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Supplementary Video S1 | Thermographic imaging of selective magnetothermal control of 

two ferrofluid droplet described in Figure 4. Heat insulated two different ferrofluid droplet 

(10ul) was placed in the gap of toroidal electromagnet. (Scale bar = 1 cm). Video play speed 

was adjusted to 8.28X times. 

 

Supplementary Video S2 | Finite element analysis of the expected temperature distribution 

around 1 µL droplets of ferrofluids of MNP1 and MNP2 in a model of a mouse brain exposed 

to the paired AMF1 and AMF2 conditions. Distance between droplets was varied from 0 mm 

to 4 mm. The threshold of TRPV1 activation (41.5 ºC) was marked as a plane. 

 

Supplementary Videos S3-6 | Inverted microscope imaging of multiplexed cellular signaling 

control processed in Figure 5. (Scale bars = 40 µm) 

 

Supplementary Videos S3 and S4 – Fe3O4 16.3nm exposed to 10kA/m 522kHz AMF1 and 

70kA/m 50kHz AMF2, respectively.  

 

Supplementary Videos S5 and S6 – Co0.24Fe2.76O4 18.6nm exposed to 10kA/m 522kHz 

AMF1 and 70kA/m 50kHz AMF2, respectively.  
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Dynamic hysteresis model 

To investigate the dynamic magnetization response and hysteresis of single domain magnetic 

nanoparticles exposed to alternating magnetic fields, we conducted numerical calculations 

based on a dynamic hysteresis model implemented in Mathematica.[1,2] Dynamic hysteresis 

models are most appropriate at frequencies well below the period of precession of magnetic 

moments described by the Landau Lifshitz Gilbert (LLG) equation. Rather than describing this 

precession, they instead treat coherent reversal of single domain MNPs (SDMNP) moments as 

a thermally activated kinetic process. A function describing the energy of possible orientations 

of individual particle moments accounts for two main contributions: the anisotropy of a 

SDMNP and its Zeeman energy in the external field. The resulting energy landscape has local 

minima that can be envisioned to each entrap a subpopulation of the moments in an ensemble, 

with some escaping to the other minimum at a rate determined by the energy barrier separating 

the minima. The net magnetization of this ensemble is thus determined by the fraction of 

moments residing in each energy minimum, typically neglecting the effect of local Boltzmann 

distributions within the minima. Since Zeeman energy depends on the external field, which 

varies in time, the energy landscape is also time-variant. Consequently, the switching rate from 

one energy minimum to another varies periodically with the applied field. To simplify the 

model, magnetic anisotropy was approximated with an easy-aligned, effective uniaxial 

anisotropy. The anisotropy of a SDMNP and its Zeeman energy can be expressed in a form 

normalized to ambient thermal energy by defining the quantities σ and 𝜉 as follows. 

σ =
𝐾𝑉
𝑘!𝑇

, 𝜉 =
𝑀"𝑉𝐵
𝑘!𝑇

 

(K - magnetic anisotropy, V – magnetic nanoparticle volume, kB – Boltzmann constant, T – 298 

K room temperature, MS – saturation magnetization, B – applied field) 

For cobalt doped ferrite (CoxFe3-xO4) nanoparticles, magnetic anisotropy does not vary linearly 

depending on Co2+ concentration.[3] In our dynamic hysteresis calculations, values of K of 

cobalt doped ferrite MNPs were estimated from literature.[3,4] 

Our dynamic hysteresis model followed previous work with some variations, and more detailed 

descriptions of this dynamic hysteresis model can be found there.[1,2] Unlike the previous 

work,[1,2] here the pre-exponential factor of relaxation time, τ0, was not fixed to 10-9 s in order 

to reflect the fact that the pre-exponential factor is expected to vary with the anisotropy of 

SDMNP and the external field.[5,6] From the LLG equation, neglecting stochastic thermal effects, 

characteristic relaxation time ( τ# ) is shorter for higher applied field ( τ# ∝ 𝜉$% ).[6] By 

considering this correlation[6] and the dependency of pre-exponential factor of Néel relaxation 
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on anisotropy of the SDMNP in the Fokker-Planck equation,[5] the pre-exponential factor τ& 

was made proportional to 𝜎$
!
"	𝜉$%. According to Leliaert at al., τ& is varies between 10-8 to 10-

