analogous variables
Variable Mechanical System Electrical System
Capacitive Energy Storage mi Mi

Energy Dissipator di Di

Inductive Energy Storage kij Yij

Position xi δi

Velocity v1, v2 ω1, ω2
Force kij ·(xi − xj), ∀i,j Yij ·(δi − δj), ∀i,j
Synchronized State v1 = v2 = · · · = vi ω1 = ω2 = · · · = ω

i

Kinetic Energy
∑n

i=1 0.5 mi · v2
i

∑n
i=1 0.5 Mi · ω2

i

Supplementary Note 2: Dynamic model of the generators

Electric power systems can be modeled as a complex network with power generators, substations,
and load centers constituting the nodes and the transmission lines that interconnect them the
links. Generally, the behavior of power systems can be described using a set of differential-algebraic
equations (DAE) equations, as in [1]:

ẋ(t) = f(t, x(t), y(t), u(t))
0 = g(t, x(t), y(t), u(t))

(5)

where dot notation indicates time derivative; ẋ = d
dt
x, t denotes time, x is the vector of state

variables, y is the vector of algebraic variables, and u is the vector of inputs. The vector field
f(t, x, y, u) describe the dynamic evolution of the state variables of the system including generation,
load, and any other dynamic elements and the associated control systems. The algebraic equations
determined by g(t, x, y, u) describe the system constraints and the electric network that interconnects
the dynamic elements [1]. In this study, we focus on the impacts of generator parameters on the system
synchronization. Thus, we model the system generators [1] as dynamic elements. The transmission
lines and load centers, whose contribution to inertia is relatively minimal, are modelled as algebraic
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elements. The power generation technologies considered here can be primarily divided into two main
categories: (1) synchronous generator-based power plants and (2) power electronics-based power
plants.

Synchronous Machine-based Power Plants: In conventional power systems, the majority of genera-
tion facilities are equipped with synchronous generators that transform mechanical power directly into
alternating current electric power. Over the past century, synchronous generators - including various
types driven by disparate fuels such as coal, natural gas, nuclear fission, hydro, etc - have matured
and presently offer a reliable and economical performance for the bulk generation of electricity. They
have two main electromagnetic parts: (1) Stator: which is a set of stationary windings, sinusoidal
distributed around a rotating shaft and (2) Rotor: which is a mechanically rotating shaft housed
within the stator, that has the primary field winding, and damper windings. The damper windings
on the rotor shaft help to damp out the machines oscillations induced during transient behaviors [2].
The general structure of a synchronous generator is shown in Supplementary Figure 2.
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Supplementary Figure 2: Simplified synchronous generator control system.

When the loading condition on synchronous generator changes, the rotation speed, and thus the
frequency changes. This change in frequency is registered by a governor, which varies mechanical
power to match the electric power demand, through a feedback control process with the objective
to track the frequency reference. The adjustment of mechanical power comes in three steps. First,
the mechanical power adjustment is determined by the droop value, which is a linear compensator.
Second, the mechanical power is adjusted accordingly by the governor, which elicits a turbine response.
Third, the frequency excursion is arrested when the adjusted mechanical power applies to the shaft of
the synchronous machine. This process, assuming the voltage dynamics remain ideal, is summarized
in Supplementary Figure 3.

Using simplification rules for closed-loop feedback control systems, one can write a transfer function
of the synchronous generator frequency response to changes of power output as:

∆ωSG
∆Pe

=
1

Mms+Dm

1 + 1
Mms+Dm

· 1
R

· KT G

1+TT Gs

=
1
Mm

(
s+ 1

TT G

)
s2 + ( 1

TT G
+ Dm

R·Mm
)s+ ( Dm

Mm·TT G
+ KT G

R·Mm·TT G
)

(6)
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Supplementary Figure 3: Laplace block diagram of the reduced-order model for frequency response
in SG

where
• Dm is the mechanical damping torque of the damper windings
• Mm is the mechanical inertia of all coupled, rotating parts
• R is the droop gain
• TTG is the governor and turbine response time constant
• KTG is the governor and turbine response gain constant
This transfer function presents a reduced-order model for the frequency response of the synchronous

generator. It should be noted that Dm is a function of rotor angle (δ), Dm = f(δ), though for small
deviations from the synchronous speed, its variation is minimal and can be assumed a constant,
Dm(δ) ≈ Dm [2], [3].

The roots of the characteristic equation for the synchronous generator are calculated by

s1,2 = 1
2

(
− ( 1

TTG
+ Dm

R ·Mm

) ±
√

( 1
TTG

+ Dm

R ·Mm

)2 − 4( Dm

Mm · TTG
+ KTG

R ·Mm · TTG
)
)

(7)

Looking at (s1,2), the damping component is mainly determined by the real part of these roots,
−( 1

TT G
+ Dm

R·Mm
). According to this relationship, for a synchronous generator, the components that

contribute to damping are (1) the mechanical damping provided by the damper winding, (2) product
of droop gain and mechanical inertial momentum, and (3) the response time constant of the governor
and turbine system. Also from the transfer function, one can draw a conclusion that the pace
of frequency response (the inertial component) is directly tied to the mechanical inertia ( 1

