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ABSTRACT

Gene duplication provides rawgeneticmaterials for evolution and potentially novel genes for crop improve-

ment. The two seminal genomic studies of Aegilops tauschii both mentioned the large number of genes

independently duplicated in recent years, but the duplication mechanism and the evolutionary significance

of these gene duplicates have not yet been investigated. Here, we found that a recent burst of gene dupli-

cations (hereafter abbreviated as the RBGD) has probably occurred in all sequenced Triticeae species.

Further investigations of the characteristics of the gene duplicates and their flanking sequences suggested

that transposable element (TE) activity may have been involved in generating the RBGD.We also character-

ized the duplication timing, retention pattern, diversification, and expression of the duplicates following the

evolution of Triticeae. Multiple subgenome-specific comparisons of the duplicated gene pairs clearly sup-

ported extensive differential regulation and related functional diversity among such pairs in the three sub-

genomes of breadwheat. Moreover, several duplicated genes from the RBGD have evolved into key factors

that influence important agronomic traits of wheat. Our results provide insights into a unique source of

gene duplicates in Triticeae species, which has increased the gene dosage together with the two polyploid-

ization events in the evolutionary history of wheat.
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INTRODUCTION

The Triticeae tribe is one of the largest taxonomic groups in the

grasses and comprises many globally important food and forage

crops like wheat, barley, and rye. Triticeae crop species, espe-

cially polyploid wheat, are more widely used in the agriculture

of temperate regions than other cereal crops like maize and

rice (He et al., 2019; Pont et al., 2019). It is known that

hybridization of the diploid Triticum urartu (2n = 2x = 14, AA)

and a close lineage of Aegilops speltoides (2n = 2x = 14, BB)

gave rise to tetraploid wild emmer wheat (Triticum turgidum

ssp. dicoccoides, BBAA), and a further hybridization of a

domesticated emmer wheat with the diploid Aegilops tauschii

(2n = 2x = 14, DD) formed allohexaploid common wheat

(Triticum aestivum, BBAADD) (Petersen et al., 2006; Marcussen

et al., 2014). Tetraploid wheat, especially durum wheat, is

becoming a valuable food crop worldwide because of its

versatile processing properties and high nutritional value

(Maccaferri et al., 2019). Hexaploid bread wheat, which

provides about a fifth of the calories consumed by humans and
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contributes more protein than any other food source, is the

most commonly cultivated crop on earth (IWGSC et al., 2018;

He et al., 2019; Pont et al., 2019).

In recent years, many large, complex, highly repetitive genomes

of Triticeae species have been deciphered (Luo et al., 2017;

Mascher et al., 2017; Zhao et al., 2017; IWGSC et al., 2018;

Ling et al., 2018; Guo et al., 2020; Jayakodi et al., 2020;

Walkowiak et al., 2020; Wang et al., 2020; Li et al., 2021;

Rabanus-Wallace et al., 2021; Zhou et al., 2021). Genomes of

diploid wheat species (e.g., barley and rye) range from 4.3 Gb

to 7.9 Gb in size and contain more than 40,000 annotated

genes (Bauer et al., 2017; Mascher et al., 2017; Zhao et al.,

2017; Ling et al., 2018; Wang et al., 2020; Li et al., 2021;

Rabanus-Wallace et al., 2021; Zhou et al., 2021). The tetraploid
munications 3, 100268, March 14 2022 ª 2021 The Author(s).
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emmer genome comprises 10.5 Gb of genomic sequence and

65,012 protein-coding genes (Avni et al., 2017). The genome of

the hexaploid bread wheat Chinese Spring (CS) contains 14.5

Gb of sequence and 107,891 high-confidence genes (IWGSC

et al., 2018).

In the CS genome, approximately 55% of the homologous genes

have been reported to exhibit 1:1:1 correspondence across the

three homoeologous subgenomes, and the other 15% have

more than one gene copy in at least one of the subgenomes

(IWGSC et al., 2018). Furthermore, two genomics studies of Ae.

tauschii, the donor of the hexaploid wheat D subgenome,

revealed an apparently recent burst of gene duplications. The

authors speculated that recently duplicated genes were likely to

be related to the remarkable genomic enrichment of

transposable elements (TEs) (Luo et al., 2017; Zhao et al.,

2017). Analysis of intra-genomic synteny of Ae. tauschii clearly

showed that its most recent whole genome duplication (WGD)

was rho, which occurred before the divergence of Poaceae spe-

cies (Tang et al., 2010; Jiao et al., 2014), and these recent

duplications were independent and dispersed throughout the

genome rather than derived from WGD (Zhao et al., 2017).

These recent gene duplications may, at least in part, explain

why so many genes in the three subgenomes of CS are not in

1:1:1 correspondence. Therefore, expanded homologous genes

in wheat arise not only from polyploidization events but also

from recent independent duplications. However, studies

regarding the extent, timing, and mechanisms of these recent

duplications in different Triticeae species are still lacking.

Moreover, it remains unclear whether these duplicates are

functionally important for wheat.