12 s for Fe3O4.[7] Consistent with this work, our  was multiplied by a suitable constant to place 

it within the same range:  

𝜏& = (2.045982 × 10$'s) ∙ 𝜎$
(
)	𝜉$% 

Moreover, to account for the actual particle size distribution, each MNP ensemble’s mean 

diameter and standard deviation were used to generate 100 random particles with a Gaussian 

distribution. The 𝜎  and 𝜉  values corresponding to this statistical sample of particles were 

entered into our numerical model and the resulting magnetization responses were averaged to 

generate a population-averaged dynamic hysteresis loop. 
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Calculation of magnetic diameter 

Magnetic particles are freely suspended in water, enabling continuous alignment of their 

moments with the applied field via physical rotation. This allows the magnetic diameter of a 

reasonably monodisperse particle ensemble to be determined under the assumption that the 

ensemble exhibits ideal superparamagnetic behavior in the limit of low applied fields. (The 

fitting technique employed here in the limit of low fields works equally well for fixed particles 

exhibiting anisotropy, provided they are randomly oriented. [2])   

𝑀*+,*-./*01(𝜉) = 𝑀"$*+,*-./*01 × 𝐿(𝜉), 

Where 𝐿(𝜉) is the Langevin function, and 𝜉 ≡ 𝜇𝑚𝐵
𝑘𝐵𝑇
,		 

(𝜇/ = 𝑀"$16*7-*1.89: × 𝑉/, 𝑉/	is	the	magnetic	volume) 

For a magnetic field approaching 𝐵~0 mT (𝜉~0), the Langevin function is approximately 

linear 

𝑀*+,*-./*01(𝜉) ≈ 𝑀"$*+,*-./*01 ×
𝜇/𝐵
3𝑘!𝑇

 

Therefore, 

𝑀*+,*-./*01(𝜉)
𝑀"$*+,*-./*01

=
𝑉/𝑀"$16*7-*1.89:

3𝑘!𝑇
𝐵 

𝑑 Q
𝑀*+,*-./*01(𝜉)
𝑀"$*+,*-./*01

R

𝑑𝐵 =
𝑉/𝑀"$16*7-*1.89:

3𝑘!𝑇
= 𝑠𝑙𝑜𝑝𝑒 

The magnetic diameter 𝑑/ can then be determined from the magnetic volume: 

𝑉/ =
4
3𝜋 Q

𝑑
2R

(

 

𝑑/ = Y
18𝑘!𝑇 × 𝑠𝑙𝑜𝑝𝑒
𝜋𝑀"$16*7-*1.89:

!
 

To maintain 𝜉~0 condition, which is required for an accurate linear Taylor approximation of 

𝐿(𝜉), the cutoff for the fitted region of magnetic field strength should be varied depending on 

the particle size since the magnetic moment 𝜇/ changes dramatically depending on the particle 

size. Therefore, the slope of 𝑀/𝑀"  vs. 𝐵 was fitted within different magnetic field strength 



  

6 
 

ranges (Fe3O4, 16.3 nm: –2~2 mT, 20.5 nm: –1~1 mT, 25.2 nm: –0.5~0.5 mT and 31.2 nm: –

0.4~0.4 mT). 

For cobalt doped ferrite (CoxFe3-xO4) nanoparticles, 𝑀"  was determined from the Vegard’s 

Law, which follows a linear regression line between 𝑀"
;*!<%  and 𝑀"

=7;*"<% .[3] (CoxFe3-xO4, 

x=0.01: -0.5~0.5mT, x=0.03: -0.4~0.4mT, x=0.12: -1.1mT~1.1mT, x=0.24: -2~2mT).  
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Multiplexing factor (MF) for selecting AMF conditions 

