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Simple derivation of linear response result

In Eq. 2, we can replace Q(X) with δQ(X) by multiplying the top and bottom by e−βFQ0(X),

and then compute the average of δQ itself using Eq. 3, which gives

〈δQ〉F =

∫
dXδQ(X)e−βU(X)+βFδQ(X)∫

dXe−βU(X)+βFδQ(X)
. (S1)

We can multiply the top and bottom by Z−10 , where Z0 =
∫
dXe−βU(X). Note in the following

that 〈δQ(X)〉0 = 0 and 〈(δQ(X))2〉0 ≡ σ2
Q

Expanding the exponential for small βFδQ(X) gives,
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〈δQ〉F =

∫
dXδQ(X)e−βU(X)(1 + βFδQ(X) + 1

2
(βFδQ(X))2 + ...)∫

dXe−βU(X)(1 + βFδQ(X) + 1
2
(βFδQ(X))2 + ...)

(S2)

=
〈δQ〉0 + βF 〈δQ(X)δQ(X)〉0 + 1

2
(βF )2〈Q(X)(δQ(X))2〉0 + ...

〈1〉0 + βF 〈δQ(X)〉0 + 1
2
(βF )2〈(δQ(X))2〉0 + ...

(S3)

= βFσ2
Q, (S4)

where the last term follows from neglecting all terms O(F 2), resulting in Eq. 4,

〈δQ〉F = 〈Q− 〈Q〉0〉F = βFσ2
Q. (S5)

We can also ask what the effect of a force along vector Q is on another quantity δQ′(X) =

Q′(X)− 〈Q′(X)〉0. In exactly analogous fashion, we arrive at equation Eq. 6,

〈δQ′〉F = βF 〈δQ′(X)δQ(X)〉0 ≡ βFCov(Q′, Q) (S6)

Similar results have been derived before, for example in Ref. 1.

Effect of force on equilibrium constants

The equilibrium constant in a two state system is given by Keq = P (R)/P (L), where L and

R are the left and right states in a two-state model, as in Fig. 3.

The probability of being in a state A can be defined using a characteristic function2

χA( ~X) =

 1 ~X ∈ A

0 otherwise
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The probability of being in a state A is given by

P (A) = 〈χA〉 =

∫
d ~XχA( ~X)e−βU( ~X)∫

d ~Xe−βU( ~X)
(S7)

For the 1D problem in Fig. 3, this simplifies to

P (A) = 〈χA〉 =

∫
dQχA(Q)e−βU(Q)∫

dQe−βU(Q)
(S8)

We can take a very strict definition of state R and L such that the system is only in

the state if Q is precisely at the minimum. In this case, we can define the characteristic

functions χR = δ(Q−QR) and χL = δ(Q−QL), with δ the Dirac delta function.

With this definition,

Keq =
P (R)

P (L)
=

∫
dQδ(Q−QR)e−βU(Q)∫
dQδ(Q−QL)e−βU(Q)

=
e−βU(QR)

e−βU(QL)
= e−β(U(QR)−U(QL)) (S9)

The Helmholz free energy of a state A is given by F (A) = −kBT ln(P (A)), and so the

difference in free-energies between the states at constant temperaure is given by

∆F = F (R)− F (L) = −kBT ln

(
P (R)

P (L)

)
= −kBT lnKeq = U(QR)− U(QL). (S10)

The fact that the free energy difference is equal to the energy difference is reflective of the

fact that we are considering only a one-dimensional problem.

Simulation details

MD simulations in Fig. 1 and Fig. 2 were performed in Gromacs3 at T = 300K with

a timestep of dt = 2fs. Lysozyme was started from the PDB structure 1AKI using the

CHARMM36 forcefield,4 solvated in TIP3P water, and neutralized with chloride ions. Pro-

duction MD was performed with the Parrinello-Rahman barostat and the v-rescale ther-
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mostat. Data was taken from 60 to 110 ns of simulation time. HP35 was started from

the PDB structure 1YRF and prepared for simulation using CHARMM-GUI5 using the

CHARMM36m forcefield with TIP3P water,6 and was neutralized and ionized with 50 mMol

KCl. Production MD was performed with the Parrinello-Rahman barostat and Nose-Hoover

thermostat. Data was taken from times 550ns to 600ns of production MD. Open structures

in Fig. 8B were taken from preliminary simulations using Plumed7 with an applied 200pN

constant force for the intermediate structure, and a simulation at 500K run with FISST8

for the fully extended structure. Trp-cage simulations were started from the PDB structure

2JOF and solvated in TIP3P water, using the Amber99SB*-ILDN forcefield.9,10 Production

MD was performed with the Parrinello-Rahman barostat and the v-rescale thermostat. MD

data was taken from the final 50ns of a 1 microsecond MD simulation.
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