YMTHE, Volume 30

Supplemental Information

RNA m⁶A methylation regulates dissemination

of cancer cells by modulating expression

and membrane localization of β -catenin

Jiexin Li, Guoyou Xie, Yifan Tian, Wanglin Li, Yingmin Wu, Feng Chen, Yu Lin, Xinyao Lin, Shannon Wing-Ngor Au, Jie Cao, Weiling He, and Hongsheng Wang

Supplementary information for

RNA m⁶A methylation regulates the dissemination of cancer cells via modulating expression and membrane localization of β-catenin

Jiexin LI, et al

Fig.S1 Expression of CTNNB1 is associated to METTL3 in lung cancer and liver cancer.

- (A-B) Expression levels of *CTNNB1* mRNA (*left*) and β-catenin protein (*right*) in H460 cells
 (A) and Huh7 cells (B) silencing METTL3 were detected by RT-qPCR and Western blot, respectively;
- (C) Protein levels of β-catenin in H460 sh-NC, H460 sh-METTL3, Huh7 sh-NC and Huh7 sh-METTL3 cells were detected by Western blot (*left*) and quantitatively analyzed (*right*);
- (D) m⁶A methylation levels of HeLa, HeLa METTL3^{Mut/-}, H460 sh-NC, H460 sh-METTL3, Huh7 sh-NC and Huh7 sh-METTL3 cells were detected by LC-MS/MS.

Fig.S2 METTL3-mediated EMT is independent to Wnt/β-catenin activation in cancer cells.

- (A) Wound healing of HeLa, HeLa METTL3^{Mut/-}, H460 sh-NC, H460 sh-METTL3, Huh7 sh-NC, Huh7 sh-METTL3 cells were recorded and quantitatively analyzed; scale bar, 100µm;
- (B) Cell invasion assays of HeLa, HeLa METTL3^{Mut/-}, H460 sh-NC, H460 sh-METTL3, Huh7 sh-NC, Huh7 sh-METTL3 cells were recorded and quantitatively analyzed; scale bar, 100µm;
- (C) Protein levels of β-catenin in HeLa, HeLa METTL3^{Mut/-}, H460 sh-NC, H460 sh-METTL3 cells transfected with si-NC or si-β-catenin were detected by Western blot;
- (D) Protein levels of β-catenin in cytoplasmic and nuclear fractions in HeLa and HeLa METTL3^{Mut/-} cells;

(E) Expression levels of downstream genes Wnt signaling in HeLa and HeLa METTL3^{Mut/-} cells were detected by RT-qPCR.

Data are presented as means \pm SD from three independent experiments. Student's *t test*, *, p < 0.05; **, p < 0.01 compared with control.

Fig.S3 METTL3 regulates transcription, stability and translation of *CTNNB1* mRNA in H460 and Huh7 cells.

- (A) m⁶A RIP-qPCR analysis of *CTNNB1* mRNA in H460 sh-NC and H460 sh-METTL3 cells (*left*), Huh7 sh-NC and Huh7 sh-METTL3 cells (*right*);
- (B-C) Expression level of CTNNB1 mRNA (B) and precursor mRNA (pre-CTNNB1; C) in H460 sh-NC, H460 sh-METTL3, Huh7 sh-NC and Huh7 sh-METTL3 cells were detected by RT-qPCR;
- (D) Expression levels of *CTNNB1* precursor mRNA (pre-CTNNB1) in HeLa and HeLa METTL3^{Mut/-} cells treated with Act-D were detected by RT-qPCR;
- (E) H460 sh-NC, H460 sh-METTL3, Huh7 sh-NC and Huh7 sh-METTL3 cells were cotransfected with pGL3-Basic-CTNNB1-Fluc reporter and pRL-TK plasmids for 24 h. Results were presented as the ratios between the activity of the reporter plasmid and pRL-

TK;

- (F) Expression of cytoplasmic or nuclear CTNNB1 mRNA levels in HeLa and HeLa METTL3^{Mut/-} cells were detected by RT-qPCR;
- (G) Half-lives of CTNNB1 mRNA in H460 sh-NC, H460 sh-METTL3, Huh7 sh-NC and Huh7 sh-METTL3 cells were detected by RT-qPCR;
- (H) Protein levels of β-catenin in HeLa and HeLa METTL3^{Mut/-} cells treated with CHX for indicated priors (*left*). Protein of interest (POI) are quantitatively analyzed (*right*).

