YMTHE, Volume 30

Supplemental Information

Mitochondrial fragmentation is crucial

for *c-Myc*-driven hepatoblastoma-like liver tumors

Dalin Wang, Jiming Tian, Zeyu Yan, Qing Yuan, Dan Wu, Xiaoli Liu, Shirong Yang, Shanshan Guo, Jianxun Wang, Yongxiu Yang, Jinliang Xing, Jiaze An, and Qichao Huang

Supplemental Figures

2 Figure S1.

3 (A) The number and (B) total area of mitochondria were analyzed from five random fields

- 4 $(120\mu m^2)$ in HB tissues with high (n=5) or low (n=5) expression levels of c-Myc.
- 5 (C) Western blotting images of c-Myc, Mfn1 and Drp1 in Huh6 and HepG2 cells with

6	treatment as indicated. shctrl, control shRNA; shc-Myc-1 and shc-Myc-2, shRNA against c-

7 Myc.

8	(D and E) Representative confocal microscopy images and morphology distribution analysis
9	of mitochondria in HepG2 cells with or without c-Myc knockdown. Scale bars: 10 μ m.
10	(F) Representative immunohistochemical (IHC) staining images of Mfn2, Opa1 and Fis1 in
11	HB tissues with high (n=25) and low (n=25) c-Myc expression. Scale bar: 50μ m.
12	(G and H) Representative confocal microscopy images and morphology distribution analyses
13	of mitochondria in c-Myc knockdown HB cells with or without c-Myc overexpression. Scale
14	bars: 10 µm. EV, empty vector; c-Myc, expression vector encoding c-Myc.
15	(I) Western blotting images of c-Myc, Drp1 and Mfn1 in HB cells with treatment as indicated.
16	(J and K) Cell proliferation was analyzed by CCK-8 in HB cells with treatment as indicated.
17	Data were expressed as mean \pm SD. ns, no significant; *p< 0.05; **p< 0.01.

20 (A) Schematic diagram of LoxP site in the exons of MFN1 and Cre recombinant protease with

- 21 ALB promoter. Genomic DNA extracted from the tail of the mice was used for genotype
- 22 identification by performing PCR and agarose gel electrophoresis. WT, wild type.
- 23 (B) Representative immunohistochemical (IHC) staining images of c-Myc and Mfn1 in *c-Myc*

24	induced models with $(n=12)$ or without $(n=12)$ liver specifically knockout of <i>MFN1</i> . While
25	representative IHC staining images of c-Myc and Drp1 in mouse models induced by <i>c-Myc</i>
26	and PT3 control plasmids (n=12) or <i>c-Myc</i> plasmid and <i>DRP1</i> expression construct (n=12).
27	Scale bar: 50µm. MFNI ^{flox/flox} , MFNI ^{flox/flox} mice hydrodynamically injected with c-Myc
28	plasmid and SB transposon; MFN1 LKO, MFN1 liver specific knockout mice
29	hydrodynamically injected with <i>c-Myc</i> plasmid and SB transposon; PT3, wild type mice
30	hydrodynamically injected with <i>c-Myc</i> plasmid and PT3-EF1a empty vector, as well as SB
31	transposon; DRP1, wild type mice hydrodynamically injected with c-Myc plasmid and PT3-
32	EF1α-DRP1 construct, as well as SB transposon.
33	(C) IHC scores of c-Myc, Mfn1 and Drp1in mouse models induced as indicated.
34	(D) Percentage of tumor/liver area of the mice with treatment as indicated.
35	(E) Relative mtDNA content in mouse normal liver and the tumors induced by c-Myc from
36	different groups as indicated.
37	(F and G) Glyco, Mito and total ATP production rate were measured between HB cells
38	treated as indicated. Blue asterisks are used for Mito ATP, red asterisks are used for Glyco
39	ATP, and black asterisks are used for total ATP (glycol ATP + Mito ATP) production rate
40	comparisons between shctrl and shc-Myc groups. The percentage inside the bar represents the
41	percentage of total ATP production rate generated from Glyco or Mito ATP production rate for
42	each condition.
43	Data were expressed as mean \pm SD. ns, no significant; *p< 0.05; **p< 0.01.

