

Supplementary Fig. 1 (A) FoxA2+cells are located at the top of the RZ in both mice and rabbits. (A) Tibia sections from *Aggrecan*^{CreERT2/+};*Tomato*^{fl/+}mice, treated with tamoxifen (Tam) P16-P17, harvested at P18. Fluorescence microscopy for Tomato (red), Hoechst (blue) and 5-DTAF (green) (a). Tibia sections from *FoxA2*^{CreERT2/+};*Tomato*^{fl/+} mice treated with tamoxifen P13-P17, harvested at P18. Fluorescence microscopy for Tomato (red), Hoechst (blue) and 5-DTAF (green). Scale bars, 50µm (b). Percentage (%) cells in the GP vs. SOC. Percentage (%) cells in the GP is calculated by dividing the number of Tomato+ cells in the GP (outside the green 5-DTAF domain) to the total number of Tomato+ cells (located in both GP and SOC). Percentage (%) cells in the SOC is calculated by dividing the number of Tomato+ cells in the SOC (in the green 5-DTAF domain) to the total number of Tomato+ cells (located in both GP and SOC). Data are presented as mean±SD of n=4 mice. The asterisks indicate significant difference: Two-tailed Student's unpaired-samples t test; ***p = 0.000082 (GP vs SOC). Complete statistical information is provided in Supplementary Table 1 (c). (B) Hematoxylin and eosin (HE) staining (a), and immunohistochemistry (IHC) with anti-FoxA2 antibody (b) on P35 rabbit ulna. FoxA2 (red), and Hoechst dye (blue). RZ=Resting zone, PZ=Proliferating zone, HZ=hypertrophic zone. Scale bars, 50µm.

Supplementary Fig.2 Separation of RZ FoxA2+ (green) cells from HZ FoxA2+col.10+ (yellow) cells, isolated from *FoxA2^{CreERT2/+};ZsGreen^{fl/+};col.10^{mcherry}* mice. (A) Schematics of GP tissue isolation. AC=articular cartilage, SOC=secondary ossification center, MB=metaphyseal bone, GP=growth plate (1&2). Tibia sections harvested from *FoxA2^{CreERT2/+};ZsGreen^{fl/+};col.10^{mcherry}* mice treated with tamoxifen P13-P17, harvested at P18, and counterstained with Hoechst (blue). RZ specific FoxA2+col.10-cells (green), HZ specific FoxA2+col.10+ cells (yellow), HZ specific col.10+ cells (red). RZ=resting zone, HZ=hypertrophic zone. Scale bars, 100µm. (3). Fluorescence-activated cell sorting (FACS) of GP cells isolated from forelimbs and hindlimbs of *FoxA2^{CreERT2/+};ZsGreen^{fl/+};col.10^{mcherry}* mice, injected with tamoxifen from P13 to P17, and harvested at P18. Separation of FoxA2+ (ZsGreen+) cells from col.10+ (mcherry+) cells (4). cont. next page.

Supplementary Fig.2 Cont.

(B) Cartilage and bone markers expression in RZ FoxA2+cells, PTHrP+cells and BMSCs (bone marrow mesenchymal cells). RTPCR for *Aggrecan, collagen 2, collagen 1, and alkaline phosphatase (ALP)*. The mRNA fold-change is presented as mean±SD of n=4 samples. The asterisks indicate significant difference: One-way ANOVA, Tukey test; ***p = 2.61879E-08 (Aggrecan: FoxA2+ cells vs BMSCs), 3.09872E-05 (Aggrecan: PTHRP+ cells vs BMSCs), 1.1691E-07 (COL2A1: FoxA2+ cells vs BMSCs), 5.89962E-06 (COL2A1: PTHRP+ cells vs BMSCs), 2.65003E-07 (COL1A1: FoxA2+ cells vs BMSCs), 2.51267E-07 (COL1A1: PTHRP+ cells vs BMSCs), 7.20261E-05 (ALP: FoxA2+ cells vs BMSCs), 6.00535E-05 (ALP: PTHRP+ cells vs BMSCs). Complete statistical information is provided in Supplementary Table 1.