Data are presented as means \pm SD from three independent experiments. Student's *t test*, **, *p*< 0.01; ***, *p*< 0.001 compared with control.

Fig.S4 E2F1 is identified as transcription factor of CTNNB1.

- (A) Venn diagram shows the overlap of transcription factors of *CTNNB1* predicted by CistromeMap and ChIPBase, respectively;
- (B) Expression levels of predicted transcription factors of CTNNB1 in H460 sh-NC and H460 sh-METTL3 cells were detected by RT-qPCR;
- (C) Expression levels of *E2F1* mRNA in HeLa and H460 cells silencing *E2F1* were detected by RT-qPCR;
- (D) HeLa cells with or without *E2F1* silencing were transfected with pGL3 reporter containing

CTNNB1 promoter before *F-LUC* gene for 48 h. Expression levels of *FLUC* mRNA were detected by RT-qPCR, which was normalized to the resistant gene *AmpR* of pGL3 reporter;
(E) The binding motifs of E2F1 analyzed by ChIPBase database;

(F) m⁶A peaks located in *E2F1* mRNA from m⁶A RIP-seq data (Accession code GSE112795).

Data of Fig.4B, 4C, 4E are presented as means \pm SD from three independent experiments. Student's *t test*, **, *p*<0.01 compared with control.

Fig.S5 5'UTR m⁶A methylation destabilizes *CTNNB1* mRNA.

- (A) Relative enrichment of m⁶A in wild-type (WT) or mutated CDS reporters were analyzed by m⁶A RIP-qPCR;
- (B) Expression levels of CTNNB1-CDS and F-Luc reporter mRNAs in HeLa cells transfected with wild-type (WT) or mutated reporters;
- (C) CDS reporters with mutations were transfected in HeLa cells for 48hr and then treated with CHX for indicated times. Expression levels of exogenous β-catenin (Flag) were detected by Western blot. Band intensities of Flag-β-catenin were analyzed by ImageJ and listed at the bottom of target bands;
- (D) Expression levels of CTNNB1-CDS and F-Luc reporter mRNAs in HeLa cells transfected

with wild-type (WT) or m⁶A-inserted reporters;

- (E) Expression levels of YTHDF2 mRNA in HeLa cells silencing YTHDF2 were detected by RT-qPCR;
- (F) The secondary structure of wild type (WT) or Mut-1/2 (GGAC to GGCC in site 1 and site 2 of m⁶A motifs) in CTNNB1 5'UTR was predicted by RNAfold WebServer (<u>http://rna.tbi.univie.ac.at/</u>). The red color indicates strong confidence for the prediction of each base.
- Data of Fig.5A-5E are presented as means \pm SD from three independent experiments. Student's *t test*, NS, no significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001 compared with control.

Fig.S6 METTL3 modulates translation of CTNNB1.

- (A) Translation efficiency of CDS and F-Luc reporters in control and HeLa METTL3^{Mut/-} cells were analyzed;
- (B) Expression levels of CTNNB1 mRNA in HeLa cells silencing YTHDF1;
- (C) Control and HeLa METTL3^{Mut/-} cells overexpressing β-MS2bs were pull-down by HA-MS2. Expression levels of *CTNNB1* mRNA in IgG control and HA-IP samples were detected by RT-qPCR;
- (D) Expression levels of β -catenin in HeLa cells treated with 50nM rapamycin with or without 100ug/ml cycloheximide (CHX) for indicated time.

Data are presented as means \pm SD from three independent experiments. Student's *t test*, **, *p*< 0.01, NS, no significant compared with control.

Fig.S7 METTL3 regulates membrane localization of β-catenin via Met kinase.

- (A) Protein (*left*) and mRNA (*right*) levels of β-catenin and METTL3 in H460 sh-NC and H460 sh-METTL3 cells were detected by Western blot analysis and RT-qPCR, respectively
- (B) Protein (*left*) and mRNA (*right*) levels of β-catenin and METTL3 in Huh7 sh-NC and Huh7 sh-METTL3 cells were detected by Western blot analysis and RT-qPCR, respectively;
- (C) Expression of c-Met in HeLa cells silencing c-Met and HeLa METTL3^{Mut/-} overexpressing
 c-Met were detected by Western blot analysis;
- (D) m⁶A peaks located in *MET* mRNA from m⁶A RIP-seq data (Accession code GSE112795);
- (E) Half-lives of MET in H460 sh-NC and H460 sh-METTL3 (*left*), Huh7 sh-NC and Huh7 sh-METTL3 (*right*) cells;
- (F) Expression levels of IGF2BP3 mRNA in HeLa (Ctrl) and HeLa METTL3^{Mut/-} (M3) cells silencing IGF2BP3 were detected by RT-qPCR.