46 Figure S3.

(A) Representative IHC staining images and IHC scores of c-Myc and Mfn1 in mouse models 47 induced by *c-Myc* and PT3 control plasmids (n=12) or *c-Myc* plasmids and *MFN1* expression 48 construct (n=12). Scale bar: 50µm. PT3, wild type mice hydrodynamically injected with *c*-49 50 Myc plasmid and PT3-EF1a empty vector, as well as SB transposon; MFN1, wild type mice hydrodynamically injected with *c-Myc* plasmid and PT3-EF1α-MFN1 construct, as well as 51 52 SB transposon. 53 (B) Percentage of tumor/liver area of the mice with treatment as indicated. 54 (C) Relative mtDNA content in mouse normal liver and the tumors induced by c-Myc from 55 different groups as indicated. 56 Data were expressed as mean \pm SD. ns, no significant; **p< 0.01.

58 Figure S4.

- 59 (A and B) Western blotting images of Drp1 and Mfn1 in Huh6 and HepG2 treated as
- 60 indicated. shctrl, control shRNA; shDRP1-1 and shDRP1-2, shRNA against DRP1; EV, empty
- 61 vector; MFN1, expression vector encoding MFN1.
- 62 (C-D) Representative confocal microscopy images morphology distribution analyses of
- 63 mitochondria in HepG2 cells with treatment as indicated. Scale bars: 10μm.
- 64 (E and F) High-magnification images and size of spheres formed on day 7 by HepG2 cells
- 65 with treatment as indicated. Scale bar: 50μm.
- 66 (G and H) EdU assay was performed to evaluate proliferation ability of HepG2 cells with
- 67 treatment as indicated. Scale bar: 50μ
- 68 Data were expressed as mean \pm SD. **p< 0.01.

70 **Figure S5.**

- 71 (A-B) Relative glucose uptake and relative lactate production were measured in Huh6 cells
- 72 treated as indicated. shctrl, control shRNA; shDRP1-1, shRNA against DRP1; MFN1,
- 73 expression vector encoding *MFN1*.
- 74 (C) Western blotting images of $I_{\kappa}B-\alpha$ in Huh6 treated as indicated.
- 75 Data were expressed as mean \pm SD. *p< 0.05; **p< 0.01.

77 Figure S6.

- 78 (A and B) Quantitative real-time reverse transcription PCR (qRT-PCR) analyses for
- respression levels of miR-373-3p in Huh6 treated as indicated.
- 80 (C and D) Western blotting images of Mfn1 in Huh6 cells treated as indicated. shc-Myc-1,
- 81 shRNA against c-Myc, TSB-NC, negative control of miRNA target site blocker; TSB-MFN1,
- a target site blocker which selectively prevents miR-373-3p binding to the 3'UTR of MFN1.
- 83 (E) Representative immunohistochemical (IHC) staining images of PCNA and MFN1 in
- subcutaneous xenograft tumors. Scale bar: 50µm.
- 85 (F) IHC scores of MFN1 in subcutaneous xenograft tumors.
- B6 Data were expressed as mean \pm SD. *p< 0.05; **p< 0.01.
- 87

88

Supplemental Tables

Variable	All patients, n=50	
Age		
<5 years	44	
>=5 years	6	
Gender		
Female	30	
Male	20	
Tumor size		
<5.0 cm	21	
>=5 cm	29	
Differentiation grade		
well	18	
Moderately	18	
Poor	14	
pretext stage		
I+ II	23	
III+ IV	27	
Survival		
Dead	13	
Alive	37	

