AMIKACIN LIPOSOME INHALATION SUSPENSION FOR CHRONIC PSEUDOMONAS AERUGINOSA INFECTION IN CYSTIC FIBROSIS

Diana Bilton, et al.

Supplementary Appendix

Table of Contents

CLEAR-108 study group
Selection of study population
Inclusion criteria
Exclusion criteria
Supplementary Table 1. Reasons for study drug discontinuation (mITT Population)
Supplementary Table 2. Change from baseline in CFQ-R scales (mITT population) 40
Supplementary Table 3. Relative change and adjusted change from baseline in CFQ-R Treatment
Burden scale (mITT population)
Supplementary Figure 1. Patient disposition
Supplementary Figure 2. Relative change from baseline in FEV ₁ over time (mITT population).47
Supplementary Figure 3. Forest plot of treatment differences (ALIS–TIS, \pm 95% CI) for the
primary and sensitivity analyses of mean relative change from baseline to day 168 in FEV_1 (L)
(PP and mITT populations). Vertical line represents the lower boundary of the pre-specified -5%
noninferiority margin
Supplementary Figure 4. Change from baseline in CFQ-R Respiratory Symptoms domain (mITT
population). Horizontal line represents the minimal clinically important difference \geq 4) associated
with the CFQ-R Respiratory Symptom domain

CLEAR-108 study group

Lead Investigator	Institution	
Sabine Renner, MD	University Children's Hospital, Vienna, Austria	
Christiane Knoop, PhD	Erasmus University Hospital, Brussels, Belgium	
Anne Malfroot, PhD	University Hospital Brussel, Brussels, Belgium	
Lieven Dupont, PhD	University Hospital Gasthuisberg, Leuven, Belgium	
Kristine Desager, PhD	University Hospital Antwerp, Antwerp, Belgium	
Frans De Baets, PhD	University Hospital Gent, Gent, Belgium	
Miroslava Bosheva, PhD	Higher Medical Institute, Plovdiv, Bulgaria	
Vania Nedkova, MD, PhD	University Hospital, Pleven, Bulgaria	
Ivan Galabov, MD, PhD	MHAT Sveta Marina, Varna, Bulgaria	
Ivanka Galeva, MD, PhD	UMHAT Alexandrovska, Sofia, Bulgaria	
Andreas Freitag, MD	McMaster University, West Hamilton, ON, Canada	
Nancy Morrison, MD	Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada	
Pearce Wilcox, MD	St. Paul's Hospital, Vancouver, BC, Canada	
Tanja Pressler, MD	National University Hospital, Copenhagen, Denmark	
Yves Martinet, MD	Hôpital de Brabois, Nancy, France	
Raphael Chiron, MD	Hôpital Arnaud de Villeneuve, Montpellier, France	
Isabelle Fajac, MD	Hôpital Cochin, Paris, France	
Stephan Dominique, MD	Hôpital Charles Nicolle, Rouen, France	
Philippe Reix, MD	Hospices Civils de Lyon, Centre de Référence Mucoviscidose. Lyon, France	
Anne Prevotat, MD	Hôpital Albert Calmette, Lille, France	
Isabelle Sermet, MD	Hôpital Necker-Enfants Malades, Paris, France	
Isabelle Durieu, MD	Hospices Civils de Lyon, Hospitalier Lyon-Sud, Lyon, France	
Rainald Fischer, MD; Rudolf Huber, PhD	University of Munich, Munich, Germany	
Doris Staab, MD	Children's Hospital Charité Campus, Humboldt University, Berlin, Germany	
Uwe Mellies, MD	Cystic Fibrosis Center Essen, University of Essen, Essen, Germany	
Wolfgang Sextro, MD	Paediatricians Kinderärztliche Ambulanz, Hamburg, Germany	
Tobias Welte, MD	Hannover Medical School, Hannover, Germany	
Heinrike Wilkens, MD	University Hospital of Saarland, Homburg, Germany	