The proportions of TEs in these Triticeae genomes are about 80%

to 90%, much higher than those of most other grasses (Mascher

et al., 2017; Wicker et al., 2018). It has been proposed that TE

activities can generate new genes and novel cis-regulatory

elements and can also modify the epigenetic status of specific

genomic regions (Deniz et al., 2019). Occasionally, such

activities lead to adaptive effects. For example, Helitrons-like

TEs in maize seem to produce new nonautonomous elements

for the duplicative insertion of gene segments into new locations

that change both the genic and nongenic fractions of the

genome, profoundly affecting genetic diversity (Morgante et al.,

2005).

Here, we selected a number of representative Triticeae

genomes and performed a comprehensive investigation of their

recently duplicated genes, classifying them into duplicates from

WGD, tandem duplication (TD), proximal duplication (PD), and

dispersed duplication (DD) (for definitions, see methods). We

discovered a common pattern of a recent burst of gene duplica-

tions (RBGD) in these Triticeae genomes and obtained empirical

evidence indicating that TEs may have been involved in gener-

ating the RBGD. Gene duplications and losses were then exam-

ined across the evolutionary history of Triticeae species diversifi-

cation and allohexaploid wheat formation. Finally, we

demonstrated the importance of the RBGD for differentiating

the donor genomes of bread wheat and for increasing the genetic

dosage, allowing for the evolution of genes that underlie impor-

tant wheat agronomic traits.
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RESULTS

Identification and characterization of recently
duplicated genes

Weused the best-reciprocal blast approach to retrieve paralogous

gene pairs from eight sequenced diploid genomes in the Poaceae:

Sorghum bicolor, Zea mays, Oryza sativa, Brachypodium dis-

tachyon, Hordeum vulgare, Thinopyrum elongatum, Ae. tauschii,

and T. urartu (Figure 1A; Supplemental Table 1). To distinguish

between gene duplications from historical WGD events and

those from recent small-scale duplications (SSD), we performed

self-genomic comparisons and classified the identified syntenic

gene pairs as having arisen from WGD. The remaining duplicates

were classified into three categories (TD, PD, and DD) based on

the genomic distances between the gene duplicates (see

methods) (Supplemental Figure 1; Supplemental Table 2). In

general, the proportions of PD and DD gene pairs, which are the

result of small-scale duplication events, are about two times higher

in Triticeae species than in sorghum, maize, rice, and Brachypo-

dium (Wilcoxon test, p < 0.01) (Supplemental Table 2).

Specifically, we detected 9,044 to 9,787 duplicated gene pairs in

the examined Triticeae species: 603 (6.3%) to 924 (10.2%) PD

gene pairs and 2254 (23.4%) to 3006 (33.2%) DD gene pairs

(Supplemental Table 2).

Synonymous substitution (Ks) analysis clearly showed a peak

around 0.2 for all of the Triticeae species we examined

(Figure 1B) and indicated that the RBGD is actually a common

feature of Triticeae species. The peak Ks values for the syntenic

gene pairs in the Ae. tauschii, Oryza, Sorghum, and

Brachypodium genomes are around 0.75 (Figure 1B), and these

duplicates resulted from the rho WGD event (Paterson et al.,

2004; Tang et al., 2010; Jiao et al., 2014; Wang et al., 2015). A

unique Ks peak observed for Z. mays reflected a recent WGD in

the maize lineage (Schnable et al., 2009). A Gene Ontology

(GO)-based analysis revealed functional enrichment of these

recently duplicated genes for categories such as protein

dimerization activity, xylan metabolic process, catalytic activity,

and nucleobase-containing compound metabolic process

(Supplemental Figure 2). These categories are distinct from

those that are typically retained (and thus enriched) after WGD

events in diverse sets of eukaryotes (e.g., kinases, transferases,

transporters, transcription regulators, and transcription factors)

(Maere et al., 2005; Freeling, 2009; Jiao et al., 2014). In addition

to characterizing the distinct functional gene categories of

RBGD, these results clearly suggest that RBGDs are apparently

common in Triticeae genomes.

We next focused our analyses on the Triticeae by examining the

duplicated gene pairs in the four diploid species in detail. We

used inter-genomic synteny comparisons to determine whether

both of the gene duplicates were located in inter-genomic syn-

tenic blocks. TheKsdivergencesbetweenT. urartuandH. vulgare,

Th. elongatum, and Ae. tauschii were 0.123, 0.072, and 0.065,

respectively (Supplemental Figure 3), and we also compared

these values with the Ks values of the RBGD gene pairs to date

the timing of these gene duplications. Specifically, about half of

the genes (1497, 1514, 1431, and 1333 for H. vulgare, Th.

elongatum, T. urartu, and Ae. tauschii, respectively) were

duplicated in node 1 (before the differentiation of the Triticeae,
thor(s).
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Figure 1. Triticeae species have more recent gene duplicates than other Poaceae species.
(A) Phylogeny of representative Poaceae species (left). Red stars mark two well-acknowledged ancient WGD events. Percentage of recent duplicates

classified into four duplication mechanisms in Poaceae species (right).