Mm
),

particularly the fast transient portion of the response because of the existence of a zero (the term s in
the numerator). The mathematical description of the frequency response of a synchronous generator
concludes the followings: the larger the mechanical dampers, Dm, and/or the smaller the product of
the droop gain and mechanical inertia, (R.Mm), and/or the smaller governor and turbine response
time, TTG, (indicating a faster response time), the larger the magnitude of the negative real part of
imaginary number, which indicates a higher damping of the natural modes. The larger the mechanical
inertia, (Mm), the slower the rate of change of frequency, a well known result in power system
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dynamics.
We verified and validated this reduced-order model for synchronous generator frequency response,

described in Eq. (6), using higher-order models developed in PSCAD (abbreviation of "power system
computer aided design"). We used the open-source models developed by the National Renewable
Energy Laboratory (NREL) and University of Colorado Boulder (CU Boulder), which are available
to public for research use [4]. The mathematical description of the high-order models for synchronous
generators and associated power network used in these PSCAD test cases are explained in [5]. PSCAD
is an industry grade software package that operates in the electromagnetic transient (EMT) domain
and is capable of capturing the fast dynamics of controllers that are generally obscured in phasor
domain simulation tools. All three electrical phases are modelled with a suitable time resolution
(in the microsecond range) to capture fast transients. The results of the validation are shown in
Supplementary Figure 4 and corroborate that the reduced-order model is effective at approximating
the frequency response of a synchronous generator.
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Supplementary Figure 4: Validation of the synchronous generator frequency response using the
reduced-order model by comparing it with the frequency response using the high-order results
obtained from the PSCAD simulation for 3.5MW load switching in the 9-bus system - the model is
available open-source at [5].

The transfer function of the reduced-order frequency response model is a second-order dynamical
system. Therefore, for studying synchronization, we use a generic second-order model in the form of
a second-order ordinary differential equation (common harmonic oscillator model) with electric angle
and speed as the dynamic variables. Using the generic model, assuming
x1 = δsg, x2 = ωsg, the frequency response of a synchronous generator can be described by:

ẋ1 = x2

ẋ2 = M−1
sg (P ∗ − Pe −Dsgx2)

(8)

where p∗ and pe are the mechanical power input and electrical power export, respectively. The Msg

and Dsg are inertia and damping coefficients.These coefficients represent all contributing elements
to inertia and damping components. Because of the mechanical nature of energy conversion with
synchronous machines, the response agility is bounded by relatively slow mechanical adjustments.
The inertia and damping coefficients are constant, as they are dependent on the machine design, and
can be expressed by the D/M ratio for simplicity. The values of these variables are physical constraints
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and are set by the machine and power plant design; during system operation, they generally cannot be
changed. When subjected to a disturbance that results in mismatch between the generator mechanical
power and electric power output, the electric speed and subsequently the electric angle, experience
transients. We verified and validated this generic second-order model presented in Eq. 8 using the
previously validated reduced-order model presented in Eq. (6). The results of the validation are
shown in Supplementary Figure 5 and corroborate that the generic second-order model can effectively
approximate the frequency response of the synchronous generator.
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Supplementary Figure 5: Validation of the synchronous generator frequency response obtained from
the generic second-order model by comparing it with the frequency response obtained from the
reduced-order model, emulating a 3.5MW load switching event in the 9-bus system

.

Power electronics-based power plants: Power electronic inverters, which are often used to interface
variable renewable energy sources with the grid, can be categorized by the primary control mode
as either (i) grid-following (GFL) or (ii) grid-forming (GFM). Both classes of inverters have similar
hardware components with the structure differing chiefly in the control schemes, which has a consid-
erable impact on the interactions with the electric power grid. GFL inverters, the most commonly
used class of inverters, rely on the phase locked loop (PLL) to estimate and track the frequency at
the point of interconnection (POI). Typically, the control objective of these devices is to maintain a
set power export regardless of varying grid conditions. If operated as a grid support device using a
droop-relationship, then active power and reactive power are adjusted proportionally to frequency and
voltage deviations. In contrast, GFM inverters, an emerging and promising technology as applied to
the parallel operation in bulk power systems, adjust the frequency and voltage according to the power
injection deviations at the POI. In other words, they are capable of supporting the grid by generating
frequency independent of the grid operating conditions. An additional distinction in GFM control
is the necessity of available positive headroom to perform these control objectives. Although there
are variants for each of these two classes in the literature [6]–[9], this work focuses on the two most
common state-of-the-art classes: (1) the GFM with either the virtual-inertia support functionality or
the multi-loop droop control approach and (2) the GFL. The general structure of these technologies
is shown in Supplementary Figure 6.

The GFM with virtual-inertia support functionality is also known as the virtual synchronous
machine (VSM) [10], with the aim to emulate a synchronous generator frequency response to mitigate
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Supplementary Figure 6: Comparative illustration of simplified GFL and GFM control systems

potential operational challenges that grid-coupled inverters may pose [11]–[18]. Subsequently, at least
11 control approaches have been proposed for the VSM [10], [11], [19]–[38], all of which are neatly
summarized in [39], with the primary differences generally associated with internal decision-making
and the choice of state variables. Nonetheless, all of these various approaches have a similar output
as they try to emulate a synchronous generator and, thus, their frequency response can be described
by the second-order differential equation used for a synchronous generator. The main distinction is
that the physical variables should be replaced with their digital dual and a similar frequency response
mechanism applies.

