iScience, Volume 25

#### Supplemental information

#### **Cas9-mediated gene editing**

#### in the black-legged tick, Ixodes scapularis,

#### by embryo injection and ReMOT Control

Arvind Sharma, Michael N. Pham, Jeremiah B. Reyes, Randeep Chana, Won C. Yim, Chan C. Heu, Donghun Kim, Duverney Chaverra-Rodriguez, Jason L. Rasgon, Robert A. Harrell II, Andrew B. Nuss, and Monika Gulia-Nuss

#### **Results; Materials and Methods**

Figure S1. Schematic of the operating procedure developed for *lxodes scapularis* embryo injections, Related to STAR Methods and Figure 1.

#### Figure S2. Embryo injection protocol and successful embryo injections, Related to STAR Methods and Figure 1.

Optional legend: (A) Eggs deposited from a control (left) and from a female with a dissected Gene's organ (right). (B) Slide setup used for securing eggs for embryo injections. (C) *I. scapularis* dechorionated control embryos (no injection) and (D) embryos injected with green food color. (E) Expression of the CAGGS promoter-reporter construct in injected embryos. Embryos injected with green food color (without promoter construct) have no visible fluorescence whereas CAGGS injected embryos show reporter expression in multiple cells.

#### Figure S3. Alignment of *ProbP* mutant sequences with possible inversion, Related to STAR Methods and Figure 2.

Optional legend: (A) Sequence alignment in graphic format in NCBI with BLAST tool shows near-perfect match with Ixodes scapularis homeotic protein *Proboscipedia* (LOC8038072). The sequence matches two parts with plus/plus and plus/minus. (B) Dot plot of *ProbP* sequence also showing sequence match with possibly inverted sequence. (C) Chromatogram of L1 Sanger sequencing showing mixed bp in the region of potential inversion.

#### Figure S4. Summary of *Proboscipedia* Illumina deep sequencing data, Related to STAR Methods and Figure 2.

Optional legend: Animals were injected with sgRNAs 1-4. Indel percentage is on the Y-axis. The X-axis depicts predicted Cas9 cut site (position 0) and sequences up- and down-stream of the cut site.

# Figure S5. Amino acid sequences of Proboscipedia showing deletions in ReMOT Control edited larvae, Related to STAR Methods and Figures 2 and 5.

Optional legend: A) Multiple sequence alignment of amino acid sequences of representative homozygous mutants (R4, R6, and R11) depicting in-frame deletion. B) Multiple sequence alignment of amino acid sequences of a representative homozygous mutant depicting frameshift deletion. R10 is translated amino acid sequence from DNA sequencing, R10\* is the predicted amino acid sequence with the frame shift. Alignments were generated using Clustal Omega (Sievers et al., 2011).

#### Table S1: Single guide RNAs designed to target genes in *Ixodes scapularis*, Related to Figure 1

#### **Materials and Methods**

Table S2: Primers used to PCR amplify the respective genes from G<sub>0</sub> larvae, Related to Figures 2, 3, and 5 \*primer used for the sequencing.



Eggs laid by a Gene`s organ-ablated female



Eggs transferred to micro-centrifuge tube



Added ~200 µl of 5% benzalkonium chloride



Eggs agitated using a paint brush for 5 min





Eggs aligned and injected.



Eggs kept in 1% NaCl until used for injections.

2X wash with DI water



~200 µl of 5% NaCl added and eggs agitated for 5 min.





The solutions turns cloudy





Dechorionated controls

Dye injections











### Α

# Homozygous In-Frame Deletion

| WT  | <ul> <li>TMMSKQDEKGNGDAASEGEASSVEATDRAGASPAGLAPGDEVGKPDPGPCCPARAAAPSPCSSDPDPESKAHLLPGLAGAS</li> </ul> | 5PARSDKTPTPGGKGADGRAASPAAPRLLSGKAPALCSLD |
|-----|-------------------------------------------------------------------------------------------------------|------------------------------------------|
| R4  | SMMSKQDEKGNGDAASEGEASSVEATDRAGA                                                                       | SPAAPRLLSGKAPALCSLD                      |
| R6  | -MMSKQDEKGNGDAASEGEASSVEATDRAGASPAGLAPGDEVGKPDPGPCCPARAAAPSPCSSDPDPESK                                | APALCSLD                                 |
| R11 | -MMSKQDEKGNGDAASEGEASSVEATDRAGA                                                                       | SPAAPRLLSGKAPALCSLD                      |
|     | *************************                                                                             | *******                                  |

