## **Electronic Supplementary Information**

Luminescent biomimetic citrate-coated europium-doped carbonated apatite particles for use in bioimaging: physico-chemistry and cytocompatibility

Jaime Gómez-Morales<sup>1,\*</sup>, Cristóbal Verdugo-Escamilla<sup>1</sup>, Raquel Fernández-Penas<sup>1</sup>, Carmen María Parra-Milla<sup>1</sup>, Cristophe Drouet<sup>2</sup>, Françoise Bosc<sup>2</sup>, Francesca Oltolina<sup>3</sup>, Maria Prat<sup>3</sup>, Jorge Fernando Fernández-Sánchez<sup>4</sup>

<sup>1</sup>Laboratorio de Estudios Cristalográficos. IACT (CSIC-UGR). Avda. Las Palmeras, nº 4. E-18100 Armilla (Granada), Spain. E-mail: jaime@lec.csic.es

<sup>2</sup> CIRIMAT, Université de Toulouse, UMR CNRS/INPT/UPS 5085, Ensiacet, 4 allée Emile Monso,
31030 Toulouse cedex 4, France.

<sup>3</sup>Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy.

<sup>4</sup>Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.

\*Corresponding author: jaime@lec.csic.es



Figure SI1. XRD patterns of samples precipitated at different maturation times in the presence of a) x=0.02 M Eu<sup>3+</sup> and b) x = 0.03 M Eu<sup>3+</sup>. # (OCP, 100, PDF 44-0778), \*(apatite phase, PDF 01-1008),<sup>+</sup>(EuPO4.H<sub>2</sub>O phase, PDF 20 1044)



Figure SI2. Excitation (dashed line) and emission (solid line) spectra of Eu<sup>3+</sup>-cit-cAp prepared with different Eu<sup>3+</sup> doping concentration at precipitation times of 5 min, 1h, 2h, 4h, 24h, 48h and 96h.



Figure SI3. Effect of the precipitation time over the R.L.I. of the different Eu<sup>3+</sup> doping concentrations.  $\lambda_{exc/em}$ = 394/614 nm, slit-widths<sub>exc/em</sub>= 5/5 nm, t<sub>d</sub>= 0.120 µs, t<sub>g</sub>= 5 ms and detector

voltage= 500 v.



Figure SI4. Effect of the Eu<sup>3+</sup> doping concentration over the R.L.I. of the different materials precipitated at different times.  $\lambda_{exc/em}$ = 394/614 nm, slit-widths<sub>exc/em</sub>= 5/5 nm, t<sub>d</sub>=0.120 µs, t<sub>g</sub>= 5 ms and detector voltage= 500 v.



Figure SI5. Effect of the pH on the luminescence of the different Eu<sup>3+</sup> doping concentrations dispersed in aqueous solution at 25°C.  $\lambda_{exc/em}$ = 232/616 nm, slit-widths<sub>exc/em</sub>= 10/10 nm, t<sub>d</sub>= 0.120µs, t<sub>g</sub>= 5 ms and detector voltage= 600 v.



Figure SI6. Effect of the ionic strength on the luminescence of the different Eu<sup>3+</sup> doping concentrations dispersed in aqueous solution at pH=7.0 and 25°C.  $\lambda_{exc/em}$ = 232/616 nm, slit-widths<sub>exc/em</sub>= 10/10 nm, t<sub>d</sub>= 0.120 µs, t<sub>g</sub>= 5 ms and detector voltage= 600 v.



Figure SI7. Effect of the temperature on the luminescence of the different Eu<sup>3+</sup> doping concentrations dispersed in aqueous solution at pH=7.0.  $\lambda_{exc/em}$ = 232/616 nm, slit-widths<sub>exc/em</sub>= 10/10 nm, t<sub>d</sub>= 0.120µs, t<sub>g</sub>= 5 ms and detector voltage= 600 v.