(B) Ks plot of recent duplicates in major Poaceae crops in (A). The Ks peaks for Triticeae species at �0.2 suggest a burst of recent gene duplication. The

peak Ks value for Ae. tauschii syntenic pairs (dashed line) represents the rhoWGD event, which closely coincides with the Ks peaks for Oryza, Sorghum,

and Brachypodium.

(C)Number of recently duplicated gene pairs inH. vulgare, Th. elongatum, T. urartu, andAe. tauschii and the phylogenetic timing of their duplications. The

duplicates were dated by synteny analyses and Ks analyses. The asterisk indicates that Ks analyses were carried out after synteny analyses.
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with aKsof approximately 0.123), andabout aquarter of thegenes

(905, 847, and 677 for Th. elongatum, T. urartu, and Ae. tauschii,

respectively) were duplicated in node 2 (before the

differentiation of Th. elongatum and Triticum, with a Ks of

approximately 0.072) (Figure 1C). A small number of genes (179

and 177 for T. urartu and Ae. tauschii, respectively) were

duplicated in node 3 (before the differentiation of Triticum, with

a Ks of approximately 0.065) (Figure 1C). These results suggest

that a burst of recent gene duplications occurred before the

divergence of Triticeae species and that further lineage-specific

duplications have also been occurring thereafter.

Possible mechanism of recent gene duplication

Two genomics studies of Ae. tauschii proposed that the apparent

burst of recently duplicated genes in this species was probably

related to the remarkable genomic enrichment of TEs (Luo

et al., 2017; Zhao et al., 2017); however, empirical evidence

supporting this hypothesis is still lacking. We investigated the

particular types of TEs, including both long terminal repeat

retrotransposons (LTR-RTs) and DNA transposons, that flanked

the recently duplicated genes. Specifically, we identified any

TEs that were located within 3,000 base pairs upstream and

downstream of all of the recently duplicated genes. We

found that the LTR-RTs were the most abundant type (68.3%),

followed by the LINE and DNA/CACTA subtypes (Figure 2A).

Notably, we found that about 21% to 42% of the TE-flanked,

recently duplicated gene pairs possessed intronless duplicates
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(Figure 2B). Therefore, retrotransposition may be a major

mechanism of gene duplication in these Triticeae genomes, as

a conspicuous feature of retrotransposition is the formation of

an intronless copy of a parental gene (Kim et al., 2017). Here,

we show two examples of recently duplicated genes and their

flanking sequences in H. vulgare and Ae. tauschii (Figure 2C).

The H. vulgare duplicated gene pair HORVU1Hr1G020310

and HORVU4Hr1G059030 are located within TEs of the

same LTR/Gypsy subtype with 94% sequence identity.

Similarly, the duplicated gene pair evm.model.Contig89.16 and

evm.model.Contig263.36 in Ae. tauschii are located within TEs

of the same DNA/MULE subtype with 98% sequence identity

(Figure 2C).

Given the prevalence of TEs throughout the genomes of Triticeae,

we next investigated the chances of two genes duplicated in a

WGD being flanked by similar types of TEs. The results revealed

a clear trend: a large proportion (38%–42%) of the recently dupli-

cated genes in the four diploid genomes were flanked by TEs of

the same subtype (e.g., GYPSY, COPIA, etc.), whereas only

�10% of the syntenic gene pairs (generated by WGD) were

flanked by TEs of the same subtype in the four diploid genomes

(Figure 2D). When we randomly selected two genes from

individual Triticeae genomes, only �5% of them were flanked

by TEs of the same subtype (Figure 2E). Thus, genome-wide

empirical evidence supports a major functional contribution of

TEs to the generation of RBGDs in Triticeae.
munications 3, 100268, March 14 2022 ª 2021 The Author(s). 3
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The retention and conservation of the recently
duplicated genes

To further understand the genetic contribution of these recently

duplicated genes to polyploid wheats, we investigated the reten-

tion and diversification of the RBGDs after the formation

and diversification of allohexaploid wheat. First, we identified

and compared recent duplicates in the genomes of T. urartu and

Ae. tauschii to the corresponding subgenomes of wild and culti-

vated tetraploid wheat and the subgenomes of hexaploid bread

wheat cultivars (Figure 3). We found 1,925 and 2,010 duplicates

in subgenome A and B of wild emmer wheat (WEW), and 2,116

and 2,402 duplicates in subgenomes A and B of durum wheat

(DEW) (Figure 3B). For hexaploid wheat, there are 2,560, 2,625,

and 2,450 duplicates in subgenomes A, B, and D of CS and

2,374, 2,642, and 2,497 duplicates in subgenomes A, B, and D

of Jagger (JAG) (Figure 3B and Supplemental Figure 4). JAG and

CS are two representative hexaploid wheats that originated in

the West and the East, respectively. We found that JAG and CS

have about 2,000 co-retained gene pairs in each subgenome

(i.e., more than 80% are shared) (Supplemental Figure 4).

We next investigated the retention patterns of these recent gene

duplicates after the two successive polyploidization events using

CS as a representative hexaploid wheat (Figure 3B and

Supplemental Figure 5; Supplemental Tables 3–5). We found

that 508, 891, and 1,320 gene pairs were co-retained in the A,

B, and D subgenomes after polyploidization events (Figure 3B).