Cfu assay for FoxA2+ cells vs FoxA2+col.10+ cells

Supplementary Fig.3 RZ FoxA2+ (green) cells form distinct primary colonies, whereas HZ

FoxA2+col.10+ (yellow) cells fail to form colonies. Colony forming unit (cfu) assay from RZ FoxA2+ (ZsGreen+) cells (a-c) and HZ FoxA2+col.10+ (yellow) cells (d-f), isolated from *FoxA2^{CreERT2/+}; ZsGreen^{fl/+}; col.10^{mcherry}* mice treated with tamoxifen P13-P17 and harvested at P18. Fluorescence microscopy for ZsGreen (green), mcherry (red), merged (yellow). Insets, magnified view of a single colony, or individual cells. Scale bars, 1mm.

A. Colony size/shape		B. Nur	B. Number of colonies per passage						
FoxA2+ cells		Passage #	FoxA2+ cells			PTHrP+ cells			
Day 0	P5	P1	50	29	33	50	46	57	
		P2	16	11	14	6	7	5	
P1	P6	P3	9	4	11	2	3	1	
		P4	3	3	9	1	1	1	
P2	P7	P5	2	2	8	1	1		
		P6	2	2	8				
P3	P8	P7	1	2	7				
		P8	1	2	7				
P4	P9	P9	1	2	7				

<u>Supplementary Fig.4</u> FoxA2+ stem cells display more robust self-renewability than PTHrP+ stem cells. (A) Colony forming unit (cfu) assay and subsequent passaging (P1-P9) of individual FoxA2+ (green) colonies. RZ FoxA2+ (green) cells were isolated from *FoxA2^{CreERT2/+};ZsGreen^{fl/+}; col.10^{mcherry}* mice treated with tamoxifen P13-P17, and harvested at P18. Cells were seeded at clonal density in a 96 well plate. Scale bars, 1mm. (B) Comparison between the number of colonies established from FoxA2+cells versus PTHrP+cells. FoxA2+cells were isolated from *FoxA2^{CreERT2/+}; ZsGreen^{fl/+}; col.10^{mcherry}* mice, injected with tamoxifen P13 to P17, and harvested at P18. PTHrP+cells were isolated from P18 PTHrP^{mcherry} mice. Data at P1 (passage 1) reflects the number of colonies established from 10³ cells per 10 cm petri dish. Data from passage P1 to P9 reflects the number of colonies that can be serially propagated, n=3 independent experiments for each cell type.

the second second

Lineage tracing *FoxA2^{Cre.ERT/+} Tomato^{f/+} v. FoxA2^{Cre.ERT/+} Tomato^{f/f}* mice, Tam P14-P18

В

Supplementary Fig.5 Quantification tamoxifen labeling efficiency. (A) Tyramide amplification immunohistochemistry (IHC) for FoxA2 in P14 mice tibia sections (a). Tomato fluorescence microscopy in tibia sections from *FoxA2^{CreERT2/+}; Tomato^{fl/+}* mice with 2x tamoxifen injections (P14-P15, harvest at P19) (b) *FoxA2^{CreERT2/+}; Tomato^{fl/+}* mice with 5x tamoxifen injections (P14-P18, harvest at P19) (c), *FoxA2^{CreERT2/+}; Tomato^{fl/+}* mice with 5x tamoxifen injections (P14-P18, harvest at P19) (d). Scale bars, 50µm. Quantification of GP FoxA2+cells detected via IHC or by Tomato+ fluorescence per 10µm thickness GP section (e). Data are presented as mean±SD, n=3 mice. The asterisks indicate significant difference: One-way ANOVA, Tukey test; ***p = 8.6701E-08 (IHC vs 2xTam Tom fl/+), 4.43086E-07 (IHC vs 5xTam Tom fl/+), 2.43138E-06 (IHC vs 5xTam Tom fl/fl), *p = 0.033095466 (2xTam Tom fl/+ vs 5xTam Tom fl/+), 0.03696719 (5xTam Tom fl/+ vs 5xTam Tom fl/fl). Cont. next page

