Random Anion Distribution in MS_xSe_{2-x} (M=Mo, W) Crystals and Nanosheets

Minh An T. Nguyen,^a Arnab Sen Gupta,^b Jacob Shevrin,^c Hirofumi Akamatsu,^b Pengtao Xu,^a Zhong Lin,^c Ke Wang,^d Jun Zhu,^c Venkatraman Gopalan,^b Mauricio Terrones^c and Thomas E. Mallouk^{*a,c}

^aDepartments of Chemistry, Biochemistry and Molecular Biology, and Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
^bDepartment of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
^cDepartment of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
* Corresponding author, email tem5@psu.edu.

SUPPORTING INFORMATION

Table of contents

1. Rietveld refinement of synchrotron X-ray powder diffraction data	S-1
2. Characterization of crystal morphology and composition	S-3
3. HAADF-EDX mapping of atomic distributions of W, S, and Se	S-10
4. Calculation of the clustering parameter J from HAADF-EDX data	S-12

1. Rietveld refinement of synchrotron X-ray powder diffraction data

Rietveld refinements were carried out as described in the text. The z-parameters for S and Se were allowed to float throughout the refinement. However, they were kept equal to each other to maintain P6₃/mmc symmetry. Preferred orientation along the c-axis was used as a parameter in the refinement. A preferred orientation of 1 is for an ideal case where there is no preferred orientation. Examples of refined XRD patterns are shown in Figures S1 and S2.

Figure S1.1. Rietveld refinement of WS_{0.2}Se_{1.8}.

Table S1.1. Rietveld refinement results for WS_xSe_{2-x} solid solutions.

Sample	Atom	Site	Х	у	Z	Preferred orientation
$WS_2 a/b = 3.15939 \pm 0.00003 a = 12.2510 \pm 0.00015$	W1 S1	2d 4f	2/3 1/3	1/3 2/3	0.25 0.122843	0.999853
$C = 12.3319 \pm 0.00013$ $R_p = 7.9$						
$WS_{1.8}Se_{0.2}$	W1	2d	2/3	1/3	0.25	0.900451
$a/b = 3.17018 \pm 0.00004$	S1/S	4f	1/3	2/3	0.122554	
$c = 12.46440 \pm 0.00027$	S2/Se	4f	1/3	1/3	0.122554	
$R_p = 7.1$						
WS _{1.6} Se _{0.4}	W1	2d	2/3	1/3	0.25	1.00417