Data are presented as means \pm SD from three independent experiments. Student's *t test*, **, *p*<

0.01, NS, no significant compared with control.

Fig.S8 Regulators of β -catenin expression are involved in the development of cancer

cells.

- (A) The relative mRNA expression of *E2F1* in lung cancers from Oncomine datasets;
- (B) The relative mRNA expression of YTHDF2 in lung cancers from Oncomine datasets;
- (C) The relative mRNA expression of MET in lung cancers from Oncomine datasets;
- (D) The Kaplan–Meier survival curves of OS based on METTL3 expression in lung cancer patients from TCGA data base.

Name	Sequences (5' – 3')	
si-CTNNB1-1	CCAGACACGCUAUCAUGCGdTdT	
si-CTNNB1-2	UUGGAUUGAUUCGAAAUCUdTdT	
si-METTL3-1	GCACUUGGAUCUACGGAAUdTdT	
si-METTL3-2	CGACUACAGUAGCUGCCUUdTdT	
si-METTL3-3	CAGUGGAUCUGUUGUGAUAdTdT	
si-E2F1-1	GCAUCUAUGACAUCACCAAdTdT	
si-E2F1-2	GGACUCUUCGGAGAACUUUdTdT	
si-E2F1-3	CCUCUUCGACUGUGACUUUdTdT	
si-YTHDF1-1	CCGCGUCUAGUUGUUCAUGAAdTdT	
si-YTHDF1-2	CCUCCACCCAUAAAGCAUAdTdT	
si-YTHDF2-1	GCGGGUCCAUUACUAGUAAdTdT	
si-YTHDF2-2	GGGCUGAUAUUGCUAGCAAdTdT	
si-IGF2BP3-1	AAUUCCUGCAAUGGAGAUAUCdTdT	
si-IGF2BP3-2	UUCAUGAUCUCCUCCUCAGCUdTdT	
si-MET	AACATGGCTCTAGTTGTCGACdTdT	

Table S2 Primers for RT-qPCR					
Gene	Forward (5' - 3')	Reverse (5'- 3')			
CTNNB1	TGGATTGATTCGAAATCTTGCC	GAACAAGCAACTGAACTAGTCG			
pre-CTNNB1	GCCTTACTGAAAGTCAGAATGC	AACACTCACTATCCACAGTTCA			
CTNNB1	TGGATTGATTCGAAATCTTGCC	GAACAAGCAACTGAACTAGTCG			
5'UTR	IOGAIIGAIICOAAAICIIOCC	UAACAAOCAACI UAACIAOICO			
CTNNB1	TGGGTAGGGTAAATCAGTAAGA	AGCATCGTATCACAGCAGGT			
3'UTR	GGT				
CDH1	GCCTCCTGAAAAGAGAGTGGA AG	TGGCAGTGTCTCTCCAAATCCG			
FN1	ACAACACCGAGGTGACTGAGA C	GGACACAACGATGCTTCCTGAG			
METTL3	CTATCTCCTGGCACTCGCAAGA	GCTTGAACCGTGCAACCACATC			
GABPA	GTGCACAGAAGAAAGCATTGTA	ACACTGTAGTCTTGGTTCTAGC			
E2F1	ATAGTGTCACCACCACCATCAT	GAAAGGCTGATGAACTCCTCAG			
CTCF	TTAAAACGTCACATTCGCTCTC	TCATAAGGCTTTTTCCCCTGAAT			
MYC	CGACGAGACCTTCATCAAAAAC	CTTCTCTGAGACGAGCTTGG			
YY1	CCCACGGTCCCAGAGTCCAC	AAAGCGTTTCCCACAGCCTTCG			
CTNNB1	GCTATGGTGACAGACGGCAGTT	TCATGTTTCAGGGCCAGCGTATT			
promoter	G	С			
FLUC	GGCCTGACAGAAACAACCAG	AAGTCCACCACCTTAGCCTC			
RLUC	CGCTATTGTCGAGGGAGCTA	GCTCCACGAAGCTCTTGATG			
AmpR	CCGGCGTCAATACGGGATAA	TCCTTGAGAGTTTTCGCCCC			
GAPDH	GTCTCCTCTGACTTCAACAGCG	ACCACCCTGTTGCTGTAGCCAA			
18S	CGGACAGGATTGACAGATTGAT AGC	TGCCAGAGTCTCGTTCGTTATCG			
HPRT	TGACACTGGCAAAACAATGCA-	GGTCCTTTTCACCAGCAAGCT			
EIF4E1	AGGATGGTATTGAGCCTATGTG	GTCTCTGCTGTTTGTTCAATGT			
EIF4E3	CCAAGGACAGCACGTCCACAG	CATCTGCTGCGGCACAGTCTG			
FOXP3	AAGAACGCCATCCGCCACAAC	TCCAGCTCATCCACGGTCCAC			
ZNF191	AGCGATTCAGGCAGTTTGGA	CTTTTGTGTGCGTCTCTGGC			
ZBP-89	GAAACAACGTTCTCCCGCAAA	TTGCTCCAGTGGCTGTTTCA			
PWWP2A	ACCCTTCTCCTGTCCCGCATC	GGAGGTGGCTGAGGTATTGATTC G			
YTHDF1	TGGATGATGCTGCTGGTTGT	CAACGGTCCCTCATTCCACA			
YTHDF2	AGCCTCTTGGAGCAGTACAAA	GCATTATTGGGCCTTGCCTG			
MET	ATCAGGAGGTGTTTGGAAAGAT	CGACTGTATGTCAGCAGTATGA			
CD44	CACACCCTCCCTCATTCAC	AGGTCCTGCTTTCCTTCGTG			
AXIN2	CTCCGAGCTCACACTCAATTC	GACAGGTGATCGTCCAGTATC			
CCND1	TACCGCCTCACACGCTTCCTC	ACCTCCTCCTCCTCCTCCTC			