We analyzed AC magnetometry data to identify the AMF conditions most suitable for 

magnetothermal multiplexing with the selected MNP ensembles. Multiplexing requires not only 

that each ferrofluid should heat up effectively in one AMF condition, but also that it dissipates 

minimal heat in the other AMF condition. To quantitatively evaluate selectivity, we defined the 

ratio of specific loss powers of a particular MNP ensemble at different AMF conditions as 

Selectivity (S). If MNP1 is the low-Keff MNP (less coercive), intended to dissipate more heat in 

AMF1 with low amplitude (H1) and high frequency (f1) than in AMF2 with high amplitude (H2) 

and low frequency (f2), while high-Keff MNP2 (more coercive) will generate more heat when 

exposed to AMF2, then S can be formulated as:  

𝑆>?@&(𝐻%, 𝑓%, 𝐻), 𝑓)) = ^
SLP>?@&(𝐻%, 𝑓%)
SLP>?@&(𝐻), 𝑓))

for	𝐻) > 𝐻%	and	𝑓) < 𝑓%

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑆>?@"(𝐻%, 𝑓%, 𝐻), 𝑓)) = ^
SLP>?@"(𝐻), 𝑓))
SLP>?@"(𝐻%, 𝑓%)

for	𝐻) > 𝐻%	and	𝑓) < 𝑓%

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

S is set to 0 for AMF pairs for which both amplitude and frequency of one condition exceed the 

other, because MNPs in the dominant AMF will always dissipate more heat than the other AMF, 

which runs contrary to the purpose of magnetothermal multiplexing. 

S of the ferrofluid of MNP1 can be maximized under conditions in which low-amplitude, high-

frequency AMF1 allows access to the major hysteresis loops of the material and cycles rapidly 

enough to produce substantial heat dissipation. Conversely, the high-amplitude, low-frequency 

AMF2, while also sufficient in magnitude to drive major hysteresis loops for MNP1, cycles 

through these loops at a significantly lower rate and hence results in lower heat dissipation. In 

contrast, the ferrofluid of MNP2, with its higher coercivity dissipates negligible heat in low-

amplitude, high-frequency AMF1, which is insufficient to access its major hysteresis loops, but 

exhibits large hysteresis loop area at high-amplitude, low-frequency AMF2. 

Simply multiplying 𝑆>?@&  and 𝑆>?@"  may seem to be an expedient approach to define the 

overall multiplexing selectivity for this materials pair. However, this can misleadingly identify 

AMF1 and AMF2 conditions in which particularly high selectivity for one MNP ensemble veils 

the far less selective operation of the other MNP ensemble. To avoid such scenarios, we 

introduce 𝐸𝑞𝑢𝑖𝑡𝑦 (E), defined as a ratio of the geometric and arithmetic means: 
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𝐸 =
q𝑆>?@& ∙ 𝑆>?@"
𝑆>?@& + 𝑆>?@"

2

 

This quantity ranges between 0 and 1 and approaches 1 as 𝑆>?@% and 𝑆>?@) values approach 

each other, producing the exclusion of AMF conditions (𝐻%, 𝑓%, 𝐻), 𝑓)) that yield imbalanced 

𝑆>?@% and 𝑆>?@). An overall Multiplexing Factor (MF) is then defined as: 

𝑀𝐹(𝐻%, 𝑓%, 𝐻), 𝑓)) = 𝑆>?@& ∙ 𝑆>?@" ∙ 𝐸 = 2
t𝑆>?@& ∙ 𝑆>?@"u

(
)A

𝑆>?@& + 𝑆>?@"
 

 

Finding paired AMF conditions 

Since differing coercivity is the basis for multiplexing in this material system, we began by 

selecting the two batches of magnetic nanoparticles that showed the largest difference in 

coercivity. To find optimized multiplexed condition, we introduced a multiplexing factor ( ), 

which depends on four parameters (H1,ƒ1, H2, ƒ2, where Hx and ƒx are amplitude and frequency 

of AMFx, respectively).  