Lead Investigator	Institution
Urte Sommerwerk, MD	University Hospital, University Duisburg-Essen, Essen, Germany
Burkhard Bewig, MD	University Hospital Schleswig-Holstein, Kiel, Germany
Ilias Inglezos, MD	Sismanoglio General Hospital of Attica, Maroussi, Greece
Stavros-Eleftherios Doudounakis, MD	Agia Sofia Children's Hospital, Athens, Greece
Olga Bede, MD	Pharmaceutical and Medical University of Szeged, Szeged, Hungary
Ferenc Gönczi, MD	Kenezy Hospital, Debrecen, Hungary
Rita Újhelyi, MD	Heim Pál Children Hospital, Budapest, Hungary
Edward McKone, MD	St. Vincent's University Hospital, Dublin, Ireland
Paul McNally, MD	Our Lady's Children's Hospital Crumlin, Dublin, Ireland
Vincenzina Lucidi, MD	Bambino Gesu Childrens Hospital, Rome, Italy
Marco Cipolli, MD	Azienda Ospedaliera Universitaria, Verona, Italy
Mario La Rosa, MD	Policlinico Vittorio Emanuele Hospital, Catania, Italy
Laura Minicucci, MD	Institute Giannina Gaslini, Genoa, Italy
Rita Padoan, MD	Children's Hospital, Brescia, Italy
Giovanna Pisi, MD	University Hospital, Parma, Italy
Rolando Gagliardini, MD	Salesi Children's Hospital, Ancona, Italy
Carla Colombo, MD	Ospedale Maggiore Policlinico & University of Milan, Milan, Italy
Inez Bronsveld, MD	University Medical Center Utrecht, Utrecht, The Netherlands
Ewa Sapiejka, MD	Polanki Children's Hospital, Gdansk, Poland
Henryk Mazurek, MD	Institute of Tuberculosis and Lung Disorders, Rabka Zdroj, Poland
Dorota Sands, MD	Institute of Mother and Child, Warsaw, Poland
Grażyna Górnicka, MD	Gębala Children's Clinical Hospital, Lublin, Poland
Iwona Stelmach, PhD	Mikołaj Kopernik Hospital, Łódź, Poland
Halina Batura-Gabryel, PhD	Poznań University of Medical Sciences, Poznań, Poland
Marta Rachel, MD	Provincial Hospital No 2, Rzeszów, Poland
Predrag Minic, PhD	University of Belgrade School of Medicine, Belgrade, Serbia
Jaroslava Orosova, MD	University Hospital Bratislava, Bratislava, Slovak Republic
Branko Takac, MD	Children Faculty Hospital, Banská Bystrica, Slovak Republic
Anna Feketova, MD	Children Faculty Hospital, Košice, Slovak Republic

Lead Investigator	Institution
Carmen Martinez, MD	La Paz University Hospital, Madrid, Spain
Gloria Garcia Hernandez, MD	University Hospital 12 de Octubre, Madrid, Spain
Jose Ramon Villa-Asensi, MD	Niño Jesús University Hospital for Children, Madrid, Spain
Silvia Gartner, MD	Vall d'Hebrón Hospital, Barcelona, Spain
Amparo Sole, MD	Hospital La Fe, Valencia, Spain
Anders Lindblad, MD	Queen Silvia's Children Hospital, Gothenburg, Sweden
Martin Ledson, MD	Liverpool Heart and Chest Hospital, Liverpool, UK
Diana Bilton, MD	Royal Brompton Hospital, London, UK
Joanna Whitehouse, MD	Birmingham Heartlands Hospital, Birmingham, UK
Alan Smyth, MD	Nottingham University Hospitals NHS Trust, Nottingham, UK
Ian Ketchell, MD	Llandough Hospital Penarth, UK
Timothy Lee, MD	Leeds Teaching Hospitals NHS Trust, Leeds, UK
Gordon MacGregor, MD	West of Scotland Cystic Fibrosis Centre, Gartnavel General Hospital, Glasgow, UK

Selection of study population

Patients must have met all the inclusion criteria and none of the exclusion criteria to be considered eligible for randomisation into the study.

Inclusion criteria

The following inclusion criteria were applicable:

- 1. Written informed consent or assent obtained from the patient, parent, or legal guardian prior to the performance of any study-related procedures
- 2. Male or female patients ≥6 years of age (or older, if restricted by the local IRB/IEC) at screening
- 3. Diagnosis of CF confirmed by a positive sweat test ≥60 mEq/L or ≥60 mmol/L or by deoxyribonucleic acid analysis revealing both mutated alleles consistent with CF disease
- 4. History of chronic infection with *P. aeruginosa* confirmed by 3 documented positive cultures for *P. aeruginosa* within the 2 years prior to screening, with at least one obtained within 6 months prior to screening. The cultures could have been obtained from the following respiratory secretions: sputum, deep throat swabs, or bronchoalveolar lavage fluid specimens.
- 5. Sputum culture positive for *P. aeruginosa* at screening
- 6. FEV₁ \geq 25% of predicted value at screening using spirometer provided by sponsor
- 7. SaO2 \geq 90% while breathing room air at screening
- 8. Ability to comply with study drug use, study visits, and study procedures as judged by the Investigator
- 9. Ability to expectorate ≥ 0.4 mL of sputum
- 10. Willingness to have specimens stored (no genetic testing)
- 11. Women of childbearing potential must have had a negative result on their serum pregnancy test at screening and were willing to use reliable methods of contraception (e.g., abstinence, hormonal or barrier methods, partner sterilization, or intrauterine device) throughout the study duration. Women not of childbearing potential were defined as prepubescent, post-menopausal (i.e., amenorrhea for at least 1 year), or surgically or naturally sterile.

Exclusion criteria

The following exclusion criteria were applicable:

- 1. FEV₁ <25% of predicted at screening using spirometer provided by the sponsor
- 2. History of hypersensitivity to aminoglycosides including tobramycin solution for inhalation

- 3. Prior exposure to ALIS (including clinical study)
- 4. History of major complications of lung disease (including atelectasis, pneumothorax, major pleural effusion) within 8 weeks prior to screening
- 5. Haemoptysis of ≥ 60 mL in a 24-hour period within 4 weeks prior to screening
- 6. History of acute pulmonary exacerbation requiring antibiotic treatment within 4 weeks prior to screening
- 7. History of upper respiratory tract infection within 2 weeks prior to screening
- 8. Use of antipseudomonal antibiotics (IV antibiotics, inhalation antibiotics, or oral) within 4 weeks prior to Day 1
- 9. Radiologic finding of new pulmonary infiltrate(s) within 3 months prior to screening, or presence of other abnormalities suggesting clinically significant active pulmonary disease other than CF
- 10. Initiation of chronic therapy (e.g., TOBI, Colomycin[®], high-dose ibuprofen, bronchodilators, inhaled anti-inflammatory agents including steroids, low-dose maintenance steroids, rhDNase, hypertonic saline, macrolides) within 4 weeks prior to Day 1
- 11. History of positive culture for Burkholderia cepacia within 2 years prior to screening
- 12. History of pulmonary tuberculosis or non-tuberculous mycobacterial lung disease treated within 2 years prior to screening or requiring treatment at the time of screening
- 13. History of allergic broncho-pulmonary aspergillosis requiring systemic steroid treatment or any other condition requiring systemic steroids at a dose ≥10 mg/day of prednisone within 3 months prior to screening
- 14. Presence or history of any clinically significant cardiac disease as determined by Investigator and/or, if QTc data were available, QTc prolongation >450 msec (0.450 seconds) for males or QTc >470 msec (0.470 seconds) for females or QTc prolongation >440 msec (0.440 seconds) for all patients 6-12 years of age
- 15. Acquired and primary immunodeficiency syndromes
- 16. History of hepatitis C or chronic active hepatitis B infection
- 17. Active pulmonary malignancy (primary or metastatic) or any malignancy requiring chemotherapy or radiation therapy within 1 year prior to screening or anticipated during the study period
- 18. History of biliary cirrhosis with portal hypertension
- 19. History of lung transplantation
- 20. Elevated aspartate aminotransferase (AST), alanine aminotransferase (ALT), or gamma glutamyltransferase (GGT) \geq 3 × the upper limit of normal (ULN) at screening

- 21. Absolute neutrophils count ≤ 1000 at screening
- 22. Serum creatinine $>2 \times$ ULN at screening
- 23. Daily, continuous oxygen supplementation
- 24. Supplemental oxygen requirement of greater than 2 L/min at night
- 25. Administration of any investigational products within 8 weeks prior to Day 1
- 26. Psychotic, addictive, or other disorder limiting the ability to provide informed consent or to comply with study requirements
- 27. History of alcohol, medication, or illicit drug abuse within the 1 year prior to screening
- 28. Smoking tobacco or any substance within 6 months prior to screening or anticipated inability to refrain from smoking throughout the study
- 29. Positive pregnancy test or lactation at screening. All women of childbearing potential were tested for pregnancy. Women not of childbearing potential were defined as prepubescent, post-menopausal (i.e., amenorrhea for at least 1 year), or surgically or naturally sterile.
- 30. Any condition that, in the opinion of the Investigator, interfered with the ability to safely complete the study or adhere to study requirements