We also investigated the duplication times by comparing Ks
4 Plant Communications 3, 100268, March 14 2022 ª 2021 The Au
divergence of these RGBDs with the corresponding species

divergence times to separate the species-specific gene pairs

into specifically retained or newly duplicated gene pairs in each

species. For the A subgenome, 1,108, 450, 369, and 595 gene

pairs were specifically retained, and 1,635, 199, 207, and 238

gene pairs were newly duplicated in T. urartu, emmer wheat,

durum wheat, and CS, respectively. For the B subgenome, 702,

506, and 865 gene pairs were specifically retained, and 263,

270, and 288 gene pairs were newly duplicated in emmer

wheat, durum wheat, and CS, respectively. For the D

subgenome, 1,203 and 859 gene pairs were specifically

retained, and 419 and 217 gene pairs were newly duplicated in

Ae. tauschii and CS, respectively (Figure 3B). We further

compared the particularly well-retained subset with the specif-

ically retained gene pairs and found that the well-retained gene

pairs were characterized by their typically higher Ks values (Wil-

coxon test, p < 0.01) (Supplemental Figure 6). Moreover, genes

in the well-retained subset had clearly undergone stronger

purifying selection than genes of other duplicated pairs in

common wheat that showed no obvious synteny to progenitor

genomes (Wilcoxon test, p < 0.01) (Supplemental Figure 6).

We next investigated the retention pattern of gene duplicates that

were generated before the diversification of the Triticum and Ae-

gilops species in multiple hexaploid wheat genomes, including

JAG, CS, and nine other newly available wheat genomes. In

CS, we found that 5,300 of 7,821 gene pairs (1,688, 1,893, and

1,719 in the three subgenomes, respectively) from RBGD were

duplicated before the divergence of the Triticum and Aegilops
thor(s).
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species. Among these 5,300 duplicated genes, 378 pairs of

genes were well retained after two allopolyploidization events

(each set of homologous genes contains six copies in CS), and

846, 1,050, and 800 gene pairs were specifically retained in the

A, B, and D subgenomes of CS, respectively (Figure 3C).

Similarly, in JAG, 4,978 of 8,573 gene pairs were duplicated

before the divergence of the Triticum and Aegilops species;

290 duplicates were retained in the three subgenomes of JAG,

and 811, 1,029, and 894 gene pairs were specifically retained in

the A, B, and D subgenomes of JAG, respectively (Figure 3C).

Similarly, we identified about 300 co-retained gene pairs and

approximately 800, 1,000, and 800 specifically retained gene

pairs in the three subgenomes of the other nine sequenced wheat

genomes (Supplemental Figure 7). Among these co-retained

gene pairs, about 70% to 80% were shared among

the hexaploid wheat genomes, whereas CS and JAG shared

only 60% of these co-retained gene pairs (Supplemental

Tables 6 and 7). A GO-based analysis revealed functional

enrichment of these co-retained pairs (�300 pairs) in CS and

JAG in categories such as aminoacyl-tRNA ligase activity, tRNA

aminoacylation, and tRNA metabolic process. Categories of

chromatin modification and histone modification were only

enriched in the CS retained duplicates, and the category of

transporter activity was specifically enriched in JAG retained du-

plicates (Supplemental Figure 8).
Plant Com
The diversification patterns of the recently duplicated
genes

Given the allohexaploid nature of wheat, we also performedmul-

tiple subgenome-specific comparisons of the duplicated gene

pairs to investigate any differential regulation and related func-

tional diversity among such pairs in the three subgenomes. First,

patterns of functional category enrichment (GO categories)

among the retained duplicates differed among the three CS sub-

genomes; for example, nutrient reservoir activity was enriched in

the gene pairs of the A subgenome, macromolecule biosynthetic

process was enriched in the gene pairs of the B subgenome, and

oxidoreductase activity was enriched in the gene pairs of the D

subgenome (Figure 4A). Second, the basic trend from an RNA-

sequencing (RNA-seq)-based analysis showed weaker

expression for genes of pairs present in a single subgenome

compared with genes of pairs whose orthologous gene pairs

were retained in two or three subgenomes (Figure 4B). We

found that 38% of the subgenome-specific retained duplicates

exhibited no expression, a larger percentage than that of the

non-subgenome-specific gene pairs (Figure 4B). It was notable

that the 378 gene pairs common to all three subgenomes

exhibited the highest expression levels (Figure 4B). Third, after

reconstructing co-expression modules using the RNA-seq

data, we found that about 25% of the subgenome-specific
munications 3, 100268, March 14 2022 ª 2021 The Author(s). 5
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duplicates were not clustered into any modules, compared with

only about 10% of the multi-subgenome retained pairs

(Figure 4C). Further co-expression network analysis revealed

that a larger percentage of the duplicates common to all subge-

nomes diverged into different modules compared with the sub-

genome-specific duplicates (73% versus 55%), indicating

possible sub- or neo-functionalization of the duplicates over

evolutionary time (Figure 4C). Collectively, these analyses

emphasize that distinguishing among ancient versus recent

duplicates and among subgenome-specific duplicated gene

pairs is a viable analytical strategy for isolating specific

trends in the regulation and attendant expression divergence

of these genes and thus their potential sub- and neo-

functionalization.