The mechanism of frequency response in the multi-droop GFM inverter adjusts the frequency set
point as a function of output power deviations through an open-loop control process that leverages
the frequency-droop relationship of real power flow across AC transmission systems. The adjustment
of frequency comes as the following: Output power is determined by the voltage values at the two
terminating points of the grid coupling inductor of the LCL filter. Denoting E and V the two voltage
values and the value of the inductance XLc , the power transfer is Pg = E·V

XLc
sinδ. Assuming the

voltages are very close to 1 p.u. and after linearization, the change of the multi-loop GFM power
output can be described by ∆Pg = 1

XLc
∆δcosδ. Since δ is a small value, cosδ ≈ 1, and ∆Pg = 1

XLc
∆δ.

For frequency response, first, the power error is detected through a low-pass filter whose output is
used to create the power error signal for the droop controller. Second, the droop controller determines
the output frequency set point. Finally, passing the frequency set point through an integrator creates
the angle of voltage at the capacitor of the LCL filter. As noted, this is an open-loop process. This
process is summarized in Supplementary Figure 7.

One can write a transfer function of the multi-loop GFM frequency response as a function to
changes of power demand as:

∆ωGFM
∆Pe

= R

Tωcs+ 1 =
R
Tωc

s+ 1
Tωc

(9)

where
• R is the droop gain, and
• Tωc is the low-pass filter time constant, the reciprocal value of cut-off frequency (ωc),
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Supplementary Figure 7: Laplace block diagram of the reduced-order model for frequency response
in multi-loop GFM

The characteristic equation for the multi-loop GFM inverter is a first-order polynomial whose
singular root is

s1 = − 1
Tωc

= −ωc (10)

which is the reciprocal value of the time constant of the low-pass power measurement filter, equal
to the cut-off frequency. Knowing the cut-off frequency is relatively high ωc = 1

Tωc
(ωc = 1

Tωc
> 100

rad/sec) [40], the only root of this equation is well to the left hand side of the imaginary axis and
always real, and thus, the multi-loop GFM inverter is safe be assumed asymptotically stable.

The transfer function indicates that the frequency response of multi-loop GFM is first-order. The
pace of response (the inertial component) is directly determined by the cut-off frequency of the low-
pass power measurement filter, ωc, and the droop gain R. The settling value is determined by the
droop gain, R; the higher the cut-off frequency or larger the droop gain, the faster the frequency
deviates, and the smaller the droop gain, the smaller the frequency deviation.

We verified and validated this reduced-order model for GFM frequency response, described in Eq.
(9), using the high-order models developed in PSCAD. We used the very same open-source models
developed by the NREL and University of Colorado Boulder (CU Boulder) [4] that previously were
used to verify the synchronous generator reduced-order model. The mathematical description of the
high-order models for the GFM inverter and the associated power network used in this PSCAD test
case are detailed in [5]. The results of validation are shown in Supplementary Figure 8 and indicate
that the reduced-order model can suitably approximate the frequency response of the GFM.

The transfer function of the reduced-order frequency response model for the multi-loop droop
GFM yields a first-order system which can be approximated by order-reduction of a second-order
system, while the transfer function for the VSM-GFM yields a second order model. Therefore, for
studying synchronization, we use a generic second-order model in the form of a second-order ordinary
differential equation (common harmonic oscillator model) with electric angle and speed as the dynamic
variables. Using the generic model, assuming x1 = δpe, x2 = ωpe, the frequency response of GFM can
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Supplementary Figure 8: Validation of the GFM frequency response obtained from using the reduced-
order model obtained from the analytical model by comparing it with the frequency response using
the full-order results obtained from the PSCAD EMT simulation for a 3.5MW load switching event
in the 9-bus system

be described by

ẋ1 = x2

ẋ2 = M−1
pe (P ∗ − Pe −Dpex2)

(11)

where p∗ and pe are the power output setpoint and actual power export, respectively. The Mpe and
Dpe are the equivalent inertia and damping coefficients; when {M >> 0} the VSM control is employed
and for {M ≈ 0 ∧ M ̸= 0} the control mode is the multi-loop droop class of GFM (which would
result in order reduction to the first-order). These coefficients represent all contributing elements to
inertial and damping component of frequency response In power electronics-backed generation units,
because of the non-mechanical nature of energy conversion with DC sources, the response agility
is primarily bounded by the digital controller process time, which could be very quick, and can be
modified in an adaptive manner and in real-time, except for the physical value of the grid-coupling
inductance. Therefore, unlike synchronous generators, the inertia and damping coefficients in GFM
are independent of each other. The power setpoint defines the amount of power that is commanded
to be released through the semi-conductor switches. This model implies that following a disturbance
that results in mismatch between the GFM power setpoint and power output, electric angle can begin
to oscillate. In a stable operation, these oscillations should be damped out within a relatively short
time following their inception - within seconds.

We verified and validated this generic second-order model presented in Eq. 11 for multi-loop GFM
using the previously validated reduced-order model presented in Eq. (6). The synchronous generator
model validation accounts for the VSM-GFM model validation. The results of the validation are shown
in Supplementary Figure 9 and show that the generic second-order model can effectively approximate
the frequency response of a multi-loop GFM.

The GFL, on the other hand, does not contribute to the system electric angle construction. The
GFL does not produce any constituting voltage frequency and instead follows the frequency at the
POI. It estimates the frequency at the POI using a PLL and through a linear relationship (droop)
it adjusts its power export by acting as a current source. Therefore, the its governing equation can
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Supplementary Figure 9: Validation of the multi-loop GFM frequency response obtained from the
generic second-order model by comparing it with the frequency response obtained from the reduced-
order model, emulating 3.5MW load switching in the 9-bus system

be given by:

0 = P ∗ − Pe (12)

where p∗ and pe are the power setpoint and power export. Effectively, the GFL can be modeled as a
negative load.

