Table of Contents

Materials and Methods	1
Figure S1 – Selected Variable Temperature NMR Spectra	3
Preparation of Trityl Hydrazones	4
Reductive Chlorination of Trityl Hydrazones	10
Reductive Bromination of Trityl Hydrazones	14
Experimental Spectra	16

Materials and Methods

Unless stated otherwise, reactions were performed under a N2 atmosphere using flame- or oven-dried glassware and stir bars. Ambient temperature refers to 22-26 °C. Higher than ambient temperatures were maintained using pre-heated oil baths. Lower temperatures were maintained using the following dewar baths: MeCN/CO_{2(s)} (-40 °C) and MeOH/ice (-20 °C). Dichloromethane and tetrahydrofuran (both of Optima® grade) were purchased from Fisher Scientific and dried by passage through an activated alumina column solvent purification system (Innovative Technology Inc. Pure SolvTM). Cyclohexane (anhydrous, 99.5%) was purchased from Sigma-Aldrich and used as received. Commercially obtained reagents were used as received, unless stated otherwise. tert-Butyl hypochlorite (> 98.0%) and tricyclo[5.2.1.0^{2,6}]decan-8-one (> 95.0%, GC) were purchased from TCI America. Dess-Martin periodinane (97%) and dichloramine-T (97%) were purchased from Sigma-Aldrich. Nbromosuccinimide was recrystallized from H₂O and dried overnight under high vacuum. *n*-Butyllithium was purchased from Sigma-Aldrich and titrated using menthol/2,2'-bipyridine. Ethanethiol was degassed by three freeze-pump-thaw (FPT) cycles and stored in a Schlenk flask under a N₂ atmosphere; this reagent was degassed by one cycle of FPT prior to each usage. Tritylhydrazide hydrochloride was prepared according to the procedure of Baldwin *et al.*,¹ using hydrazine monohydrate (Sigma-Aldrich, reagent grade, 98%) and ca. 0.90-0.95 equiv. HCl (Fisher Scientific, Certified ACS Plus).

Reactions and compounds were visualized on EMD Millipore silica gel 60 Å F254 plates by UV fluorescence quenching (254 nm), I_2/SiO_2 , PMA, or Seebach's stain. Flash column chromatography was performed on SiliCycle SiliaFlash P60 (40-63 μ m particle size) using ACS or HPLC grade solvents

¹ Baldwin, J. E.; Adlington, R. M.; Bottaro, J. C.; Kolhe, J. N.; Newington, I. M.; Perry, M. W. D. Tetrahedron 1986, 42, 4235.

purchased from Fisher Scientific. ¹H and ¹³C NMR spectra were measured on Bruker DRX-500 and DMX-500 spectrometers (at 500 MHz and 125 MHz, respectively) at 294-300 K. ¹H spectra were calibrated from internal standard TMS (δ 0.0) or solvent resonance (CHCl₃: 7.26, C₆D₆: 7.16). ¹³C spectra were calibrated from solvent resonance (CHCl₃: 77.0). NMR data are reported as: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), and integration). ¹³C chemical shifts arising from ³⁷Cl/³⁵Cl isotope effects are indicated in parentheses.² High-resolution mass spectral analysis was measured on an Agilent Technologies 6224 TOF LC/MS (electrospray ionization). IR spectra were measured on Nicolet 6700 FTIR spectrometer and are reported as frequency of absorption (cm⁻¹). Optical rotations were measured on a Perkin Elmer 141 polarimeter using a 100 mm path-length cell.

² Aliev, A. E.; Harris, K. D. M. Magn. Reson. Chem. 1993, 31, 54.

Figure S1 – Selected Variable Temperature NMR Spectra

Figure S1. ¹H NMR evolution of **11a** + *t*-BuOCI (ca. 1.1 equiv.) in the absence of EtSH (CD_2CI_2); Time (t) from addition of *t*-BuOCI at -78 °C. (a) Spectrum of hydrazone **11a** at -32 °C. (b) **11a** + *t*-BuOCI following injection into -31 °C pre-cooled probe. (c) Reaction warmed to -10 °C without appreciable change. (d) Marked decomposition at 10 °C.

Preparation of Trityl Hydrazones

<u>Note</u>: The hydrazones are prone to decomposition in the presence of air at ambient temperature. Storage under an inert atmosphere at -20 °C is recommended. Trityl hydrazones are promptly subjected to halogenation conditions and are used without purification.