Evolutionary and expression analyses of NAC genes

Several genes derived from the RBGD have been previously identi-

fied as agronomically important genes in wheat, e.g., Sr21, Sr33,

and Sr35, which specify stem rust resistance (Periyannan et al.,

2013; Saintenac et al., 2013; Chen et al., 2018), Yr10, which

specifies stripe rust resistance (Liu et al., 2014), Lr1, which

specifies leaf rust resistance (Feuillet et al., 1995), Pm3B, which
6 Plant Communications 3, 100268, March 14 2022 ª 2021 The Au
specifies powdery mildew resistance (Brunner et al., 2011), GPC,

which controls the contents of proteins and health-promoting min-

erals (iron and zinc) in the grain (Uauy et al., 2006), and

phosphomannomutase (PMM), which functions in temperature

adaptability (Yu et al., 2010) (Figure 5A). In addition, we found that

most of these duplicates were derived from the ancestor of the

Triticeae (Supplemental Figure 9). We conducted a more

systematic study of the evolutionary history of GPC genes

(encoding NAC transcription factors), among which NAM-B1 is

well studied for its function in accelerating leaf senescence and

increasing grain protein content in wheat (Uauy et al., 2006).

Through phylogenetic and syntenic analyses, we found that a

duplication belonging to RBGDs occurred before the divergence

of Triticeae species, creating the NAM-B1 on chromosome 6 from

its parental gene on chromosome 2 (Figure 5B). We identified five

NAM homologs in CS and found that the copy on chromosome

6B was lost. Moreover, we found that similar types of TEs flanked

the five NAM homologs (two homoeologous pairs in the A and D

subgenomes plus one singleton in the B subgenome), indicating

potential involvement of TE activity in generating the duplicated

functional NAM-B1 allele before the divergence of Triticeae

(Figure 5B and 5C).
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Figure 5. Evolutionary and expression analyses of NAC genes.
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phosphomannomutase (PMM), and earlier senescence and higher grain protein, iron, and zinc content (GPC). The arrow/line represents the direction of
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(B)Maximum likelihood phylogeny of theNAC genes and the syntenic regions that containNAC genes in other Poaceae genomes. A red solid circle in the
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(D) Expression levels of NAC genes in CS. The duplicated copy of TraesCS6A01G108300 has the highest expression in the flag leaf among the five NAC

genes. EE, ear emergence; EA, anthesis; LHS, leaf under heat stress.
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We examined the expression pattern of the remaining five NAM

genes in CS using 100 RNA-seq samples (Ramı́rez-González

et al., 2018). The expression of the NAM-A1 gene

(TraesCS6A01G108300), which resulted from duplication, was

significantly higher in the flag leaf than that of other NAM genes

(Figure 5D). This result may reflect the modification of regulatory

elements because of the removal of TEs downstream of

TraesCS6A01G108300 or variations in TEs in the upstream

region (Figure 5C). Further functional experiments to identify and

test the regulatory elements around TraesCS6A01G108300 may

help to unravel the underlying mechanisms that cause increased

expression of the novel duplicated gene. However, the case

study of NAM indicates that the RBGDs may have quickly

increased the dosage of agronomically important wheat genes,

in addition to the two consecutive allopolyploidization events.
DISCUSSION

Gene duplicates and their duplication mechanisms

Gene duplication provides raw genetic material for evolution and

adaptation and is considered to be a driving force in evolution
Plant Com
(Ohno, 1970; Adams and Wendel, 2005). Multiple mechanisms

have been proposed to generate gene duplicates (Panchy

et al., 2016; Qiao et al., 2019; Zhang et al., 2020).

Polyploidization is a major source of large-scale gene

duplication because it involves the doubling of the entire genome

(Soltis et al., 2015; Van de Peer et al., 2017). In this study, we

observed a large number of recent gene duplications in all

sequenced Triticeae species, a finding that is commonly, if

sometimes mistakenly, interpreted as evidence for a WGD

event. Genomic synteny comparisons clearly showed that

these gene duplicates are the result of independent SSDs

rather than a WGD event. However, it is challenging to

determine the mechanism if a reference genome is not

available, and that is why there are such active controversies

(Wang et al., 2019; Zwaenepoel et al., 2019).

In addition to the genomic positions of the duplicated genes, their

functional categories can provide another perspective on their

possible origins. In an extremely diverse set of eukaryotes, reten-

tion of gene duplicates afterWGD events was shown to be biased

toward certain categories, such as kinases, transferases, trans-

porters, transcription regulators, and transcription factors
munications 3, 100268, March 14 2022 ª 2021 The Author(s). 7
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(Davis and Petrov, 2005; Maere et al., 2005; Freeling, 2009; Jiao

et al., 2011). If no chromosomal genome assembly is available,

we can compare the enriched GO categories of the identified

gene duplicates with those typically enriched in the duplicates

retained after WGD events. In this study, we found apparently

distinct functional categories for the RGBD genes in Triticeae

species, thus clearly excluding the possibility of their WGD

origin. Therefore, the enriched GO pattern of duplicates can

serve as complementary evidence to determine whether

duplications are the result of an SSD or WGD event.
TE-mediated gene duplication

TEs are widespread components of plant genomes, and expan-

sion in TE numbers can cause dramatic differences in the overall

architecture of plant genomes (Arabidopsis Genome Initiative,

2000; Tenaillon et al., 2010; Lisch, 2013; IWGSC et al., 2018).