Supplementary Note 3: Linear model of electric power network

To obtain the Jacobian of the electric power network of interest in this study, first, let us consider
the operation at a stable equilibrium where the generator power setpoints and electric power exports
are equal, P ∗ = Pe, for both the GFM and Synchronous generators. Following a disturbance, there
will be a mismatch between these known as the acceleration power, defined by P = P ∗ − Pe as
pertaining to changes in generators’ power output. Inspired by Machowski’s [2] analysis of power
networks with only synchronous generators considered, linearization of the governing equations for
the GFM and Synchronous machines (the linearization introduces the linear difference operator, ∆)
interconnected at the i-th node (8) and (11) yields:

∆δ̇i = ∆ωi

∆ω̇i = 1
M

∆Pi − D

M
∆ωi

(13)

where ∆Pi is the change in the generator power injection. For any node i, the active power injection
at the node with voltage of Vi = |Vi|∠δi can be expressed by power-flow equation as [2]:

Pi = V 2
i ·Gii +

n∑
j=1;j ̸=i

Vi · Vj · [Bij · sin(δi − δj) +Gij · cos(δi − δj)] (14)

where Yij = Gij + j Bij here are the effective admittance values obtained from Kron reduction; G is
the conductance and B is the susceptance. The linearized form of (14) can be expressed in a matrix
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form as: 
∆P1

...
∆Pn

 =



∂P1

∂δ1
. . .

∂P1

∂δn... . . . ...
∂Pn
∂δ1

. . .
∂Pn
∂δn




∆δ1
...

∆δn

 (15)

Equation (15) can alternatively be presented as:
∆P1

∆P2
...

∆Pn

 =


H1,1 H1,2 . . . H1,n

H2,1 H2,2 . . . H2,n
... ... . . . ...

Hn,1 Hn,2 . . . Hn,n




∆δ1,n

∆δ2,n
...

∆δn,n

 (16)

∆Pn = Hn ∆δn (17)

where H is the system network Laplacian (effective admittance), an (n× n) matrix whose elements
can be computed by:

Hij = −Vi · Vj · [Bij · cos(δi − δj) −Gij · sin(δi − δj)]

Hii =
n∑

j=1;j ̸=i
Vi · Vj · [Bij · cos(δi − δj) −Gij · sin(δi − δj)]

(18)

Replacing (17) into (13) produces:∆δ̇n
∆ω̇n

 =
 0 I

−M−1Hn −M−1D

 ∆δn
∆ωn

 (19)

In (19), I is the n× n identity matrix and 0 represents a (n× n) matrix of zeros. This is a (2n) set
of equations representing n electric angles and electric speeds of all n generators.

Supplementary Note 4: Coordinate transformation

In power system stability analysis, one bus is appointed as the reference generator (commonly, the
slack generator) and all other angles are analyzed relative to the angle of the reference generator [2],
[3], [41]. Subsequently, system stability is analyzed as relative angle stability that assesses whether
the angles remain relatively bounded, which does not hold true if the pace of their evolution is not
homogeneous (i.e., the definition of synchronization). This is a common technique and here we borrow
our analysis from [2]. From (18) it can be seen that H is singular:

n∑
j=1

Hij = 0 (20)

This singularity can be used for a coordinate transformation to express all electric angles as relative
electric angles with respect to the reference angle. Let us suppose that the reference angle is the
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electric angle of the n-th generator. For the coordinate transformation, one can write [2]:

∆Pi =
n∑
j=1

Hij∆δi =
n∑

j=1,j ̸=n
Hij∆δi +Hin∆δn (21)

In (21), for the last term, Hin∆δn, by leveraging the singularity property of the Laplacian it can
be expressed as Hin∆δn = − ∑n

j=1,j ̸=nHij∆δn. Substituting it in (21) produces

∆Pi =
n∑

j=1,j ̸=n
Hij (∆δi − ∆δn) =

n∑
j=1,j ̸=n

Hij ∆δin (22)

Now, (15) can be expressed in the form of relative angles as:
∆P1

∆P2
...

∆Pn

 =


H1,1 H1,2 . . . H1,n−1

H2,1 H2,2 . . . H2,n−1
... ... . . . ...

Hn,1 Hn,2 . . . Hn,n−1




∆δ1,n

∆δ2,n
...

∆δn−1,n

 (23)

And in compact form:
∆Pn = Hn−1 ∆δn−1 (24)

where Hn−1 is an n× (n−1) matrix and the angles presented in ∆δi,n are the relative angles between
node i and the reference angle at the reference generator n. Replacing (24) into (13) produces:∆δ̇n−1

∆ω̇n

 =
 0 1−1

−M−1Hn−1 −M−1Dn

 ∆δn−1

∆ωn

 (25)

In (25), [0] represents a (n × n) matrix of zeros and [1−1] represents a matrix of identity with an
extended column whose arrays are all equal to (-1). This is a (2n− 1) set of equations representing
(n− 1) electric angle of all generators relative to the reference generator and n actual electric speed
that would include the reference generator’s electric speed.

