In-duct Grating-like Dielectric Barrier Discharge System for Air Disinfection

Liyang Zhang¹, Yuntao Guo^{1*}, Xuanyu Chang², Zenghui Yao³, Xiaodong Wei², Zihao Feng¹, Dongheyu Zhang¹, Qun Zhou⁴, Xinxin Wang¹, Haiyun Luo^{1*}

¹ Department of Electrical Engineering, Tsinghua University, Beijing, China

² Marine Design and Research Institute of China (MARIC), Shanghai, China

³ School of Electrical and Electronic Engineering, North China Electric Power University, Beijing, China

⁴ Department of Chemistry, Tsinghua University, Beijing, China

Please correspond to:

*Prof. Haiyun Luo

Email: <u>lhy@tsinghua.edu.cn</u>

or *Dr. Yuntao Guo

E-mail: guoyt@tsinghua.edu.cn

Figure S1. The pressure drops across the plasma rectors as a function of inlet airflow velocity. The average data were fitted by a parabolic function ($y=k \cdot x^2$, $R^2=0.9995$).

Figure S2. ICCD images of discharge filaments of pair-wise electrodes from the side view with 1 ms exposure time. The full width at half maxima (FWHM) values of the discharge filaments as a function of applied voltage is also shown. **Under higher applied voltages, the accumulation of discharge filaments leads to a wider emission region.**

Figure S3. The voltage and current waveforms of the vertical-2 reactor as a function of RH levels. The voltage was fixed at 10 kVp.

RH=20%	KII-40 //	RH=50%	RH=60%
	RH=70%	RH=80%	RH=90%
	RH=70%	RH=80%	

Figure S4. Discharge photos of 'vertical-1' DBD reactor at different relative humidity (RH) levels. The peak voltage is 10 kVp and the frequency is 1 kHz. The exposure time is 30 s. **Clearly, discharge uniformity is disrupted under high RH values (>60%).**

Figure S5. The voltage and current waveforms of the pulsed power source output. The frequency is fixed at 1 kHz. 'Input-1' and 'input-2' corresponds to peak voltages of 9.4 and 11.6 kV, respectively.