90 Table S1. Distribution of HB patients' characteristics

Table S2. Sequences of primers, siRNA, miRNA mimic and inhibitor, TSB, and mRNA

96	sequence for shRNA
90	sequence for sinking

Primer na	me	Sequences		
1. Primers	for real-time PCR:			
с-Мус	forward primer:	CATACATCCTGTCCGTCCAAG		
	reverse primer:	GAGTTCCGTAGCTGTTCAAGT		
DRP1	forward primer:	GGAGACTCATCTTTGGTGAAGAG		
	reverse primer:	AAGGAGCCAGTCAAATTATTGC		
MFN1	forward primer:	TGGCTAAGAAGGCGATTACTGC		
	reverse primer:	TCTCCGAGATAGCACCTCACC		
GAPDH	forward primer:	GGAGCGAGATCCCTCCAAAAT		
	reverse primer:	GGCTGTTGTCATACTTCTCATGG		
miR-373-3	p RT primer:	CTCAACTGGTGTCGTGGAGTCGGCA		
	forward primer:	TCGGCAGGCTTCACGAAGCTAA		
	reverse primer:	GGTGTCGTGGAGTCGGCAATTC		
miR-200a-	3p RT primer:	CTCAACTGGTGTCGTGGAGTCGGCA		
	forward primer:	TCGGCAGGATTGTGACAGACCA		
	reverse primer:	GGTGTCGTGGAGTCGGCAATTC		
miR-4319	RT primer:	CTCAACTGGTGTCGTGGAGTCGGCA		
	forward primer:	TCGGCAGGAGGGACTCGTT		
	reverse primer:	GGTGTCGTGGAGTCGGCAATTC		
miR-302c-	3p RT primer:	CTCAACTGGTGTCGTGGAGTCGGCA		
	forward primer:	TCGGCAGGATTCACGAAGGTAC		
	reverse primer:	GGTGTCGTGGAGTCGGCAATTC		
miR-3129-	5p RT primer:	CTCAACTGGTGTCGTGGAGTCGGCA		
	forward primer:	TCGGCAGGCGTCATCACATCTC		
	reverse primer:	GGTGTCGTGGAGTCGGCAATTC		

2. Primers for gene cloning

DRP1	forward primer:	CCGGAATTCTAGCCAGTCTCCACAT
	reverse primer:	CGCGGATCCGGCCCCGTGTTTTCAG
MFN1	forward primer:	ACGAATTCCTTGCCACCATGGCAGA
	reverse primer:	ACCTCGAGTGTTAGGATTCTTCATT

3. Primers for DRP1 promoter construct

(-1894/+103)DRP1	forward primer:	TA <u>GGTACC</u> ACTCCTGACCTCAAGTG
(-961/+103)DRP1	forward primer:	TA <u>GGTACC</u> TCCTGCTTCTGCTTCCTA
(-514/+103)DRP1	forward primer:	TA <u>GGTACC</u> CAGGAGAATGGCGTGA
(-244/+103)DRP1	forward primer:	TA <u>GGTACC</u> TAGCCTTTGACTAGAGC
(-11/+103)DRP1	forward primer:	TA <u>GGTACC</u> AGGAAGGAGGCGAACT
	reverse primer:	GA <u>AGATCT</u> GGAGCTTGTTTATGACA
		GGAA

4. Primers for DRP1 promoter site-directed mutagenesis

(-961/+103)	DRP1 mutation forward primer:	CCTCCCGGCAGGCCAAAAGCTGCG
		AGGGAGGTG
(-961/+103)	DRP1 mutation reverse primer:	CACCTCCCTCGCAGCTTTTGGCCTG
		CCGGGAGG
5. Primers f	or ChIP in the DRP1 promoter	
DRP1	forward primer:	CTCCGCTCCAGAACTACAAC
	reverse primer:	TACCAACAGTACCGGAATGC
6. mRNA se	quence for shRNA and siRNA seq	uences
shDrp1-1	mRNA sequence	GCTACTTTACTCCAACTTATT
shDrp1-2	mRNA sequence	CGAGATTGTGAGGTTATTGAA
shc-Myc-1	mRNA sequence	CTGAGACAGATCAGCAACAA
shc-Myc-2	mRNA sequence	GGAAACGACGAGAACAGTTGA
shctrl	mRNA sequence	UUCUCCGAACGUGUCACGU
siIκBα-1		5'-GCUAUUCUCCCUACCA AGCU-3'