	Table	S3	Primers	for	PCR
--	-------	-----------	----------------	-----	-----

Table S3 Primers for PCR						
Name	Forward (5' – 3')	Reverse (5' – 3')	Remarks			
pcDNA3_5'U	GGGGTACCAGGATACA	CGGGATCCTGTCCACG	Cloning CTNNB1			
TRetnnb1	GCGGCTTC	CTGGATT	5'UTR to pcDNA3			
pGL3-	GGGGTACCTTGCGGCC	CCAAGCTTTTCTCGAG	Cloning CTNNB1			
PROMctnnb1	GCGGATCTCACTGAAC	GCCGCCACCGGCGCAG	promoter to pGL3-			
	ATCATC	С	basic			
pGL3_5UTRc	GGCTCGAGAGGATACA	CGAAGCTTTGTCCACG	Cloning CTNNB1			
tnnb1	GCGGCTTC	CTGGATTTTCAAAAC	5'UTR to pGL3-			
			basic			
5UTR mut3_	AATCCAGCGTGGCCA	GCCAAGCTTTGGCCAC	β-catenin mutant 1			
pGL	AAGCTT GGC	GCTGGATT	in pGL3-basic			
5UTR mut3_	AATCCAGCGTGGCCA	TGGGGATCCTGGCCAC	β-catenin mutant 1			
pcD	GGATCCCCA	GCTGGATT	in pcDNA3			
5UTR mut2	AGGACGGTCGGCCTCC	GCCGCGGGGAGGCCGA	β-catenin mutant 2			
	CGCGGC	CCGTCCT				
5UTR mut3	CGCAGGTCGAGGCCG	GAGTCCGACCGGCCTC	β-catenin mutant 3			
	GTCGGACTC	GACCTGCG				
5UTR mut2/3	CAGGTCGAGGCCGGT	CCGCGGGGAGGCCGAC	β-catenin mutant			
	CGGCCTCCCGCGG	CGGCCTCGACCTG	2/3			
5UTR ctrl	CGGCGGGGAGGGGCCT	CAGGGGAACAGGCCC	β-catenin mutant			
	GTTCCCCTG	CTCCCGCCG	control			
5UTR insert-3	CAGGTCGAGGACGGA	CCGCGGGGAGTCCGTCC	β-catenin mutant			
	CGGACTCCCGCGG	GTCCTCGACCTG	Insert-3			
5UTR insert-5	AGCGGAGAGCGAGGG	GGGGACTGAAGCTGGT	β-catenin mutan			
	GACGCGGACACGGAC	CCTCAGTCCTTCGTCC	Insert-5			
	GAAGGACTGAGGACC	GTGTCCGCGTCCCCTC				
		COTOTOCO				