Representative Procedure: A 50 mL 14/20 recovery flask equipped with a 1-inch oval-shaped Tefloncoated magnetic stir bar was charged with Ph₃CNHNH₂•HCl (1.01g, 3.25 mmol, 1.0 equiv.) and MeOH (11 mL). The resulting light orange solution was then treated with NaOAc•3H₂O (3.24M in H₂O, 1.5 mL, 4.86 mmol, 1.5 equiv.), and a color change to light yellow is observed. Benzylacetone (475 mg, 3.21 mmol, 1.0 equiv.) dissolved in 0.5 mL DCM (Fisher Scientific, Certified ACS, stabilized) was added, and the reaction immediately turned cloudy. Ketone addition was quantitated with additional DCM (2 x 0.5 mL), and the system was subsequently evacuated and backfilled with N₂ three times. Under increased N₂ flow, the reaction was stirred overnight at ambient temperature as vigorously as possible (> 600 rpm), away from light, and under a stream of N₂. The resulting white slurry was filtered using a Büchner funnel, and the hydrazone was washed sequentially with H₂O then MeOH. After drying on high vacuum (2 mmHg), **11a** was obtained as an off-white solid (953 mg, 2.36 mmol, 74% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.36-7.11 (m, 18H), 7.05-7.00 (m, 2H) 5.41 (bs, 1H), 2.62-2.55 (m, 2H), 2.43-2.36 (m, 2H), 1.70 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 147.6, 146.1, 142.1, 129.2, 128.3, 128.1, 127.6, 126.4, 125.6, 72.6, 40.4, 32.7, 15.0; IR (Neat film): 1492, 1448, 749, 699 cm⁻¹; HRMS (ES) calcd for C₂₉H₂₈N₂ [M+H]⁺: 405.2325, found 405.2316.

From phenoxyacetone (231 mg, 1.54 mmol), trityl hydrazone **11b** was obtained as a white solid (390 mg, 0.96 mmol, 62% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.35-7.20 (m, 15H), 7.19-7.13 (m, 2H), 6.88 (tt, *J* = 1.0, 7.5 Hz, 1H), 6.79-6.73 (m, 2H), 5.71 (bs, 1H), 4.46 (s, 2H), 1.81 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 158.6, 145.9, 144.0, 129.3, 129.1, 127.7, 126.7, 120.6, 115.0, 72.7, 72.2, 11.7; IR

(Neat film): 3058, 1598, 1494, 1447, 1213, 1172, 1079, 1031, 901, 754, 701 cm⁻¹; HRMS (ES) calcd for $C_{28}H_{26}N_2O [M+H]^+$: 407.2118, found 407.2114.

From cholestanone (307 mg, 0.79 mmol), trityl hydrazone **11c** was obtained as a yellow solid as a crude mixture of hydrazone isomers (399 mg, 0.62 mmol, 78% yield). This mixture was deemed acceptably pure and was subsequently subjected to chlorinative conditions. Diagnostic NMR signals: ¹H NMR (500 MHz, CDCl₃, * denotes isomeric signal): δ 7.50-7.00 (m, 15H + 15H*), 5.53 (bs, 1H), 5.53 (bs, 1H*); ¹³C NMR (125 MHz, CDCl₃): δ 152.6, 152.4*, 72.7, 72.7*.

From 4-*tert*-butylcyclohexanone (482 mg, 3.12 mmol), trityl hydrazone **11d** was obtained as a white/light yellow solid (962 mg, 2.34 mmol, 75% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.39-7.34 (m, 6H), 7.29-7.24 (m, 6H), 7.23-7.17 (m, 3H), 5.53 (bs, 1H), 2.71-2.64 (m, 1H), 2.29-2.21 (m, 1H), 1.96 (app td, *J* = 5.0, 13.5 Hz, 1H), 1.83-1.70 (m, 2H), 1.62 (app td, *J* = 5.0, 13.5 Hz, 1H), 1.16 (app tt, *J* = 3.0, 12.0 Hz, 1H), 0.96-0.80 (m, 2H), 0.81 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 153.2, 145.9, 129.2, 127.6, 126.4, 72.8, 47.4, 35.3, 32.5, 27.8, 27.5, 26.6, 24.8; IR (Neat film): 3507, 2954, 1716, 1491, 1447, 1366, 1221, 1034, 905, 759, 700 cm⁻¹; HRMS (ES) calcd for C₂₉H₃₄N₂ [M+H]⁺: 411.2795, found 405.2788.