𝑀𝐹(𝐻%, 𝑓%, 𝐻), 𝑓))	𝐻+ − Field	amplitude	of	AMFB, 𝑓+ − 	frequency	of	AMFB 

Since these four parameters can vary independently, in the most general case they define a four-

dimensional parameter space over which  varies. To find optimally paired AMF conditions, 

parameters that maximize  should be identified. Hysteresis loops do not vary markedly with 

frequency for MNPs driven by AMFs in the frequency range of interest. [8–11] This has two 

notable consequences: 1) A reduced three dimensional parameter space is possible in terms of 

H1 , H2 , and the ratio f1/f2. 2) It is feasible to determine SLP versus amplitude curves for MNP1 

and MNP2 throughout this space based on characterization at one frequency. We took the 

further step of fitting these curves with analytical functions using a non-linear least square fit. 

(The logistic functions assumed for this fit do not have any physical meaning but converged 

well to the data and offered simple analytic expressions for scanning over parameters.) 

(Supplementary Figure 3 and Supplementary Table 1)  

𝑆𝐿𝑃(𝐻) = 𝑎 ∙
1

1 + 𝑒$C∙(F$8)
			(𝑎, 𝑏	𝑎𝑛𝑑	𝑐	𝑎𝑟𝑒	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠) 

A global maximum for preliminary MF subject to these constraints was determined for H1 = 

11.1 kA/m, H2 = 70 kA/m, and f1/f2 = 10.72. From this result, AMF generator was built to have 
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frequency pairs, 522 kHz and 50 kHz (f1/f2 = 10.44), where all chosen AMF conditions exhibit 

amplitude-frequency products near or below AMF safety limit. (H·ƒ < 5×109 Am-1 s-1)[12] 

To determine final AMF conditions for multiplexing, 𝑀𝐹(𝐻%, 522	𝑘𝐻𝑧, 𝐻), 50	𝑘𝐻𝑧) 

constructed out of SLP profile from AC magnetometer was scanned over AMF amplitudes 

space. (H1 and H2) (Figure 4 and Supplementary Figure 4) From this scanning, final AMF 

conditions were set to 𝐻% =10 kA/m, 𝑓% =522 kHz and 𝐻) =70 kA/m, 𝑓) =50 kHz. 

 
Multiplexing performance of the selected MNPs at the selected AMF conditions 
 
In AMF1 (𝐻% =10 kA/m and 𝑓% =522 kHz), MNP1 (16.3 nm Fe3O4) and MNP2 (18.6 nm 

Co0.24Fe2.76O4) exhibited 𝑆𝐿𝑃>?@& (𝐴𝑀𝐹% ) = 203 W/g and 𝑆𝐿𝑃>?@" (𝐴𝑀𝐹% ) = 50 W/g, 

respectively. In contrast, in AMF2 (𝐻) =70 kA/m and 𝑓) =50 kHz), higher coercivity particles 

produced significantly more heat with the corresponding values of 𝑆𝐿𝑃>?@&(𝐴𝑀𝐹)) = 53 W/g 

and 𝑆𝐿𝑃>?@" (𝐴𝑀𝐹)) = 369 W/g. Together these values returned a multiplexing factor 𝑀𝐹 = 

26.81. 
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Finite element analysis of the heat dissipation from the adjacent ferrofluid droplets 

To determine the minimal distance that prevents crosstalk between two adjacent ferrofluid 

droplets acting as heat sources inside a model system of a mouse brain, we applied a finite 

element model of heat transport. 

Pennes’ bio-heat equation was used to account for the influence of blood perfusion within the 

brain tissue: 

𝜌!𝐶!
HI
H1
= 𝐾!𝛻)𝑇 +	𝜌C𝐶C𝑤C(𝑇 − 𝑇C) + 𝑄 

Where ρJ, 𝜌C and 𝐶!, 𝐶C are densities and heat capacities of the brain and blood, respectively; 

𝐾!  is the thermal conductivity of the brain; 𝑇C  is blood temperature; and 𝑤C  is the cerebral 

blood flow. 𝑄 is the power density of the heat source, and 𝑇 – temperature. 