TE activity can cause a broad range of changes in gene

expression and function, as well as the evolution of entirely

new genes (Kaessmann et al., 2009; Lisch, 2013; Tan et al.,

2016; Cerbin and Jiang, 2018). In this study, we found that

RBGDs in Triticeae genomes were clearly associated with

TEs: a large proportion (38%–42%) of the recently duplicated

genes in the four diploid genomes were flanked by TEs of the

same subtype and obviously did not result from tandem

duplications. We also found that 59% of TEs from the

same subtype associated with gene duplications had high

identities, greater than 90%. Notably, we found that about

21% to 42% of these same TE-flanked recently duplicated

gene pairs had intronless duplicates, which is also powerful

evidence, especially for LTR-RT-mediated duplicates. For

example, TraesCS1B01G041800 and TraesCS6B01G016300

are located beside TEs of the same subtype with 91% sequence

identity; the duplicated copy (TraesCS6B01G016300) lacks in-

trons (Supplemental Figure 10). These findings suggest that

the abundant TEs in Triticeae may have created a large

number of new genes via previously reported mechanisms,

although other mechanisms such as haplotype recombination

may also have contributed to some of these duplications

(Jiang et al., 2004; Wang et al., 2006; Kaessmann et al., 2009;

Kim et al., 2017).

In this study, we found similar TEs near �40% of the RBGD

genes, and we suspect that the rest of the duplicates may have

been generated from other mechanisms or their flanking TEs

may have undergone sequence divergence during evolution. In

fact, we found that the Ks values of the duplicated genes that

were not flanked by TEs of the same subtype were larger than

those of duplicates with similar TEs (Wilcoxon test, p < 0.01)

(Supplemental Figure 11A). Moreover, we also found that the

larger the Ks values of the duplicated genes, the lower the

identity of their flanking TEs (Supplemental Figure 11B). This

trend is consistent with previous reports that only relatively

young duplications via TEs can be detected (Jiang et al., 2004;

Morgante et al., 2005; Wang et al., 2006; Xiao et al., 2008; Kim

et al., 2017; Cerbin and Jiang, 2018). Notably, our reported

RBGD includes some duplications that occurred nearly 10

million years ago, and we expect that many other sequence

divergences may have occurred and thus erased the signature

of the similar TEs (if they existed) over such a long evolutionary

period.
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Polyploidy advantage of bread wheat and RBGD

Bread wheat has a large, redundant, and allohexaploid genome,

making it by far the largest and most complex genome of all

sequenced plant species. The genome of the wheat cultivar CS

contains 14.5 Gb of sequence and 107,891 high-confidence

genes, a larger number of genes than any other sequenced diploid

genome. The complexity of the wheat genome is due not only to its

allohexaploid nature but also to its enrichment in repetitive se-

quences and TEs. These features may make a large contribution

to its genetic diversity and innovation during evolutionary history,

making wheat one of the most complicated genomes.

The advantage of wheat polyploidy may be associated, at least in

part, with the increased gene dosage produced by genomemerg-

ing (Ramı́rez-González et al., 2018), and the resulting redundant

genes may go through mutation robustness, differential gene

loss, subgenomic expression dominance, or divergence, which

often lead to novel functional molecular networks and ultimately

to phenotypic innovations (Wu et al., 2020). As reported

previously, 55% of genes exhibit perfect 1:1:1 correspondence

across the three subgenomes of CS (Ramı́rez-González et al.,

2018). As we reported here, a recent burst of small-scale gene du-

plications also occurred during the evolutionary history of specia-

tion and diversification of Triticeae, probably because of TE enrich-

ment in the Triticeae genomes. Thus, in bread wheat, certain

functional genes dramatically increased in dosage through both al-

lopolyploidization events and RBGD, and the resulting increased

gene dosage may have contributed to the polyploidy advantage

of bread wheat. Many previously identified agronomic genes in

polyploid wheat species have experienced recent duplications, a

finding that highlights the genetic contribution and general impor-

tance of RBGD for common wheat.

In conclusion, we revealed a common, recent burst of numerous

gene duplications in the Triticeae species, a novel feature of Tri-

ticeae that has not been reported for any other clades of green

plants. We also provided evidence suggesting that the RBGD re-

sulted from the abundant TEs in Triticeae genomes. By investi-

gating the birth and death patterns of the recently duplicated

genes in the Triticeae species, we found that the RBGD began af-

ter the origin of Triticeae species, and a large number of young

genes may have contributed to their species diversification.