<u>Supplementary Fig.5</u> Quantification tamoxifen labeling efficiency. Cont. (B) Tibia sections harvested from $FoxA2^{CreERT2/+}$; Tomato^{fl/+} mice (B1) versus $FoxA2^{CreERT2/+}$; Tomato^{fl/fl} mice (B2) treated with 5x tamoxifen injections (P14-P18), and harvested 9 months after the last injection. Tomato fluorescence (red), 5-DTAF (green), Hoechst dye (grey). Scale bars, 200µm. Representative details, from the section pictured above, shown in numbered insets (a-f). Quantification total number of Tomato+ columns of progeny, per mouse hindlimb (B3). Data are presented as mean±SD, n=3 mice. The asterisks indicate significant difference: Two-tailed Student's unpaired-samples t test; *p = 0.043278 (Tom fl/+ vs Tom fl/fl). Complete statistical information is provided in Supplementary Table 1.

Supplementary Fig.6 The dynamics of FoxA2+cells clonality. (A) Total number of Tomato+ cells quantified in growth plate (GP) and secondary ossification center (SOC), for FoxA2^{CreERT2/+}; Tomato^{fl/+} mice treated with tamoxifen P14-P18, and harvested at 1-day and 1-month (A1), or treated with tamoxifen P28-P37, and harvested at 1-day and 1-month (A2). To quantify the number of FoxA2+ (Tomato+) cells present in the GP, we counted the Tomato+ cells in a domain extending 100µm away from the GP/SOC interface, towards the GP. To quantify the number of FoxA2+ (Tomato+) cells present in the SOC, we counted the Tomato+ cells in a domain extending 100µm away from the SOC, we counted the Tomato+ cells represents a sum of n= 8 sections per mouse hindlimb. (B) Immunohistochemistry for FoxA2, and fluorescence microscopy of Tg.col10^{mcherry} mice on P14 (a) and P21 (b) tibia sections. FoxA2 (yellow), mcherry fluorescence (red), Hoechst (blue). Scale bars, 50µm. (C) Quantification total number of Tomato+ clones (single cells, clusters, columns) from *FoxA2^{CreERT2/+};Tomato^{fl/+}* mice injected with tamoxifen starting P14, or P28, and harvested 1-day, 1-, 3-, or 9- months after the last injection.

Total Clones From All 3 Mice =

Supplementary Fig.7 Isolation and assessment of differentiation potential of FoxA2+

(ZsGreen+) cells in the serial reconstitution assay. (A) Bright-field and fluorescence images showing the primary (a, b) and secondary (c, d) grafts 1-month after transplantation in secondary and tertiary recipient mice. Scale bars, 1 cm. (B) Alcian blue (a), LipidTox (b) or Alizarin Red-S (c) staining of cross-sections of grafts generated 30 days after transplantation of lineage-primed FoxA2+ cells under chondrogenic, adipogenic or osteogenic conditions. Alcian blue (d), LipidTox (e) or Alizarin Red-S (f) staining of cross-sections of grafts generated 30 days after transplantation of FoxA2+ cells, in the absence of lineage priming. Scale bar, 200 µm.

SH1 – like GP injury measurements

B Dimensions of the GP lesion					C Tibia growth after SH1 – like GP injury
Mouse ID	A (µm)	B (µm)	C (µm)	D (Degree)	2.0 contralateral
Mouse 1	2120	230	198	22.33	C C
Mouse 2	2020	220	162	28.15	
Mouse 3	2200	370	162	31.39	
Mouse 4	2540	290	108	24.81	
Mouse 5	2200	290	198	36.2	

<u>Supplementary Fig.8</u> Dimensions of the GP lesion after SH1–like surgery. (A) A 3D reconstruction of the injured growth plate (GP) proximal tibia, 1-day after surgery, exposure to CA4+. Visualization of the defect, induced by the SH1 (Salter Harris type 1)-like surgery, in the tibial physis. Average dimensions, and angle relative to the coronal plane, from n=5 independent surgeries. CECT measurements of the SH1-like injury: A (lateral to medial), B (anterior to posterior), C (height), D (angle). (B) Dimensions of the GP lesion, n=5 surgeries. (C) Quantification of the total tibial length at 1-day, 3-days, 7-days, and 21-days after SH1-like surgery in both the operated leg and the contralateral leg. Data are presented as mean±SD, n=5 mice. Complete statistical information is provided in Supplementary Table 1.