$a/b = 3.18468 \pm 0.00007$	S1/S	4f	1/3	2/3	0.120308	
$c = 12.47804 \pm 0.0004$	S2/Se	4f	1/3	$\frac{2}{3}$	0.120308	
$R_{p} = 8.1$						
$WS_{1.4}Se_{0.6}$	W1	2d	2/3	1/3	0.25	1.05556
$a/b = 3.19733 \pm 0.00004$	S1/S	4f	1/3	2/3	0.118441	
$c = 12.54111 \pm 0.0002$	S2/Se	41	1/3	2/3	0.118441	
$R_{p} = 8.6$						
WS1 2Se0 8	W1	2d	2/3	1/3	0.25	1.08693
$a/b = 3.20997 \pm 0.00005$	S1/S	4f	1/3	2/3	0.119787	
$c = 12.60418 \pm 0.00026$	S2/Se	4f	1/3	2/3	0.119787	
$R_{p} = 9.9$						
WCC-	W/1	24	2/2	1 /2	0.25	1 7250
w 55e		20 4f	2/3 1/2	$\frac{1}{3}$	0.25	1.7239
$a/b = 3.22261 \pm 0.00002$ $a = 12.66725 \pm 0.0001$	51/5 52/50	41 4f	1/3 1/2	2/3	0.11674	
R = 11.9	52/50	41	1/3	2/3	0.11074	
Rp 11.9						
$WS_{0.8}Se_{1.2}$	W1	2d	2/3	1/3	0.25	
$a/b = 3.23526 \pm 0.00004$	S1/S	4f	1/3	2/3	0.119199	
$c = 12.73032 \pm 0.00015$	S2/Se	4f	1/3	2/3	0.119199	
$R_{p} = 10.0$						
$WS_{0.6}Se_{1.4}$	W1	2d	2/3	1/3	0.25	1.04354
$a/b = 3.24790 \pm 0.00004$	S1/S	4f	1/3	2/3	0.120658	
$c = 12.79339 \pm 0.00015$	S2/Se	4f	1/3	2/3	0.120658	
$R_{p} = 9.4$						
WS04Se16	W1	2d	2/3	1/3	0 25	1 33194
$a/b = 3.26055 \pm 0.00004$	S1/S	4f	1/3	$\frac{2}{3}$	0.120825	10017
$c = 12.85646 \pm 0.00024$	S2/Se	4f	1/3	2/3	0.120825	
$R_{p} = 8.0$						
WG G	XX71	2.1	2/2	1 /2	0.25	0.000771
$WS_{0.2}Se_{1.8}$	W I	2d	2/3	1/3	0.25	0.980661
$a/b = 3.2/319 \pm 0.00002$	S1/S	41 45	1/3	2/3	0.120299	
$c = 12.91953 \pm 0.00005$ P = 8.4	82/Se	41	1/3	2/3	0.120299	
$\kappa_p = 0.4$						
WSe ₂	W1	2d	2/3	1/3	0.25	0.995351
$a/b = 3.28584 \pm 0.00001$	S1/S	4f	1/3	2/3	0.121394	
$c = 12.98260 \pm 0.00008$	S2/Se	4f	1/3	2/3	0.121394	
$R_{p} = 8.0$						

Figure S1.2. Rietveld refinement of MoS_{0.2}Se_{1.8}.

Sample	Atom	Site	х	у	Z	Preferred orientation
MoS_2	Mo1	2c	1/3	2/3	0.25	1.01537
$a/b = 3.16224 \pm 0.00011$	S1	4f	1/3	2/3	0.624611	
$c = 12.29399 \pm 0.00090$						
$R_{p} = 5.37$						
$MoS_{1.8}Se_{0.2}$	Mo1	2c	1/3	2/3	0.25	0.909656
$a/b = 3.17291 \pm 0.00007$	S1/S	4f	1/3	2/3	0.622098	
$c = 12.37002 \pm 0.00045$	S2/Se	4f	1/3	2/3	0.622098	
$R_{p} = 12.4$						
$MoS_{1.6}Se_{0.4}$	Mo1	2c	1/3	2/3	0.25	0.863259
$a/b = 3.18372 \pm 0.00004$	Mo1/S	4f	1/3	2/3	0.620147	
$c = 12.47169 \pm 0.00020$	S2/Se	4f	1/3	2/3	0.620147	
$R_{p} = 12.2$						
$MoS_{1.4}Se_{0.6}$	Mo1	2c	1/3	2/3	0.25	0.913242
$a/b = 3.19442 \pm 0.00003$	S1/S	4f	1/3	2/3	0.619961	
$c = 12.54590 \pm 0.00017$	S2/Se	4f	1/3	2/3	0.619961	
$R_{p} = 10.6$						
r						
$MoS_{1.2}Se_{0.8}$	Mo1	2c	1/3	2/3	0.25	0.913567

Table S1.2. Rietveld refinement results for MoS_xSe_{2-x} solid solutions.