From *trans*-1-decalone (242 mg, 1.59 mmol), trityl hydrazone **11e** was obtained as a white/light yellow solid (408 mg, 1.00 mmol, 63% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.36-7.31 (m, 6H), 7.28-7.23 (m, 6H), 7.23-7.18 (m, 3H), 5.58 (bs, 1H), 2.76-2.68 (m, 1H), 1.82-1.75 (m, 1H), 1.68-1.51 (m, 7H), 1.28-0.80 (m, 7H); ¹³C NMR (125 MHz, CDCl₃): δ 153.6, 146.2, 129.4, 127.4, 126.3, 72.9, 49.5, 44.4,

34.4, 33.7, 27.1, 26.1, 26.1, 25.6, 24.9; IR (Neat film): 3057, 2924, 2851, 1597, 1491, 1446, 1033, 905, 731, 700 cm⁻¹; HRMS (ES) calcd for C₂₉H₃₂N₂ [M+H]⁺: 409.2638, found 409.2633.

From *N*-Boc-4-piperidone, trityl hydrazone **11f** was obtained as a white solid with a 7 mol % impurity, whose identity is assigned to that of corresponding azine *i*. The hydrazone was used without further purification. ¹H NMR (500 MHz, CDCl₃): δ 7.37-7.31 (m, 6H), 7.31-7.24 (m, 6H), 7.24-7.19 (m, 3H), 5.54 (bs, 1H), 3.49-3.39 (m, 2H), 3.39-2.29 (m, 2H), 2.37-2.20 (m, 4H), 1.45 (s, 9H).

A 10 mL 14/20 recovery flask equipped a Teflon-coated magnetic stir bar was charged sequentially with *N*-Boc-4-piperidone (246 mg, 1.23 mmol, 1 equiv.), EtOH (1.25 mL), and NH₂NH₂•H₂O (0.03 mL, 0.62 mmol, 0.5 equiv.), and heated to reflux for 7 hours with an attached condenser. Following filtration through a Büchner funnel, washing with EtOH, and drying under high vacuum for 2 hours, azine *i* was obtained as a white solid (182 mg, 0.46 mmol, 75% yield). ¹H NMR (500 MHz, CDCl₃): δ 3.61 (t, *J* = 6.0 Hz, 4H), 3.52 (t, *J* = 6.0 Hz, 4H), 2.57 (t, *J* = 6.0, 4H), 2.45 (t, J = 6.0 Hz, 4H), 1.48 (s, 18H); ¹³C NMR (125 MHz, CDCl₃): δ 163.6, 154.6, 78.0, 44.1, 42.5, 34.5, 28.4, 28.1; IR (Neat film): 1683, 1431, 1364, 1240, 1179 cm⁻¹; HRMS (ES) calcd for C₂₀H₃₄N₄O₄ [M+H]⁺: 395.2653, found 395.2659.

A 500 mL 24/40 round-bottom flask equipped with a Teflon-coated magnetic stir bar was charged with ketone *ii* (0.52 g, 1.94 mmol, 1 equiv.) and DCM (200 mL). The resulting solution was then treated with 80 mL of a 10% solution of HF in MeCN and stirred at ambient temperature for 21.5 hours. The reaction was carefully quenched with a total of 120 mL saturated aqueous NaHCO₃. In a 500 mL