# Homozygous Frameshift Deletion

| WΤ               | TMMSKQDEKGNGDAASEGEASSVEATDRAGASPAGLAPGDEVGKPDPGPCCPARAAAPSPCSSDPDPESKAHLLPGLAGASPARSDKTPTPGGKGADGRAASPAAPRLLSG                    |
|------------------|------------------------------------------------------------------------------------------------------------------------------------|
| R10              | TMMSKQDEKGNGDAASEGEASSVEATDRAGASPAGLAPGDEVGKPDPGPCCPARPPLSAPSTVVCARRGSPAPRPHLILVPARVWLLLRTARSSRTCTPTTTPRTAQ-                       |
| R10 <sup>3</sup> | *TMMSKQDEKGNGDAASEGEASSVEATDRAGASPAGLAPGDEVGKPDPGPCCPARPPLSAPSTVVCARRGSPAPRPHLILVPARVWLLLRTARSSRTCTPTTTPRTAQ-                      |
|                  | ***************************************                                                                                            |
| WТ               | APALCSLDGGLCPQRVASPSAASYPCPSARVASSPNCQVQPHLYANHYAQDRPGGGPMQGYNGQCATAATAVHRGQQSPGVYCAATYRSPPAASAAVGPQVAAATGAQGPPQVGSNSYAG<br>AEVPCR |
|                  | AEVPCRATTGSAPLPPPPCTGDSSRLESTARPRTVLRRRPAQRSGHRSRPPQVPRGLRR*LPPPPCTGDSSRLESTARPRTVLRRPAQRSGHRSRPPQVPRGLRR*                         |

Table S1 (Related to Figure 1): Single guide RNAs designed to target genes in *Ixodes scapularis*.

| sgRNA name                 | Length (bp) | Target Sequence      | PAM |  |
|----------------------------|-------------|----------------------|-----|--|
| Proboscipedia (ISCW021086) |             |                      |     |  |
| sgRNA 1                    | 19          | GTGTCTTGTCGGAGCGCGC  | AGG |  |
| sgRNA 2                    | 19          | GCCCACCTTCTGCCGGGAT  | TGG |  |
| sgRNA 3                    | 19          | GTTGGCGTACAGGTGCGGC  | TGG |  |
| sgRNA 4                    | 19          | GCTTTCCCACCTCATCTCC  | GGG |  |
| sgRNA 5                    | 20          | ACAAGTACCTGTGTCGGCCT | CGG |  |
| sgRNA 6                    | 20          | CCGAGCGCCAAGTCAAGGTG | TGG |  |
| sgRNA 7                    | 20          | GGGGCTGGCGCCGGCCCTGT | CGG |  |
| Chitinase (ISCW003950)     |             |                      |     |  |
| sgRNA 1                    | 20          | GTATCGAGACGTGTCTCCAT | CGG |  |
| sgRNA 2                    | 20          | GACCCGGTAGTAGGACCAGC | TGG |  |

Table S2 (Related to Figures 2, 3, and 5): Primers used to PCR amplify the respective genes from  $G_0$  larvae.

\*primer used for the sequencing

| Primer name                | Sequence (5'-3')       |
|----------------------------|------------------------|
| Proboscipedia (ISCW021086) |                        |
| IscprobF1                  | CAATTTCTGCCGTTTTCTTGAT |
| IscprobF2                  | CTGCCGTTTTCTTGATTAACAC |
| IscprobR 1                 | ATAGCTGTTGCTGCCTACCTG  |
| IscprobR 2*                | GTAGACTCCAGGCGACTGCT   |
| Proboscipedia (ISCW021086) |                        |
| IscprobF1                  | CAATTTCTGCCGTTTTCTTGAT |
| IscprobR 1                 | ATAGCTGTTGCTGCCTACCTG  |
| Iscprob F2                 | GCGACAGACGATGATGAGCA   |
| Iscprob R2*                | GTAGACTCCAGGCGACTGCT   |
| Chitinase (ISCW003950)     |                        |
| IschtF*                    | AGACATGCTTAGCCGCTTTC   |
| IschtR                     | TGTGGGCTTGAAAAATCTAGG  |