$a/b = 3.20475 \pm 0.00004$	S1/S	4f	1/3	2/3	0.620549	
$c = 12.61090 \pm 0.00021$	S2/Se	4f	1/3	2/3	0.620549	
$R_{\rm p} = 9.32$						
p						
MoSSe	Mo1	2c	1/3	2/3	0.25	1 56051
a/b = 322052 + 0.00006	S1/S	_€ 4f	1/3	$\frac{2}{3}$	0.61985	1.00001
$c = 12.69650 \pm 0.00000$	51/5 \$2/\$e	$\frac{1}{4f}$	1/3	$\frac{2}{3}$	0.61985	
P = 11.6	52/50	71	1/5	215	0.01705	
$K_p = 11.0$						
MoSacSeta	Mo1	20	1/3	2/3	0.25	1 31168
$a/b = 2.22100 \pm 0.00006$	S1/S	20 4f	1/2	2/3	0.25	1.51100
$a/0 = 5.23190 \pm 0.00000$	S1/S	41 4£	1/3	2/3	0.019794	
$C = 12.74900 \pm 0.00020$	52/Se	41	1/3	2/3	0.019/94	
$K_p = 9.82$	N 1	2	1 /2	2/2	0.25	1 41 5 2 0
$MoS_{0.6}Se_{1.4}$	Mol	2c	1/3	2/3	0.25	1.41529
$a/b = 3.24862 \pm 0.00003$	S1/S	41	1/3	2/3	0.619845	
$c = 12.80990 \pm 0.00012$	S2/Se	4f	1/3	2/3	0.619845	
$R_{p} = 8.35$						
		_				
$MoS_{0.4}Se_{1.6}$	Mo1	2c	1/3	2/3	0.25	1.42509
$a/b = 3.26225 \pm 0.00007$	S1/S	4f	1/3	2/3	0.62126	
$c = 12.85850 \pm 0.00045$	S2/Se	4f	1/3	2/3	0.62126	
$R_p = 13.6$						
$MoS_{0.2}Se_{1.8}$	Mo1	2c	1/3	2/3	0.25	0.844457
$a/b = 3.26941 \pm 0.00003$	S1/S	4f	1/3	2/3	0.620912	
$c = 12.89550 \pm 0.00017$	S2/Se	4f	1/3	2/3	0.620912	
$R_{p} = 10.2$						
r						
MoSe ₂	Mo1	2c	1/3	2/3	0.25	0.980848
$a/b = 3.28591 \pm 0.00006$	S1/S	4f	1/3	2/3	0.621241	
$c = 12.93751 \pm 0.00023$	S2/Se	4f	1/3	2/3	0.621241	
$R_{\rm p} = 11.6$. –	-	
P						
	1					

Figure S1.3. Synchrotron XRD patterns of MoS_xSe_{2-x} solid solutions. The intensities are normalized to the 100 reflection of $MoSe_2$.

Figure S1.4. *a* and *c* lattice parameters of MoS_xSe_{2-x} solid solutions as determined from Rietveld refinement of SXRD patterns. The black lines represent the theoretical values calculated from the end members by using Vegard's law. The error bars are smaller than the size of the plot symbols.

2. Characterization of crystal morphology and composition

All energy-dispersive X-ray spectroscopy spot and mapping experiments on the WSSe solid solutions samples were conducted using a calibrated FEI Quanta 200 Environmental Scanning Electron Microscope. The maps showed homogeneous distribution of W, S, and Se within the resolution of the technique for the bulk materials.

Figure S2. 1 SEM micrograph of $WS_2(a)$ and EDX mapping of sulfur (b) and tungsten

Figure S2.2 SEM micrograph of $WS_{1.8}Se_{0.2}(a)$ and EDX mapping of sulfur (b), selenium (c) and tungsten (d)

Figure S2.3 SEM micrograph of $WS_{1.6}Se_{0.4}(a)$ and EDX mapping of sulfur (b), selenium (c) and tungsten (d)

Figure S2.4 SEM micrograph of $WS_{1,2}Se_{0,8}(a)$ and EDX mapping of sulfur (b), selenium (c) and tungsten (d)

Figure S2.5 SEM micrograph of $WS_{1.4}Se_{0.6}(a)$ and EDX mapping of sulfur (b), selenium (c) and

Figure S2.6 SEM micrograph of $WS_{0.8}Se_{1.2}(a)$ and EDX mapping of sulfur (b), selenium (c) and tungsten (d)