Two distinct ferrofluid injections (MNP1 and MNP2) inside the brain tissue were approximated 

as spheres acting as sources of constant power density 𝑄 due to the AMF. We calculated the 

temperature profile of the tissue as a function of time. The physical parameters used in our 

model are summarized in the Supplementary Table S2. 𝑄 was calculated as: 

𝑄 = 𝑉>?@ ∗ 𝑆𝐿𝑃>?@ ∗ 𝜌>?@ 

where 𝑉>?@ is the total volume of MNPs in the droplet, 𝜌>?@ is the concentration of MNPs and 

𝑆𝐿𝑃>?@ is the specific loss power for the MNPs in the examined AMF conditions of ƒ1 = 522 

kHz, H1 = 10 kA/m and ƒ2 = 50 kHz or H2 = 70 kA/m. SLPs for MNP1 and MNP2 from the 

thermographic recording (Figure 4) were used in this model (Supplementary Table S3). 

Prior research indicates that injected MNPs coated with mPEG-PMAO polymer stay mainly 

within injected area, even after a month. [13] Therefore, in our model, we also assumed that 

injected ferrofluids will maintain their shapes. 

To assess the minimal distance required for selective heat control, we ran multiple simulations 

at varying distances between ferrofluid droplets (d = 0, 1, 2, 3, 4 mm) (Supplementary Video 

S2 and Supplementary Figure S7). In our model, an AMF with ƒ1 = 522 kHz, H1 = 10 kA/m 

was applied for the first 20s, followed by a 60s rest epoch, then another AMF with ƒ2 = 50 kHz, 

H2 = 70 kA/m was applied for 20s, followed by another 60s rest (Supplementary Figure S7a). 

As the distance between the droplets exceeds 2 mm, the regions of elevated temperature 



  

11 
 

generated by two ferrofluid droplets are clearly separated (Supplementary Video S2 and 

Supplementary Figure S7a,b). This suggests that the multiplexed magnetothermal system can 

target nearby organ regions such as distinct areas of the brain even in small rodents 

(Supplementary Figure S7c,d). 
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Supplementary Table S1 | Curve fitting results for SLP data of MNP1 and MNP2 collected 
using the AC magnetometer. 
 
 a b c R-square RMSE 

MNP1 1180 -0.08 62.19 0.9671 7.5426 

MNP2 112.4 -0.12 16.42 0.9980 16.8423 

 

 

Supplementary Table S2 | Physical parameters used in the FEM modeling.  

Parameter Value 

Blood density, ρb 1050 kg/m3 [13] 

Blood specific heat capacity, Cp,b 3617 J/(kg∙K) [13] 

Cerebral blood flow, ωb 1.07ml/g/min [14] 

Arterial blood temperature, Tb 37 °C [13] 

Initial and boundary temperature, T0 37 °C [13] 

Brain specific heat capacity, Cp,B 3630 J/(kg∙K) [13] 

Brain density, ρB 1065 kg/m3 [13] 

Brain thermal conductivity, KB 0.51 W/(m∙K) [13] 

Fe3O4 ferrofluid concentration 115.534 mgMetal/ml 

Co0.24Fe2.76O4 ferrofluid concentration 64.674 mgMetal/ml 

 

 

Supplementary Table S3 | The summary table of SLP measurements for multiplexed 

magnetothermal experiments. 

Field condition AMF1 (522 kHz, 10 kA/m) AMF2 (50 kHz, 70 kA/m) 

Particle MNP1 MNP2 MNP1 MNP2 

AC 

magnetometer  

203 W/gMetal 50 W/gMetal 53 W/gMetal 369 W/gMetal 

Thermographic 

recording 

206 W/gMetal 59 W/gMetal 43 W/gMetal 368 W/gMetal 

In vitro  202 W/gMetal 65 W/gMetal 47 W/gMetal 369 W/gMetal 
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Supplementary Figure S1 | Magnetic and physical diameter of MNP ensembles. 

Normalized magnetization curves collected via vibrating sample magnetometry (VSM) vs. 

applied magnetic field for Fe3O4 (a) and CoxFe3-xO4. (b). c, Summary of MNP physical 

diameters obtained from TEM images vs. magnetic diameters calculated from the VSM curves. 