	ALIS	TIS	All
Parameter	N=148	N=146	N=294
Randomised and dosed	148 (100.0)	146 (100.0)	294 (100.0)
Randomised but not dosed	0	0	0
Did the participant complete dosing at treatment cycles per protocol?			
Yes	129 (87.2)	137 (93.8)	266 (90.5)
No	19 (12.8)	9 (6.2)	28 (9.5)
Primary reason for study drug discontinuation			
Death	0	0	0
Protocol-specified safety criteria or adverse event	11 (7.4)	3 (2.1)	14 (4.8)
Persistent severe cough, study drug related	1 (0.7)	1 (0.7)	2 (0.7)
Decline predose FEV ₁ % predicted $\geq 20\%$, not a pulmonary exacerbation	0	0	0
Predose FEV ₁ % predicted <25%, not a pulmonary exacerbation	0	0	0
Creatinine >2 ULN or ×2 from baseline	0	0	0
Pregnancy	0	0	0
Adverse event	10 (6.8)	2 (1.4)	12 (4.1)
Nonadherence to study procedures	0	0	0
Withdrawal of consent	1 (0.7)	2 (1.4)	3 (1.0)

Supplementary Table 1. Reasons for study drug discontinuation (mITT Population).

Lost to follow-up	0	0	0
Premature termination of study	0	0	0
Other	7 (4.7)	4 (2.7)	11 (3.7)

ALIS, amikacin liposome inhalation suspension; FEV₁, forced expiratory volume in 1 second; mITT, modified intention-to-treat; TIS, tobramycin inhalation solution; ULN, upper limit of normal.

	Change from baseline LS mean (SE) from ANCOVA		Mean difference	P value	
Parameter ^a	ALIS (N=148)	LIS (N=148) TIS (N=146)			
Day 14					
Respiratory	4.43 (1.33)	4.35 (1.34)	0.08	.96	
Body image	2.07 (1.38)	-0.46 (1.39)	2.53	.13	
Digestive	2.54 (1.35)	0.12 (1.36)	2.42	.14	
Eating disturbances	0.71 (1.35)	0.28 (1.37)	0.43	.79	
Emotions/interrelations	2.15 (0.95)	2.62 (0.96)	-0.46	.69	
Energy/well-being	1.97 (1.58)	2.79 (1.62)	-0.82	.67	
Health perception	2.37 (1.56)	1.87 (1.60)	0.51	.79	
Physical	1.97 (1.36)	1.02 (1.37)	0.95	.56	
Role limitations	3.29 (1.19)	-2.00 (1.22)	5.29	<.01*	
Social limitations	0.53 (1.17)	1.47 (1.18)	-0.93	.51	
Treatment burden	3.88 (1.34)	1.00 (1.35)	2.88	.07	
Day 28					
Respiratory	5.23 (1.39)	5.85 (1.42)	-0.62	.72	
Body image	0.61 (1.61)	0.25 (1.64)	0.35	.86	
Digestive	3.89 (1.39)	0.96 (1.42)	2.93	.08	
Eating disturbances	-1.13 (1.40)	-0.32 (1.42)	-0.81	.63	
Emotions/interrelations	0.42 (1.12)	1.90 (1.14)	-1.47	.28	
Energy/well-being	-0.10 (1.64)	3.71 (1.68)	-3.81	.06	
Health perception	-0.09 (1.53)	0.96 (1.57)	-1.05	.58	
Physical	0.30 (1.48)	2.65 (1.50)	-2.36	.19	
Role limitations	0.87 (1.35)	-1.72 (1.39)	2.58	.12	
Social limitations	-0.95 (1.10)	1.74 (1.12)	-2.69	.05*	
Treatment burden	1.27 (1.41)	-0.37 (1.43)	1.64	.34	
Day 57					

Supplementary Table 2. Change from baseline in CFQ-R scales (mITT population).