Supplementary Note 5: Deriving the stability condition

Here we solve the necessary condition for stable synchronization in electric power networks with
heterogeneous coupling damping factors. The linear model previously developed and described in
(25) can alternatively be described as:

∆δ̇i,n
∆ω̇i
∆ω̇n

 =


0 I −1
hi di 0
hn 0 dn



∆δi,n
∆ωi
∆ωn

 (26)

where ∆ is the linear difference operator, δi,n is the vector of (n − 1) relative electric angles and ωi

and ωn are absolute electric speeds expressed by a vector of (n − 1) and an integer value (making
it a vector with a single array), respectively. [0] is a matrix of zeros, and [I] is the identity matrix,
each a square matrix of dimension (n− 1), and [−1] is a matrix with dimension 1 × (n− 1) and all
elements are (-1). hi = −M−1

i Hi,j and di = −M−1
i Di,∀i, j = 1, 2, · · · , (n − 1) are diagonal matrices,
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each a square matrix with dimension of (n − 1), with H, D, and M the network interconnection
Laplacian coefficients and generators damping and inertia coefficients, respectively. Finally, hn =
−M−1

n Hi,n,∀i = 1, 2, · · · , (n− 1) is a 1 × (n− 1) matrix and dn = −M−1
n Dn is a single array.

hi =


−H1,1

M1
−H1,2

M1
. . . −H1,n−1

M1

−H2,1
M2

−H2,2
M2

. . . −H2,n−1
M2... ... . . . ...

−Hn−1,1
Mn−1

−Hn−1,2
Mn−1

. . . −Hn−1,n−1
Mn−1



di =


−D1
M1

0 . . . 0
0 −D2

M2
. . . 0

... ... . . . ...
0 0 . . . −Dn−1

Mn−1


hn =

[
−Hn,1
Mn

−Hn,2
Mn

. . . −Hn,n−1
Mn

]

(27)

By definition of eigenvalues:
Jw = λw (28)

with J being the system Jacobian along the solution trajectory. It can be extended as

0 · · · 0 1 · · · 0 −1
... . . . ... ... . . . ... ...
0 · · · 0 0 · · · 1 −1

−H1,1
M1

· · · −H1,(n−1)
M1

−D1
M1

. . . 0 0
... . . . ... ... . . . ... ...

−H(n−1),1
M(n−1)

· · · −H(n−1),(n−1)
M(n−1)

0 . . . −D(n−1)
M(n−1)

0
−Hn,1

Mn
. . . −Hn,(n−1)

Mn
0 · · · 0 −D(n)

M(n)





w1
...

w(n−1)

wn
...

w2(n−1)

w(2n−1)


= λ



w1
...

w(n−1)

wn
...

w2(n−1)

w(2n−1)


(29)

This can be presented in compact form as
0 I −1
hi di 0
hn 0 dn



w′

w′′

w′′′

 = λ


w′

w′′

w′′′

 (30)

Expansion of this expression provides:

I · w′′ − 1w′′′ = λ · w′

hi · w′ + di · w′′ = λ · w′′

hn · w′ + dn · w′′′ = λ · w′′′

(31)

where · is the inner product operator and 1 is a matrix of all ones of (n− 1) × 1.
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From the third equation in (31), it can be derived:

hn · w′ + dn · w′′′ = λ · w′′′

hn · w′ =
(
λ− dn

)
· w′′′

w′′′ =
(
λ− dn

)−1
hn · w′

(32)

From the first equation in (31):

I · w′′ − w′′′ = λ · w′

1w′′′ = I · w′′ − λ · w′
(33)

Replacing (32) into (33) produces(
λ− dn

)−1
[1 ⊗ hn] · w′ = I · w′′ − λ · w′(

λ− dn
)−1

[1 ⊗ hn] · w′ + λ · w′ = I · w′′

w′′ =
[(
λ− dn

)−1
[1 ⊗ hn] + λI

]
· w′

(34)

where ⊗ is the outer product operator.
Let us rearrange the second equation from (31):

hi · w′ + di · w′′ = λ · w′′

hi · w′ =
(
λI − di

)
· w′′

(35)

Replacing (34) in this expression produces:

hi · w′ =
((
λ− dn

)−1
[1 ⊗ hn] + λI

)
· w′

0 =
((
λ− dn

)−1
[1 ⊗ hn] + λI

)
· w′ − hi · w′

0 =
[(
λI − di

)
·

((
λ− dn

)−1
[1 ⊗ hn] + λI

)
− hi

]
· w′

(36)

Since w′ cannot be zero, then the first expression should be equal to zero. Expression (36) can be
expanded to:

λ(λI − di)(λ− dn) − (λ− dn)hi + (λI − di) · [1 ⊗ hn] = 0
λ3I + λ2(−di − dnI) + λ(didn) − λhi + dnhi + λ[1 ⊗ hn] − di · [1 ⊗ hn] = 0

p(λ) = λ3I + λ2(−di − dnI) + λ(didn − hi + [1 ⊗ hn]) + (dnhi − di · [1 ⊗ hn]) = 0

(37)

where λ are the eigenvalues of the system. The necessary condition for existence of eigenvalues is that
this characteristic matrix is singular and thus, det(p(λ)) = 0. The existence of stable equilibria is
guaranteed if the all the eigenvalues have non-positive real part. One should note that although p(λ)
is a third-order polynomial, the solution yields only a total of (2n−1) eigenvalues whose eigenvectors
are linearly independent for a network with n generators. This is because Eq. (32) of the above
procedure projects the (2n − 1)th eigenvector into 2(n − 1) other dimensions, creating a total of
3(n − 1) eigenvectors. But at the end, there are only (2n − 1) eigenvalues whose eigenvectors are
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linearly independent and the others are repetitive of the (2n− 1)th eigenvalue and the corresponding
eigenvector.