Probably because of increased dosage or sub-/neo-functionali-

zation of gene duplicates, several genes have evolved into key

factors that function in agronomically important traits of wheat.
METHODS

Genomic data resources

We selected 10 taxa in the Poaceae clade that have whole-genome as-

semblies: H. vulgare (Mascher et al., 2017), Th. elongatum (Wang et al.,

2020), Ae. tauschii (Zhao et al., 2017), T. urartu (Ling et al., 2018),

T. turgidum (Avni et al., 2017; Maccaferri et al., 2019), T. aestivum

(IWGSC et al., 2018; Walkowiak et al., 2020), O. sativa (Goff et al.,

2002), B. distachyon (Vogel et al., 2010), Z. mays (Jiao et al., 2017), and

S. bicolor (Paterson et al., 2009). Genomic data were downloaded from

public repositories or specific project websites (Supplemental Table 1).

Genomic synteny analyses

We performed self-alignment of the protein sequences using BLASTP

(Altschul et al., 1997) with parameters ‘‘-outfmt 6 -evalue 1e-5’’, and the
thor(s).
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top 15 hits were extracted as an input file for MCScanX (Wang et al., 2012).

The intra-genome syntenic blocks were detected using MCScanX with

parameters ‘‘-e 1e-5 –m 25 –w 5’’ (Wang et al., 2012). Gene pairs in

collinear blocks were identified as whole-genome duplicates.

Paralogous gene detection and classification

We performed genome-wide, all-by-all BLASTP (Altschul et al., 1997) with

parameters ‘‘-outfmt 6 -evalue 1e-5’’, and the best reciprocal matches

were then extracted as the paralogous genes. For all of the examined

Poaceae genomes, we classified the paralogous genes into four

categories: tandem duplicated pairs (located within five genetic loci of

each other), proximal duplicated pairs (within 5–10 genetic loci),

dispersed duplicated pairs (more than 10 genetic loci apart), and

duplicated pairs from WGD (gene pairs with evidence of genomic

synteny).

Statistical test

The Wilcoxon test was used to evaluate differences between groups

(Supplemental Figures 6 and 11A). Taking Supplemental Figure 6 as an

example, we divided the duplicates into two groups based on whether

they were conserved. We then tested the significance of differences in

Ka, Ks, and Ka/Ks between these two groups of data. A p value of <0.05

was considered to be statistically significant: NS (not significant) p >

0.05, *p < 0.05, **p < 0.01.

Synonymous substitution (Ks) analysis

For each pair of homologous genes, protein sequences were aligned us-

ing MUSCLE (Edgar, 2004) with default parameters, and nucleotide

sequences were then forced to fit the amino acid alignments using

PAL2NAL (Suyama et al., 2006). Finally, Ks values were calculated using

the Nei-Gojobori algorithm (Nei and Gojobori, 1986) implemented in the

codeml package of PAML (Yang, 1997).

TE annotation

The repetitive sequences were identified using a combination of repeat

homology searching and ab initio prediction approaches. For homology

searching, Repbase (2018) (Bao et al., 2015) was used to search against

the genome using RepeatMasker (Tarailo-Graovac and Chen, 2009) with

default parameters. For ab initio predictions, a consensus sequence

library was built using RepeatModeler (http://repeatmasker.org/

RepeatModeler/) with the parameters ‘‘-engine ncbi.’’ Then LTR_harvest

(Ellinghaus et al., 2008), LTR_finder (Xu and Wang, 2007), and

LTR_retriever (Ou and Jiang, 2018) were used to build an LTR library

with default parameters. Both libraries were then used to annotate the

genome using RepeatMasker, and the detected TEs were combined to

obtain the final TE annotation. A wheat TE reference library named

ClariTeRep, described previously (Daron et al., 2014), was also used to

annotate the TEs of Triticum genomes.

Phylogenetic analysis

A phylogenetic tree was constructed for the Poaceae homologs of the

T. turgidum NAC gene (GenBank accession No. ABI94352.1). To identify

the homologs in other species, the amino acid sequences of the

T. turgidum NAC genes were used as a query to search against the other

eight species with a previously reported method (Jiao et al., 2014). Protein

sequences were aligned using MUSCLE (Edgar, 2004) with default

parameters. The maximum likelihood trees were then constructed using

the JTT+G4 model implemented in IQ-TREE, and bootstrap supports

were evaluated by ultrafast bootstrapping testing (1,000 replicates)

(Nguyen et al., 2015).

Conservation of the recently duplicated gene pairs

We used both inter-genomic synteny comparisons and Ks analysis to date

all of the recently duplicated gene pairs detected in the three subgenomes

of CS. The inter-genome syntenic blocks were detected using MCScanX

with the default parameters. Then, if a pair of duplicated genes in CS had
Plant Com
collinear genes in the genomes of progenitors of CS or other early

diverging species (e.g., H. vulgare), we considered that this pair of genes

was duplicated before the speciation and were therefore retained and

conserved duplicates. If no syntenic relationship was detected, we further

dated the duplication by calculating the Ks value and comparing it with the

Ks values of speciation among the Triticeae species.