Quantitative agreement between physical and magnetic diameters suggests that MNPs exhibit 

saturation magnetization values approaching those of bulk materials and therefore possess 

monocrystalline inverted spinel structure. 
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Supplementary Figure S2 | AC magnetometer assembly and magnetic flux density plot. a, 

AC magnetometer assembly composed of AC magnetometer board and AMF generator. b, 

Simulated magnetostatic flux density plot calculated via Finite Element Method for Magnetics 

(FEMM). Our two-dimensional (2D) AC magnetometer is placed in the center of the magnetic 

core gap with 5 mm margin to every edge to ensure field uniformity. (Black line – scale bar = 

1 cm, green line – PCB plate, red line – spiral coil sensor). 
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Supplementary Figure S3 | Dynamic magnetization measurements for 8 ferrofluids. a-d, 

Fe3O4 (a, 16.3nm; b, 20.5nm; c, 25.2nm; d, 31.2nm). e-h, CoxFe3-xO4 (e, x=0.01, 26.7nm; f, 

x=0.03 32.5nm; g, x=0.14 19.5nm; h, x=0.24 18.6nm). Black lines correspond to VSM data, 

rainbow colored loops correspond to custom-built AC magnetometer data. All data were 

collected at a frequency ƒ = 75 kHz. 
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Supplementary Figure S4 | Initial selection of AMF conditions for magnetothermal 

multiplexing using analytically defined Multiplexing Factor. a, Curve fitting of the SLP 

values recorded for Fe3O4 16.3nm and Co0.24Fe2.76O4 18.6 nm MNPs. b, Multiplexing Factor 

plotted as a function of AMF amplitudes (H1 and H2) and frequency ratio (f1/f2) to determine 

initial AMF conditions prior to further experimental refinement. 
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Supplementary Figure S5 | Optimization of AMF amplitudes for magnetothermal 

multiplexing. Grey areas correspond to unsuitable conditions (selectivity, 𝑆 = 0). a, b, 

Selectivity of Fe3O4 16.3nm (a) andCo0.24Fe2.76O4 18.6 nm (b) MNPs as a function of AMF 

amplitudes between 0-70 kA/m (accessible in our apparatus) and frequencies of 522 kHz and 

50 kHz. c, Equity between the two MNP ensembles as a function of AMF amplitudes between 

0-70 kA/m (accessible in our apparatus) and frequencies of 522 kHz and 50 kHz. d, 

Multiplexing Factor as a function of AMF amplitudes between 0-70 kA/m (accessible in our 

apparatus) and frequencies of 522 kHz and 50 kHz. 
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Supplementary Figure S6 | Experiment demonstrating the selective heating of two 

neighboring ferrofluid droplets. a, Temperature profiles for Fe3O4 16.3nm and 

Co0.24Fe2.76O4 18.6 nm ferrofluid droplets as well as the background (water). b, Top view of 

AMF generating gapped toroid electromagnet (scale bar = 1 cm). 
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Supplementary Figure S7 | Temperature distribution for the two multiplexed ferrofluid 

droplets injected within the brain tissue and exposed to the tailored AMF conditions. a, 

Temperature profiles for MNP1 (Fe3O4, red) and MNP2 (Co0.24Fe2.76O4, blue) along centers of 

the ferrofluid droplets separated by distance d = 0, 1, 2, 3, 4 mm between their surfaces. 

Shaded areas mark the droplet positions (red - Fe3O4, blue – Co0.24Fe2.76O4) b, Temperature 

profile of each droplet at the center and on the surface over time (d = 2 mm). c, Heat maps of 

the ferrofluid droplets within the brain tissue at t = 20 s and t = 100s (d = 2 mm). d, Three-

dimensional view of the ferrofluid droplets injected in the different hemispheres of the mouse 

brain. 
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Supplementary Figure S8 | Biocompatibility of magnetic nanoparticles in HEK239T cell 

cultures. Proliferation of HEK293T in ferrofluid media was tested by Alamar Blue assay. 

Each well was tested without MNPs on day 1 and with MNPs on day 2. (Number of samples 

n=4, error bars represent standard deviation).
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