Supplementary Note 6: Analytical derivation of stability condition for 3-generator system

Let us consider a 3-generator system (classic 9-bus system), depicted in Supplementary Figure
10. This is a modified system to adopt the reduced-order generator models, developed based on a
standardized benchmark without any change to the line parameters or network topology [3].

1

32

Generator 3
13.8 kV

200 MVA
M=0.3820
D= 1.1001

Generator 2
18 kV

200 MVA
M=0.9549
D=1.8335

Generator 1
16.5 kV

200 MVA
M=1.9099
D=1.8335

Transformer

Load Center

GGenerator

G

G

Impedance

G

0.0085+i0.072 0.0119+i0.1008

i0.0576

i0.0586i0.0625

90MW
30MVar

125MW
50MVar

100MW
35MVar

Supplementary Figure 10: One-line diagram of the 3-generator, 9-bus system, and the dynamic and
network data

For this system, n = 3 and, let’s assume gen3 as the reference generator. By definition of eigenval-
ues, using its Jacobian, it can be said:

0 0 1 0 −1
0 0 0 1 −1

−H1,1
M1

−H1,2
M1

−D1
M1

0 0
−H2,1

M2
−H2,2

M2
0 −D2

M2
0

−H3,1
M3

−H3,2
M3

0 0 −D3
M3





a

b

c

d

e


= λ



a

b

c

d

e


(38)

with w′ = [a b]T , w′′ = [c d]T , and w′′′ = [e]T , and the eigenvector w = [w′T w′′T w′′′T ]T . These
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equations can be expanded as:

c− e = λa

d− e = λb

−H1,1M
−1
1 a−H1,2M

−1
1 b−D1M

−1
1 c = λc

−H2,1M
−1
2 a−H2,2M

−1
2 b−D2M

−1
2 d = λd

−H3,1M
−1
3 a−H3,2M

−1
3 b−D3M

−1
3 e = λe

(39)

From the last equation in (39):

−H3,1M
−1
3 a−H3,2M

−1
3 b−D3M

−1
3 e = λe

−H3,1M
−1
3 a−H3,2M

−1
3 b = (λ+D3M

−1
3 )e

e =(λ+D3M
−1
3 )−1

(
−H3,1M

−1
3 a−H3,2M

−1
3 b

)
w′′′ =

(
λ− dn

)−1
· hn · w′

(40)

From the first two equations in (39), it can be derived:

e = c− λa

e = d− λb

1w′′′ = I · w′′ − λ · w′

(41)

Replacing (40) into (41) yields:

c− λa = (λ+D3M
−1
3 )−1

(
−H3,1M

−1
3 a−H3,2M

−1
3 b

)
d− λb = (λ+D3M

−1
3 )−1

(
−H3,1M

−1
3 a−H3,2M

−1
3 b

)
I · w′′ − λ · w′ =

(
λ− dn

)−1
[1 ⊗ hn] · w′

c = (λ+D3M
−1
3 )−1

(
−H3,1M

−1
3 a−H3,2M

−1
3 b

)
+ λa

d = (λ+D3M
−1
3 )−1

(
−H3,1M

−1
3 a−H3,2M

−1
3 b

)
+ λb

w′′ =
[(
λ− dn

)−1
[1 ⊗ hn] + λI

]
· w′

(42)
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From the third and fourth equation in (39):

−H1,1M
−1
1 a−H1,2M

−1
1 b−D1M

−1
1 c = λc

−H2,1M
−1
2 a−H2,2M

−1
2 b−D2M

−1
2 d = λd

hi · w′ + di · w′′ = λ · w′′

−H1,1M
−1
1 a−H1,2M

−1
1 b = (λ+D1M

−1
1 )c

−H2,1M
−1
2 a−H2,2M

−1
2 b = (λ+D2M

−1
2 )d

hi · w′ =
(
λI − di

)
· w′′

(43)

Replacing (42) in (43) produces:

−H1,1M
−1
1 a−H1,2M

−1
1 b = (λ+D1M

−1
1 )

[
(λ+D3M

−1
3 )−1

(
−H3,1M

−1
3 a−H3,2M

−1
3 b

)
+ λa

]
−H2,1M

−1
2 a−H2,2M

−1
2 b = (λ+D2M

−1
2 )

[
(λ+D3M

−1
3 )−1

(
−H3,1M

−1
3 a−H3,2M

−1
3 b

)
+ λb

]
hi · w′ =

(
λI − di

)
·

[(
λ− dn

)−1
[1 ⊗ hn] + λI

]
· w′

(44)

This expression can be rearranged as:

0 = (λ+D1M
−1
1 )

[
(λ+D3M

−1
3 )−1

(
−H3,1M

−1
3 a−H3,2M

−1
3 b

)
+ λa

]
+

[
H1,1M

−1
1 a+H1,2M

−1
1 b

]
0 = (λ+D2M

−1
2 )

[
(λ+D3M

−1
3 )−1

(
−H3,1M

−1
3 a−H3,2M

−1
3 b

)
+ λb

]
+

[
H2,1M

−1
2 a+H2,2M

−1
2 b

]
0 =

(
λI−di

)
·

[(
λ− dn

)−1
[1 ⊗ hn] + λI

]
· w′ − hi · w′

(45)

It can be expanded as:

0 = (λ+D1M
−1
1 )(λ+D3M

−1
3 )−1(−H3,1M

−1
3 )a+ (λ+D1M

−1
1 )(λ+D3M

−1
3 )−1(−H3,2M

−1
3 )b

· · · + λ(λ+D1M
−1
1 )a+

[
H1,1M

−1
1 a+H1,2M

−1
1 b

]
0 = (λ+D2M

−1
2 )(λ+D3M

−1
3 )−1(−H3,1M

−1
3 )a+ (λ+D2M

−1
2 )(λ+D3M

−1
3 )−1(−H3,2M

−1
3 )b

· · · + (λ+D2M
−1
2 )λb+

[
H2,1M

−1
2 a+H2,2M

−1
2 b

]
(46)
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And rearranging produces:

0 =
[

(λ+D1M
−1
1 )(λ+D3M

−1
3 )−1(−H3,1M

−1
3 ) + λ(λ+D1M

−1
1 ) +H1,1M

−1
1︸ ︷︷ ︸

ψ11

]
a

· · · +
[

(λ+D1M
−1
1 )(λ+D3M

−1
3 )−1(−H3,2M

−1
3 ) +H1,2M

−1
1︸ ︷︷ ︸

ψ12

]
b

0 =
[

(λ+D2M
−1
2 )(λ+D3M

−1
3 )−1(−H3,1M

−1
3 ) +H2,1M

−1
2︸ ︷︷ ︸

ψ21

]
a

· · · +
[

(λ+D2M
−1
2 )(λ+D3M

−1
3 )−1(−H3,2M

−1
3 ) + (λ+D2M

−1
2 )λ+H2,2M

−1
2︸ ︷︷ ︸

ψ22

]
b

0 =
[ (
λI − di

)
·

(
λ− dn

)−1
[1 ⊗ hn] + λI − hi · w′︸ ︷︷ ︸
ψ

]
· w′

(47)

In compact form, it can be written as

0 = ψ · w′

ψ =
ψ11 ψ12

ψ21 ψ22


w′ =

[
a b

]T
(48)

The eigenvalues of system can be found by solving the det(ψ) = 0 for λ.
We have demonstrated the results for this test system using three different combinations of gen-

eration technologies and have validated them using the industry-grade full-order model, shown in
Table I of the Main Manuscript. The coefficients for the reduced-order frequency response models
corresponding to these case and subsequent nadir frequency and rate of change of frequency (ROCOF)
are presented in Supplementary Table II, see below.

Supplementary Table II: Parameters for the cases presented in Figure 4 of the Main Manuscript
Case Inertia Coefficient Damping Coefficient Nadir ROCOF
All SG/GFM-VSM (1.9099, 0.9549, 0.3820) (1.8335, 1.8335, 1.1001) 59.91 0.276
2/3rd GFL+1/3rd SG (1.5915, 0.7958, 0.3183) (1.5279, 1.5279, 0.9167) 59.73 0.376
All GFM-Droop (0.0080, 0.0040, 0.0016) (0.3361, 0.3361, 0.2017) 59.94 0.720

Supplementary Note 7: Stability condition for uniform damping factor

Recalling Eq. (13), let us suppose a special condition where the damping factors, di = −Di

Mi
, are

homogeneous, constituting d1 = d2 = · · · = dn. The stability criteria for this special condition is
developed by Motter [42] and Machowski [2]. For the sake of argument, we borrow their analysis
here. The assumption of homogeneity leads to a reduced system Jacobian to 2(n−1) by representing
electric speeds as relative electric speeds with respect to the electric speed of the reference generator.
To this end, let us assume the coupling damping factor is uniform for all generators across the system
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and equivalent to (− D
M

). For any i-th generator with the n-th generator being the reference generator,
it can be written [2]:

∆ω̇i,n = −
(∆Pi
Mi

− ∆Pn
Mn

)
− D

M

(
∆ωi − ∆ωn

)
= −

(∆Pi
Mi

− ∆Pn
Mn

)
− D

M
∆ωi,n

(49)

where ωi,n = ωi − ωn is the electric speed deviation from the reference machine. Substituting (49)
into (13) produces ∆δ̇n−1

∆ ˙ωn−1

 =
0 I

h d

 ∆δn−1

∆ωn−1

 (50)

where ∆δn−1 and ∆ωn−1 are vectors of (n− 1) relative electric angle and electric speeds and [0] and
[I] are (n− 1) × (n− 1) matrices of zero and identity. d is a diagonal matrix of damping coefficients
with all of its diagonal arrays equivalent to (− D

M
) and h is a (n − 1) × (n − 1) matrix of relative

network coefficients.
To assess the stability of this system, one can calculate the eigenvalues of (50), denoted by λ with

corresponding eigenvectors of w. The definition of eigenvalues and eigenvectors provides [2], [42]:0 I

h d

 w′

w′′

 = λ

w′

w′′

 (51)

where w = [w′Tw′′T ]T From (50), it can be said that w′′ = λw′ and a h · w′ + dw′′ = λw′′ or
h · w′ = (λ − d)w′′. Replacing w′′ = λw′ into h · w′ = (λ − d)w′′ produces h · w′ = (λ − d)λw′ which
implies λh = λ2 − dλ is the eigenvalue of the submatrix h. It can be rearranged as

λ2 − dλ+ λh = 0 (52)

Equation (50) is equivalent to (26) under the assumption of di homogeneity yielding a zero coupling
mode kdi

= 0 in (50). The eigenvalues of (50) can be found by solving (52) for λ as

λ = 0.5d± 0.5
√
d2 + 4λh (53)