Respiratory	0.90 (1.41)	3.03 (1.42)	-2.13	.22
Body image	0.47 (1.70)	-1.42 (1.72)	1.88	.37
Digestive	2.05 (1.59)	0.21 (1.59)	1.84	.34
Eating disturbances	-2.02 (1.60)	-1.44 (1.63)	-0.58	.76
Emotions/interrelations	0.60 (1.07)	-0.14 (1.09)	0.74	.57
Energy/well-being	-1.84 (1.74)	-0.36 (1.78)	-1.48	.49
Health perception	-1.64 (1.61)	-1.32 (1.65)	-0.32	.87
Physical	-2.43 (1.70)	-1.41 (1.72)	-1.02	.62
Role limitations	2.01 (1.46)	-2.02 (1.49)	4.03	.03*
Social limitations	-2.02 (1.13)	-0.37 (1.14)	-1.65	.23
Treatment burden	1.13 (1.35)	0.06 (1.36)	1.07	.51
Day 84				
Respiratory	4.25 (1.44)	3.22 (1.46)	1.03	.56
Body image	1.93 (1.71)	-2.97 (1.72)	4.89	.02*
Digestive	1.05 (1.44)	1.27 (1.45)	-0.22	.90
Eating disturbances	-0.34 (1.55)	-0.50 (1.56)	0.16	.93
Emotions/interrelations	-0.81 (1.47)	-0.65 (1.16)	-0.16	.91
Energy/well-being	-2.03 (1.77)	0.99 (1.79)	-3.01	.17
Health perception	1.44 (1.71)	-1.03 (1.72)	2.47	.24
Physical	-0.17 (1.68)	1.21 (1.70)	-1.38	.50
Role limitations	-0.31 (1.46)	-2.63 (1.47)	2.32	.20
Social limitations	-0.67 (1.22)	-1.28 (1.23)	0.61	.68
Treatment burden	1.69 (1.58)	-2.59 (1.58)	4.27	.03*
Day 113				
Respiratory	-0.27 (1.56)	1.49 (1.54)	-1.76	.35
Body image	-0.06 (1.95)	-3.15 (1.93)	3.09	.19
Digestive	2.78 (1.60)	0.42 (1.59)	2.36	.22
Eating disturbances	-1.61 (1.55)	2.14 (1.55)	-3.75	.04*
Emotions/interrelations	-1.52 (1.26)	-1.11 (1.26)	-0.42	.79
,		1		•

Energy/well-being	-3.24 (1.64)	-1.81 (1.64)	-1.44	.48
Health perception	-3.10 (1.77)	-2.26 (1.77)	-0.84	.70
Physical	-3.12 (1.82)	-2.27 (1.81)	-0.86	.70
Role limitations	-3.41 (1.81)	-4.83 (1.81)	1.42	.53
Social limitations	-1.43 (1.26)	0.74 (1.25)	-2.17	.16
Treatment burden	0.85 (1.51)	-0.04 (1.50)	0.89	.63
Day 140				
Respiratory	4.49 (1.36)	2.13 (1.37)	2.36	.15
Body image	-0.76 (2.03)	-1.19 (2.04)	0.44	.86
Digestive	3.20 (1.51)	1.94 (1.50)	1.26	.49
Eating disturbances	0.01 (1.40)	2.29 (1.42)	-2.28	.18
Emotions/interrelations	-1.34 (1.28)	-1.51 (1.28)	0.17	.91
Energy/well-being	-0.08 (1.70)	-0.89 (1.70)	0.82	.69
Health perception	0.43 (1.58)	-3.50 (1.58)	3.93	.04*
Physical	-0.09 (1.70)	0.68 (1.71)	-0.77	.71
Role limitations	-0.01 (1.61)	-2.70 (1.60)	2.68	.18
Social limitations	0.09 (1.23)	0.70 (1.24)	-0.61	.68
Treatment burden	0.74 (1.57)	-2.83 (1.57)	3.57	.06
Day 168				
Respiratory	2.68 (1.62)	2.74 (1.62)	-0.07	.97
Body image	-1.48 (2.05)	-2.64 (2.06)	1.15	.64
Digestive	0.24 (1.68)	-0.91 (1.68)	1.15	.57
Eating disturbances	-0.00 (1.47)	2.41 (1.48)	-2.41	.17
Emotions/interrelations	0.83 (1.14)	0.61 (1.15)	0.22	.88
Energy/well-being	-0.78 (1.82)	-1.93 (1.83)	1.15	.61
Health perception	-1.15 (1.79)	-3.20 (1.79)	2.06	.35
Physical	-2.04 (1.88)	-0.60 (1.89)	-1.45	.53
Role limitations	-4.24 (1.95)	-4.79 (1.95)	0.55	.82
Social limitations	-1.02 (1.32)	0.10 (1.33)	-1.12	.49

Treatment burden	0.09 (1.60)	-0.26 (1.61)	0.35	.86	
-					

^a The Weight domain was not calculated at the time of data analysis. Missing values excluded.