siIkBa-2

5'-GCUGCCCUAUGAUGACUGU-3'

sıctrl		5'-UUCUCCGAACGUGUCACGUTT-3'		
7. Primers for g	enotyping			
MFN1 (mouse)	forward primer:	AGCAGTTGGTTGTGTGACCA		
	reverse primer:	TTGGTAATCTTTAGCGGTGCTC		
Cre (mouse)	forward primer:	TGGCAAACATACGCAAGGG		
	reverse primer:	CGGCAAACGGACAGAAGCA		
8. miRNA mimi	c and inhibitor			
miR-373-3p min	nic sense:	GAAGUGCUUCGAUUUUGGGGUGU		
	antisense:	ACCCCAAAAUCGAAGCACUUCUU		
control mimic	sense:	UUCUCCGAACGUGUCACGUTT		
	antisense:	ACGUGACACGUUCGGAGAATT		
miR-373-3p	inhibitor:	ACACCCCAAAAUCGAAGCACUUC		
control	inhibitor:	CAGUACUUUUGUGUAGUACAA		
9. Primers for r	ntDNA measurement			
ND1	forward primer:	CTAGCAGAAACAAACCGGGC		
	reverse primer:	CCGGCTGCGTATTCTACGTT		
16S rRNA	forward primer:	CCGCAAGGGAAAGATGAAAGAC		
	reverse primer:	TCGTTTGGTTTCGGGGGTTTC		
HK2	forward primer:	GCCAGCCTCTCCTGATTTTAGTGT		
	reverse primer:	GGGAACACAAAAGACCTCTTCTGG		
10. Sequence of	Target Site Blocker			
TSB-MFN1		TGAAATCTGGTTAAAAGCACTTT		
TSB-NC		TAACACGTCTATACGCCCA		

Antibody	Company (Cat. No.)	Working dilutions
MFN1	abcam (ab104585)	WB: 1/1000 IHC:1/150
MFN2	abcam (ab101055)	IHC:1/100
DRP1	abcam (ab56788)	WB: 1/1000 IHC: 1/150
FIS1	abcam (ab156865)	IHC: 1/10000
OPA1	abcam (ab90857)	IHC: 1/400
c-Myc	Proteintech (67447-1-lg)	WB: 1/500 IHC: 1/300
c-Myc	Proteintech (10828-1-AP)	Chip:1/50
AKT	Cell Signaling Technology (9272)	WB: 1/1000
p-AKT	Cell Signaling Technology (4051)	WB: 1/600
β-actin	Beijing TDY BIOTEC CO., Ltd.	WB: 1/3000
NF-kB	abcam(ab7970)	WB: 1/1000
ΙΚΒ α	abcam(ab76429)	WB: 1/1000
LMNB1	Beijing TDY BIOTEC CO., Ltd.	WB: 1/2000
p-IKK	Santa Cruz Biotechnology (C-23470-R)	WB:1/1000
p70S6K	Cell Signaling Technology (9202)	WB: 1/1000
p-p70S6K(Thr389)	Cell Signaling Technology (9234)	WB: 1/1000
PCNA	abcam (ab18197)	IHC:1/15000

98 Table S3. Primary antibodies used for Western bloting and immunohistochemistry

Accession No.	Platform	HB Sample No.	Patient Ethnicity	PMID	Source URL
GSE133039	Illumina HiSeq 2500 (Homo sapiens)	66	-	32240714	https://www.ncbi.nlm. nih.gov/geo/query/acc. cgi?acc=GSE133039
GSE75271	[HG- U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array	50	Hispanic Caucasian Asian African American	27775819	https://www.ncbi.nlm. nih.gov/geo/query/acc. cgi?acc=GSE75271

Table S4. Public datasets used for bioinformatics analyses