GO enrichment analysis

To find the enriched GO terms in dispersed duplicates and syntenic

genes, we used the R package topGO and calculated the p values of

GO terms with the default method ‘‘weight01.’’ Fisher’s exact test in com-

bination with the ‘‘classic’’ algorithm of this R package was used to test for

overrepresented GO terms. Statistical enrichment of GO terms was eval-

uated by comparing the sample (duplicated genes) with the background

(all annotated genes) based on Fisher’s exact test, and adjusted p values

(p < 0.01) were calculated by the Benjamini andHochberg (false-discovery

rate) method (Ashburner et al., 2000).

Gene expression analysis and co-expression module
construction

RNA-seq data for 100 diverse CS samples from different tissues, growth

conditions, and developmental stages were mapped to the CS genome

using STAR with default parameters (Dobin et al., 2013), and RSEM was

used to estimate gene expression levels (Li and Dewey, 2011). Read

counts for each gene were normalized to the sequencing depth of the

samples using DESeq2 with default parameters (Love et al., 2014).

All expressed genes were used to build a co-expression network with the

WGCNA R package (Langfelder and Horvath, 2008). A soft power

threshold of five was used because it was the lowest power for which

the scale-free topology fit index reached 0.9. The blockwise module func-

tion in WGCNA was used to construct blockwise in two blocks, with a

maximum block size of 46,000 genes. Other parameters for the blockwise

module function were set as follows: maxPOutliers = 0.05, TOMType =

‘‘unsigned,’’ mergeCutHeight = 0.15, and minimum module size R30.

The most highly correlated genes identified by the signedKME() function

were considered central to the module.
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34

Supplementary Figure 1. Dot plots of genomic or subgenomic self-comparisons.35

Intra-genomic dot plots of gene pairs retrieved from all against all best reciprocal hits36

in T. urartu, Ae. tauschii, Th. elongatum and H. vulgare genome respectively. Ks37

value of each gene pair was shown by plotting different colors.38
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44

Supplementary Figure 2. Significantly enriched GO terms for the recently45

duplicated genes in (A) T. urartu, (B) Ae. tauschii, (C) Th. elongatum and (D) H.46

vulgare genome. The results are sorted according to significance, of which GO term47

of protein dimerization activity, xylan metabolic process, catalytic activity, and48

nucleobase-containing compound metabolic are the most significant respectively.49

50



51
Supplementary Figure 3. Density plot of Ks values of the best reciprocal hits52

comparing T. urartu to Ae. tauschii, Th. elongatum and H. vulgare respectively.53

The three Ks values correspond to the differentiation of the Triticeae with the Ks54

around 0.123, the differentiation of Th. elongatum and Triticum with the Ks around55

0.072, and the differentiation of Triticum with the Ks around 0.065 respectively.56

57

58

Supplementary Figure 4. Venn diagrams show commonly-retained and59

specific-retained recent duplicates in wheat cultivars of JAG and CS.60

61
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63

Supplementary Figure 5. Venn diagram shows the numbers of orthologous in CS64

subgenomes and their progenitor genomes.65

66

67

68



69

Supplementary Figure 6. Sequence divergence and selection analyses of the70

orthologous gene pairs between CS and its progenitor species. (A) The Ka, Ks, and71

Ka/Ks analyses of recent duplicates in progenitor genomes. Conserved gene pairs refer72

to gene pairs in the progenitor genomes requiring both genes have corresponding73

genes in CS, while non-conserved ones mean the gene pairs that have no74

corresponding genes in CS. (B) The Ka, Ks, and Ka/Ks analyses of recent duplicates in75

three subgenomes of CS. Conserved gene pairs refer to gene pairs that have76

corresponding genes with the progenitor genomes of CS, while non-conserved ones77

mean those that are not corresponding with the progenitor genome of CS. ns (not78

significant) P > 0.05, *P < 0.05, ** P < 0.01 in Wilcoxon test.79

80
81



82
Supplementary Figure 7. Venn diagram shows the commonly retained recent83

gene duplicates for the three subgenomes of the nine wheat genomes.84

85
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89

Supplementary Figure 8. Significantly enriched GO terms for well retained90

genes in the three subgenomes of (A) CS and (B) JAG. The results are sorted91

according to the significance, of which GO term of ligase activity is the most92

significant.93

94

95
Supplementary Figure 9. Duplication timing of the eight previously identified96

agronomically important genes in the RBGD.97

98



99

Supplementary Figure 10. Two examples of gene duplication potentially derived100

from TE activity in CS genome. Identity of gene pairs is greater than 90%. (A) The101

genes of TraesCS1B01G041800.1 and TraesCS6B01G016300.1 locate beside TEs of102

the same subtype and with 91% sequence identity; the duplicated copy103

(TraesCS6B01G016300.1) exhibits intron-less. (B) TraesCS3D01G336600.1 and104

TraesCS6D01G111100.1 locate within TEs of the same subtype (DNA/MULE) and105

with 94% sequence identity. TIR: terminal inverted repeat, TSD: target site106

duplication.107

108



109

110
Supplementary Figure 11. Evolutionary rate of recent duplicate gene pairs in CS.111

(A) Ks of duplicates that are either flanked or not flanked by a given TE type. ** P <112

0.01 in Wilcoxon test. (B) Sequence identity of similar TEs during the evolution113

process. The abscissa are Ks values in each 0.02 window of recently duplicated genes114

with the same subtype of TE.115
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