Figure S2.7 SEM micrograph of WSSe (a) and EDX mapping of sulfur (b), selenium (c) and tungsten (d)

Figure S2.8 SEM micrograph of $WS_{0.4}Se_{1.6}(a)$ and EDX mapping of sulfur (b), selenium (c) and tungsten (d)

Figure S2.9 SEM micrograph of $WS_{0.6}Se_{1.4}\left(a\right)$ and EDX mapping of sulfur (b) , selenium (c) and tungsten (d)

Figure S2.10 SEM micrograph of WS_{0.2}Se_{1.8}(a) and EDX mapping of sulfur (b), selenium (c) and tungsten (d)

Figure S2.11 SEM micrograph of $WSe_2(a)$ and EDX mapping of sulfur (b) , selenium (c) and tungsten (d)

Figure S2.12. SEM micrograph of MoSe₂ (a) and EDX mapping of molybdenum (b) and selenium (c)

Figure S2.13 SEM micrograph of $MoS_{0.2}Se_{1.8}(a)$ and EDX mapping of molybdenum (b), sulfur (c) and selenium (d)

Figure S2.14. SEM micrograph of $MoS_{0.4}Se_{1.6}$ (a) and EDX mapping of molybdenum (b), sulfur (c) and selenium (d)

Figure S2.15. SEM micrograph of $MoS_{0.6}Se_{1.4}$ (a) and EDX mapping of molybdenum (b),

Figure S2.16 SEM micrograph of MoSSe (a) and EDX mapping of molybdenum (b), sulfur (c) and selenium (d)

Figure S2.17. SEM micrograph of MoS_{1.2}Se_{0.8} (a) and EDX mapping of molybdenum (b), sulfur (c) and selenium (d)

Figure S2.18. SEM micrograph of $MoS_{1.6}Se_{0.4}$ (a) and EDX mapping of molybdenum (b), sulfur (c) and selenium (d)

Figure S2.19 SEM micrograph of $MoS_{1.4}Se_{0.6}(a)$ and EDX mapping of molybdenum (b), sulfur (c) and selenium (d)

Figure S2.20. SEM micrograph of MoS_2 (a) and EDX mapping of molybdenum (b), sulfur (c)

Figure S2.21. SEM micrograph of $MoS_{1.8}Se_{0.2}$ (a) and EDX mapping of molybdenum (b), sulfur (c) and selenium (d)

Compound	Co	6)	
Compound	Molybdenum	Sulfur	Selenium
MoS ₂	31.0 ± 0.5	69.00 ± 0.5	0
$MoS_{1.8}Se_{0.2}$	31.8 ± 0.8	61.0 ± 1.0	7.2 ± 0.9
$MoS_{1.6}Se_{0.4}$	32.7 ± 2.1	54.6 ± 2.1	12.7 ± 2.3
$MoS_{1.4}Se_{0.6}$	33.5 ± 1.7	45.6 ± 2.5	20.9 ± 2.6
MoS _{1.2} Se _{0.8}	31.0 ± 2.8	39.3 ± 3.4	29.7 ± 1.3
$MoS_{1.0}Se_{1.0}$	30.9 ± 3.6	35.1 ± 3.1	34.0 ± 1.8
MoS _{0.8} Se _{1.2}	34.4 ± 3.1	26.2 ± 1.8	39.3 ± 3.1
MoS _{0.6} Se _{1.4}	32.5 ± 2.1	21.9 ± 2.3	45.6 ± 1.7
MoS _{0.4} Se _{1.6}	31.0 ± 3.8	10.5 ± 1.3	58.6 ± 4.3
MoS _{0.2} Se _{1.8}	33.2 ± 4.6	7.8 ± 1.5	59.0 ± 3.3
MoSe ₂	30.5 ± 0.8	0	69.5 ± 0.8

For each compound, EDX measurements were performed on five different particles. The average atomic percentages and standard deviations are reported in the tables below.