Supplementary Note 8: Frequency response in power networks and hertz-sec metric

The power network operator is concerned with continuously maintaining a stable and homogeneous
system frequency across the network, 60Hz in North America and 50Hz in the rest of the world,
reflecting the balance between the electric power generation and consumption. In real-world instances,
this system frequency is continuously fluctuating within a small, stable equilibria as a result of
slight, countless perturbations, but can be approximated as a quasi-steady state system frequency
due to the small boundedness of the deviations. Any perturbation can induce transient oscillations
and in a stable system these oscillations are damped out within a relatively short time following
their inception. As an example, the frequency response trace from the European interconnected
grid is shown in Supplementary Figure 11. The largest value of frequency excursion is called the
nadir, which is an important value in power grid management and control because if the frequency
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drops below a standard threshold – 48.5Hz in Europe [43] and 59.5Hz in North America [44] – it
can trigger protective equipment that results in an interruption of power supply to some parts of
the grid as a preventative measure to avoid cascading failures and blackout. Another important
frequency related metric is the rate of change of frequency (ROCOF), where high values can trigger
protective equipment. This metric quantifies the tangent of frequency response right after disturbance
occurs and, subsequently, when the frequency starts to change. The ROCOF is measured in Hz

sec
. The

frequency nadir and ROCOF play a critical role in the operation of power networks and, but the
individual values do not provide sufficient information about the frequency response and dynamic
state of system. Therefore, to quantify and assess the frequency response, we use the hertz-sec metric
[45] which is a proxy for the changes of kinetic energy induced by the disturbance. This metric
integrates the absolute value of frequency deviation over its transient period. The hertz-sec, HS, is
defined as:

HS =
∫ ts

t0
|f0 − f(t)| · dt (54)

where f0 and f(t) are the pre-disturbance frequency (a constant) and the post-disturbance frequency
(a function of time), respectively, and t0 and ts are the time the frequency departs the pre-disturbance
steady-state value and the time it permanently reaches the settling steady-state value, respectively.

A smaller value of this hertz-sec metric, as a proxy for reflecting smaller amount of kinetic energy,
indicates a faster and more agile response, which is desired.
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Supplementary Figure 11: Frequency response dynamic for the European synchronized continental power grid
recorded by the Phasor Measurement Units (PMUs) in Italy, Belgium, Germany, and France on Jan 8, 2021: In power
grid operation, the nadir frequency is the lowest point of the frequency dynamics and it is a critical value because
protective equipment are set to operate if the nadir value drops below a certain threshold to avoid cascading failures
and a potential major blackout. To prevent loading-shedding or disconnection of part of the grid, it is important that
at dynamic state of the grid is maintained such that all times, the nadir frequency for most common small disturbances
remains above this threshold level.
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Supplementary Note 9: Power network data
We used the network data from the standard IEEE benchmarks including IEEE 9-bus [3], IEEE

30-bus [46], IEEE 39-bus [47], IEEE 57-bus [48], IEEE 118-bus [49], and IEEE 300-bus [50] systems.
The steady state model for these systems is freely available as part of the MATPOWER tool [51]
and a statistical description of these systems is provided in Supplementary Table III.

Supplementary Table III: Statistical description of properties of the electric power systems bench-
marks considered

Benchmark name Nodes Lines Generators Capacity Load
IEEE 9-bus system 9 9 3 0.82GW 0.31GW
IEEE 30-bus system 30 41 6 0.33GW 0.19GW
IEEE 39-bus system 39 46 10 7.36GW 6.25GW
IEEE 57-bus system 57 80 7 1.97GW 1.25GW
IEEE 118-bus system 118 186 54 9.96GW 4.24GW
IEEE 300-bus system 300 411 69 32.67GW 23.52GW

The dynamic data for some of these benchmarks does not exist. For this study, we generated
synthetic dynamic data which represent real-world power system dynamics and characteristics relying
on the data available from those publicly available benchmarks [3], [52]–[54]. Creation of synthetic
power grids is a common practice because the real-world power system data is not always easily
accessible due to legal matters, pursuant to Homeland Security Act of 2002: Critical Infrastructure
Information Act [55]. Variety of dynamic power systems have been developed and documented [56]–
[61], mostly extremely large systems which have application for optimization problems and power
flow analysis. Our synthetic dynamic data are generated algorithmically in base cases to represent
conventional power network with all generation stations equipped with synchronous generator. The
range we chose is consistent with those empirically observed in the data available. The total power
(MVA) capacity of generators are also randomly allocated between 100% and 250% of their total power
dispatch determined by the power-flow equations to account for reserve margin. Then we validated
by perturbing all generators, one generator at a time, and monitored the dynamic response of all
generators that are interconnected to the network to ensure they are stable and their characteristics
and response match what is commonly observed in power systems.

To perturb the system and emulate the load switching, we subjected the electric angle of generators,
δ to a step change that replicates a change of the loading condition and subsequently, we monitored
the electric speed, ω. Because we applied Kron reduction which is a common technique in power
network synchronization studies, the load nodes are eliminated and there is no other mean to directly
switch loads, other than switching the δ of generators in a sustained fashion. System frequency can
be measured as the electric speed of generators, ∆ω = ∆δ̇, as ∆f = ∆ω(2π)−1 +fss with fss = 60Hz
(in the United States, 50 Hz in Europe), and (∆δ0,∆ω0) = (0, 0), assuming the frequency departs
from an equilibrium when disturbed.
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