* Statistically significant at $P \leq .05$. The ANCOVA model includes effects for treatment and the randomization strata.

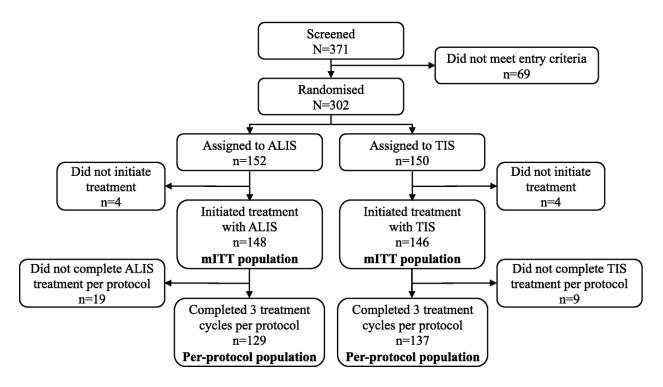
ALIS, amikacin liposome inhalation suspension; ANCOVA, analysis of covariance; LS, least squares; mITT, modified intention-to-treat; CFQ-R, Cystic Fibrosis Questionnaire-Revised; TIS, tobramycin inhalation solution.

Supplementary Table 3. Relative change and adjusted change from baseline in CFQ-R

	ALIS	TIS		
Treatment Burden scale,	590 mg QD	300 mg BID		
missing values excluded	$\mathbf{N}=148$	N=146		
Baseline ^a	n=148	n=141		
Mean (SD)	62.875 (19.2236)	61.545 (18.8055)		
Median	66.667	66.667		
Minimum, maximum	22.22, 100.00	0.00, 100.00		
Relative change from baseline, %			Mean difference ^b	<i>P</i> value ^b
LS mean from ANCOVA ^b				
Day 14 (n=142; n=135)	9.69	2.73	6.96	.06
Day 28 (n=144; n=137)	4.94	2.62	2.32	.57
Day 57 (n=139; n=134)	5.18	1.75	3.43	.33
Day 84 (n=137; n=133)	6.29	-3.57	9.85	.02*
Day 113 (n=132; n=133)	4.71	4.58	0.13	.98
Day 140 (n=129; n=133)	4.18	1.49	2.69	.66
Day 168 (n=129; n=128)	3.24	1.05	2.19	.61
Adjusted change from baseline			Mean difference ^c	<i>P</i> value ^c
LS mean from ANCOVA ^c				
Day 14 (n=142; n=136)	3.882	0.998	2.884	.07
Day 28 (n=144; n=138)	1.274	-0.366	1.640	.34
Day 57 (n=139; n=135)	1.132	0.059	1.072	.51
Day 84 (n=137; n=134)	1.686	-2.586	4.272	.03*
Day 113 (n=132; n=134)	0.854	-0.035	0.889	.63
Day 140 (n=129; n=134)	0.739	-2.826	3.566	.06
Day 168 (n=129; n=129)	0.094	-0.258	0.352	.86

Treatment Burden scale (mITT population).

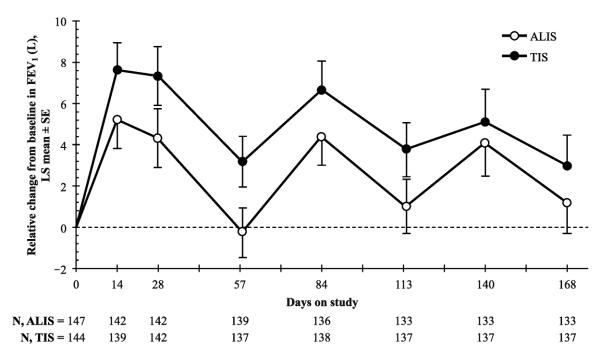
Missing values were excluded under the assumption of missing at random, for which missing baseline or postbaseline values were excluded, but all nonmissing data were included.