Α

<u>Supplementary Fig.9</u> FoxA2+cells expand in response to SH1-like surgery. Control (a-c) and operated (d-f) tibia from FoxA2^{CreERT2/+};Tomato^{fl/fl} mice, injected with tamoxifen (Tam) P13-P16, operated via SH1 (Salter Harris type 1)-like surgery at P18, and harvested at 1-, 3-, 7-days post-op. Tomato fluorescence (red), Hoechst (blue), 4x magnification, whole tibia sections. Scale bars, 100µm.

Supplementary Fig.10 FoxA2+cells are BrdU positive. (A) Control (a) and operated (b) tibia from FoxA2^{CreERT2/+};Tomato^{fl/fl} mice, injected with tamoxifen (Tam) P13-P16, operated at P18 via SH1 (Salter Harris type 1)-like surgery, treated with 3x BrdU injections administrated P20-P21, harvested at P21 (3-days post-op). Tomato fluorescence (red), Hoechst (blue), BrdU (green). Insets, magnified view of injury (b1) or control (a1). Scale bars, 100µm. (B) Immunohistochemistry (IHC) for FoxA2, on operated tibias harvested at 1-day (a), 2-days (b), 3-days (c) after SH1-like surgery. FoxA2 (yellow), Hoechst (blue). Insets, magnified view of injury (a1-c1). Scale bars, 100µm.

Gating Strategy

<u>Supplementary Fig.11</u> Gating strategy used for proliferation tracking to test self-renewal property of transplanted FoxA2+ (ZsGreen+) cells in the serial *in vivo* reconstitution assay. Representative FACS plots showing gating scheme for defining DiD^{high} and DiD^{low} subpopulations within the ZsGreen+ population of cells isolated from the primary and secondary FoxA2+ cell grafts. After exclusion of doublets, ZsGreen+ cells were gated and the proportion of DiD^{high} and DiD^{low} cells was evaluated.