Composition of MoS_xSe_{2-x} solid solutions measured by SEM-EDX.

Concentration (at%)						
Tungsten	Sulfur	Selenium				
33.7 ± 0.8	66.3 ± 0.8	0				
32.8 ± 0.6	60.4 ± 1.1	6.8 ± 0.9				
33.5 ± 0.6	53.2 ± 1.0	13.4 ± 0.6				
33.8 ± 0.4	46.5 ± 0.6	19.7 ± 0.5				
33.7 ± 0.7	40.1 ± 1.6	26.2 ± 2.0				
33.0 ± 0.9	32.3 ± 1.9	34.7 ± 2.5				
34.3 ± 0.2	26.7 ± 0.5	39.0 ± 0.6				
33.3 ± 0.7	19.1 ± 0.7	47.6 ± 1.1				
33.2 ± 1.3	12.9 ± 1.0	53.9 ± 1.9				
34.6 ± 0.2	7.3 ± 0.1	58.1 ± 0.2				
33.3 ± 1.2	0	66.7 ± 1.2				
	Tungsten 33.7 ± 0.8 32.8 ± 0.6 33.5 ± 0.6 33.5 ± 0.6 33.7 ± 0.7 33.0 ± 0.9 34.3 ± 0.2 33.2 ± 1.3 34.6 ± 0.2 33.3 ± 1.2	TungstenSulfur 33.7 ± 0.8 66.3 ± 0.8 32.8 ± 0.6 60.4 ± 1.1 33.5 ± 0.6 53.2 ± 1.0 33.8 ± 0.4 46.5 ± 0.6 33.7 ± 0.7 40.1 ± 1.6 33.0 ± 0.9 32.3 ± 1.9 34.3 ± 0.2 26.7 ± 0.5 33.2 ± 1.3 12.9 ± 1.0 34.6 ± 0.2 7.3 ± 0.1 33.3 ± 1.2 0				

Composition of WS_xSe_{2-x} solid solutions measured by SEM-EDX.

3. HAADF-EDX mapping of atomic distributions of W, Mo, S, and Se

Monolayer regions were located under the TEM using the high angle annular dark field scanning transmission electron microscope. Elemental EDX mapping of W, Mo, S, and Se was performed on monolayers of $WS_{1.8}Se_{0.2}$. Examples are shown in Figures S3.1 and S3.2.

Figure S3.1. a) HAADF-STEM micrograph of $WS_{1.8}Se_{0.2}$. The corner outlined in red is a multilayer region. The rest of the image is a monolayer region. Elemental EDX maps of b) selenium overlayed on the HAADF-STEM micrograph of $WS_{1.8}Se_{0.2}$, c) sulfur d) tungsten.

Figure S3.2 a) HAADF-STEM micrograph of $MoS_{1.8}Se_{0.2}$. Elemental EDX maps of b) selenium overlayed on the HAADF-STEM micrograph of $MoS_{1.8}Se_{0.2}$. The red box region in (b) was used for quantifying the degree of clustering within the monolayer. c) The enlarged red box region shown with contrast and brightness adjusted.

4. Calculation of the clustering parameter J from HAADF-EDX data

J was calculated from nearest-neighbor counting data in Fig. 9c according to

$$J = \frac{P_{observed}}{P_{random}} \times 100\%$$

where P_{observed} and P_{random} were obtained from:

$$P_{observed} = \frac{\sum_{i=0}^{6} (i \times N_{gray-i(blue)})}{N_{gray}}$$

and

$$P_{random} = \frac{N_{blue}}{N_{gray} - N_{blue}}$$

Here N_{gray} , N_{blue} , and $N_{gray-i(blue)}$ are the number of gray-colored metal atoms (coordinated only to sulfur), the number of blue-colored metal atoms (coordinated to one or more Se), and the number of gray-colored W atoms surrounded by i (i = 0 to 6) blue-colored metal atoms, respectively.