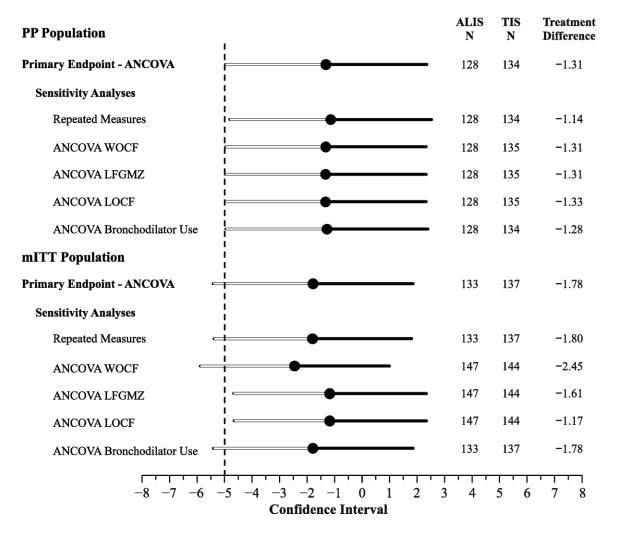

* Statistically significant at $P \leq .05$.

^a Baseline defined as the measurement prior to and closest to the administration of the first dose of study drug.

^b LS mean and mean difference from ANCOVA, and *P* value from treatment effect in ANCOVA model; the ANCOVA model included effects for treatment and the randomisation strata.

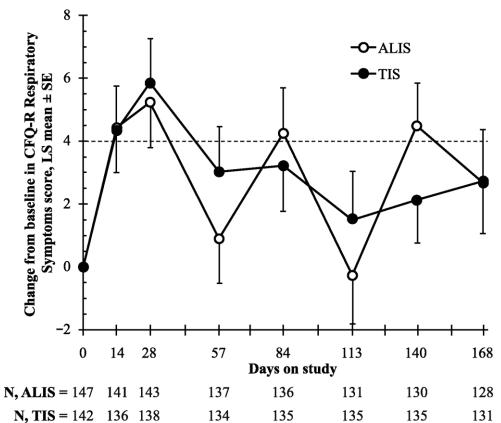
^c LS mean and mean difference from ANCOVA, and *P* value from treatment effect in ANCOVA model; the ANCOVA model included effects for treatment and the randomisation strata, and used the baseline value as a covariate.


ALIS, amikacin liposome inhalation suspension; ANCOVA, analysis of covariance; BID, twice daily; CFQ-R, Cystic Fibrosis Questionnaire-Revised; LS, least squares; mITT, modified intention-to-treat; QD, once daily TIS, tobramycin inhalation solution.


Supplementary Figure 1. Patient disposition.

The per-protocol population took $\geq 80\%$ of study drug doses without missing >3 consecutive doses in any cycle, per data from the study completion electronic case report form.

ALIS, amikacin liposome inhalation suspension; mITT, modified intention-to-treat; TIS, tobramycin inhalation solution.



Supplementary Figure 2. Relative change from baseline in FEV_1 over time (mITT population). ALIS, amikacin liposome inhalation suspension; FEV_1 , forced expiratory volume in 1 second; LS, least squares; TIS, tobramycin inhalation solution.

Supplementary Figure 3. Forest plot of treatment differences (ALIS–TIS, \pm 95% CI) for the primary and sensitivity analyses of mean relative change from baseline to day 168 in FEV₁ (L) (PP and mITT populations). Vertical line represents the lower boundary of the pre-specified -5% noninferiority margin For the primary ANCOVA, the repeated measures, and ANCOVA controlling for bronchodilator use, missing values were excluded under the assumption of missing at random, for which missing baseline or postbaseline values were excluded, but all non-missing data were included.

ALIS, amikacin liposome inhalation suspension; ANCOVA, analysis of covariance; FEV₁, forced expiratory volume in 1 second; LFGMZ, last favorable group mean or zero; LOCF, last observation carried forward; LS, least squares; mITT, modified intent-to-treat; PP, per-protocol; TIS, tobramycin inhalation solution; WOCF, worst observation carried forward.

Supplementary Figure 4. Change from baseline in CFQ-R Respiratory Symptoms domain (mITT population). Horizontal line represents the minimal clinically important difference \geq 4) associated with the CFQ-R Respiratory Symptom domain. ALIS, amikacin liposome inhalation suspension; CFQ-R, Cystic Fibrosis Questionnaire-Revised LS, least squares; TIS, tobramycin inhalation solution.