Supplementary Table S1

Figure	Dataset	Statistical test	Multiple comparison test	n	Exact P value
Fig. 2A	P3-4 GP vs P3-4 SOC	One-way ANOVA	Tukev	3	0.000003
	P7-8 GP vs P7-8 SOC	One-way ANOVA	Tukey	3	0.000005
	P13-14 GP vs P13-14 SOC	One-way ANOVA	Tukey	3	0.980399
	P13-17 GP vs P13-17 SOC		Тикоу	3	0.011031
	P3-4 CP vs P13-17 CP		Тикеу	3	0.000569
			Tukey	3	0.000303
	F7-0 GF VS F13-17 GF	One-way ANOVA	Тикеу	3	0.000020
	D0 vo D20	uppoined two tailed t test		2	7 01495 07
FIG. 56 (0)	D0 vs D30	unpaired two-tailed t test	_	3	7.0140E-07
Fig. 5B (e)	D0 vs D30	unpaired two-tailed t test	_	3	7.04312E-00
FIG. 5B (G)	D0 VS D30	unpaired two-tailed t test	-	3	3.32176E-06
FIG. 5B (n)	D0 VS D30	unpaired two-tailed t test	_	3	3.40095E-00
				-	0.055556
FIG. 6D		unpaired two-tailed t test	-	5	0.00000
		unpaired two-tailed t test	_	5	0.0079
	14 10			•	0.007004
Fig. 6F	d1 vs d3	unpaired two-tailed t test	_	3	0.037861
	d3 vs d7	unpaired two-tailed t test	_	3	0.007121
	d1 vs d7	unpaired two-tailed t test	_	3	0.000839
Fig. 7B b1. GP	Day1: control vs operated	One-way ANOVA	Tukey	4	0.391815
	Day3: control vs operated	One-way ANOVA	Tukey	4	0.032625
	Day7: control vs operated	One-way ANOVA	Tukey	4	0.999984
Fig. 7B b2. SOC	Day1: control vs operated	One-way ANOVA	Tukey	4	0.999069
-	Day3: control vs operated	One-way ANOVA	Tukey	4	0.998693
	Day7: control vs operated	One-way ANOVA	Tukey	4	0.995554
	,	,	,		
Fig. 7B b3. Metaphysis	Dav1: control vs operated	One-way ANOVA	Tukev	4	0.036130
0 1 3	Dav3: control vs operated	One-way ANOVA	Tukey	4	0.021045
	Dav7: control vs operated	One-way ANOVA	Tukey	4	0.0000003
	Bayr: control to operated		ranoy	•	0.0000000
Fig. 8B	CreTom vs CreTom DTA	unpaired two-tailed t test	_	4	0.028571
Fig. 8D	DTA/DTA vs CreDTA/DTA	unpaired two-tailed t test	_	5	0.007937
Supplementary Fig. 1A		uppoined two tailed t test		4	0 000092
Supplementary Fig. 1A	GP VS SOC	unpaired two-tailed t test	_	4	0.000062
Supplementery Fig. 2B	A				
Supplementary Fig. 2B			Tulian	4	0 400045454
	FoxA2+ cells vs PTHRP+ cells	One-way ANOVA	Tukey	4	0.430345154
	FOXA2+ Cells VS BIMSUS	One-way ANOVA	Тикеу	4	2.018/9E-08
	PTHRP+ cells vs BMSCs	One-way ANOVA	Тикеу	4	3.09872E-05
	COL2A1:				0.070004400
	FoxA2+ cells vs PTHRP+ cells	One-way ANOVA	Tukey	4	0.970384408
	FoxA2+ cells vs BMSCs	One-way ANOVA	Tukey	4	1.1691E-07
	PTHRP+ cells vs BMSCs	One-way ANOVA	Tukey	4	5.89962E-06
	COL1A1:	_	_		
	FoxA2+ cells vs PTHRP+ cells	One-way ANOVA	Tukey	4	>0.99999999
	FoxA2+ cells vs BMSCs	One-way ANOVA	Tukey	4	2.65003E-07
	PTHRP+ cells vs BMSCs	One-way ANOVA	Tukey	4	2.51267E-07
	ALP:				
	FoxA2+ cells vs PTHRP+ cells	One-way ANOVA	Tukey	4	>0.99999999
	FoxA2+ cells vs BMSCs	One-way ANOVA	Tukey	4	7.20261E-05
	PTHRP+ cells vs BMSCs	One-way ANOVA	Tukey	4	6.00535E-05
Supplementary Fig. 5A	IHC vs. 2xT	One-way ANOVA	Tukey	3	8.6701E-08
	IHC vs. 5xT	One-way ANOVA	Tukey	3	4.43086E-07
	IHC vs. 5xTT	One-way ANOVA	Tukey	3	2.43138E-06
	2xT vs. 5xT	One-way ANOVA	Tukey	3	0.033095466
	5xT vs. 5xTT	One-way ANOVA	Tukey	3	0.03696719
			,		
Supplementary Fig. 5B	Tom/+ vs Tom/Tom	unpaired two-tailed t test		3	0.043278
			_		
Supplementary Fig. 8C	Dav1: control vs operated	One-way ANOVA	Tukev	5	0 433288
- approximation of the second	Day3: control vs operated		Tukey	5	0.653546
	Day7: control vs operated		Tukey	5	0.000040
	Day21: control vs operated		Tukey	5	>0 999999
	Say 1. Control V3 Operated	Che-way ANOVA	Tukey	5	. 0.000000

Supplementary Table 1 Statistical tests and p-values for quantitative data.