separatory funnel, the reaction was partitioned between 30 mL saturated aqueous NaHCO₃ and 30 mL DCM. The aqueous layer was separated and extracted twice more with 40 mL portions of DCM. The combined organic layers were washed with 80 mL brine and dried over MgSO₄. Flash chromatography (2:3 hexanes:EtOAc) afforded alcohol *iii* as clear, light yellow liquid (0.28 g, 1.82 mmol, 93% yield). R_f = 0.30 (1:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 5.75 (dd, J = 11.0, 17.5 Hz, 1H), 5.14 (dd, J = 1.0, 11.0 Hz, 1H), 5.10 (dd, J = 1.0, 17.5 Hz, 1H), 3.84 (app td, J = 3.5, 7.0 Hz, 1H), 2.52 (dddd, J = 2.0, 6.5, 8.5, 15.0 Hz, 1H), 2.44 (dd, J = 1.5, 14.5 Hz, 1H), 2.38 (dd, J = 1.0, 14.5 Hz, 1H), 2.30 (dddd, J = 1.5, 6.0, 7.5, 15.0 Hz, 1H), 2.11 (dddd, J = 3.5, 6.0, 8.0, 14.0, 1H) 1.98-1.87 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 210.2, 143.8, 114.7, 72.2, 48.0, 45.7, 36.8, 28.9, 20.4; IR (Neat film): 3451, 2960, 1703, 1640, 1421, 1293, 1235, 1065, 1029, 969, 921 cm⁻¹; HRMS (ES) calcd for C₉H₁₄O₂ [M+H]⁺: 155.1067, found 155.1063.

A 100 mL 14/20 recovery flask equipped with a Teflon-coated magnetic stir bar was charged with alcohol *iii* (0.83 g, 5.38 mmol, 1 equiv.) and MeOH (22 mL). The solution was cooled in an ice bath and subsequently treated with NaBH₄ (0.63 g, 16.65 mmol, 3 equiv.). After 2 hours, the reaction was quenched with 35 mL saturated aqueous NH_4Cl . In a 500 mL separatory funnel, the reaction was extracted into DCM (4 x 75 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. The crude diol was subsequently dissolved in DMF (27 mL) and treated with imidazole (0.73 g, 10.76 mmol, 2 equiv.) and TBSCI (0.83 g, 5.51 mmol, 1 equiv.). After stirring for 12.5 hours at ambient temperature, the reaction was quenched with 100 mL saturated aqueous NH₄Cl and extracted with 2:1 hexanes:EtOAc (3 x 75 mL). The combined organics were washed with H₂O (2 x 50 mL), brine (50 mL), and dried over MgSO₄. The crude residue was subjected to careful flash chromatography (two successive columns – first using 3:1 hexanes:Et₂O, then a second using 85:15 hexanes:EtOAc) to give 0.79 g of a 10:1 diastereomeric mixture of mono-silvlated diol as a clear, light yellow liquid (2.92 mmol, 54% yield over 2 steps). A 100 mL 14/20 recovery flask equipped with a Teflon-coated magnetic stir was charged with the previously purified mono-silvlated diol, DCM (29 mL), NaHCO₃ (0.76g, 9.05 mmol, 3.1 equiv.), and Dess-Martin periodinane (1.86 g, 4.38 mmol, 1.5 equiv.). After stirring at ambient temperature for 2.5 hours, the reaction was partitioned between 50 mL saturated aqueous NaHCO₃ and 50 mL DCM. The aqueous layer was separated, extracted with DCM (2 x 40 mL), and dried over Na₂SO₄. The crude residue was then subjected to careful flash chromatography (95:5 hexanes:Et₂O) to yield ketone *iv* as a single diastereomer (0.64 g, 2.38 mmol, 82% yield). $R_f =$

0.70 (3:1 hexanes:Et₂O); ¹H NMR (500 MHz, CDCl₃): δ 5.90 (dd, J = 11.0, 17.5 Hz, 1H), 5.14 (d, J = 11.0 Hz, 1H), 5.00 (d, J = 17.5 Hz, 1H), 4.19 (app tt, J = 4.0, 10.0 Hz, 1H), 2.56 (ddd, J = 6.0, 13.0, 14.5 Hz, 1H), 2.39 (app dt, J = 4.5, 14.5 Hz, 1H), 2.12 (ddd, J = 3.0, 4.0, 13.5, 1H), 2.10-2.03 (m, 1H), 1.75 (app t(dd), J = 4.5, 10.0, 13.0 Hz, 1H), 1.69 (dd, J = 10.0, 13.5 Hz, 1H), 1.16 (s, 3H), 0.90 (s, 9H), 0.10 (s, 3H), 0.09 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 211.9, 142.6, 114.8, 66.5, 51.3, 47.4, 36.3, 35.5, 25.8, 24.8, 18.1, -4.7, -4.7; IR (Neat film): 2886, 2858, 1716, 1631, 1472, 1463, 1426, 1370, 1325, 1257, 1106, 1073, 991, 940, 920, 889, 866, 837, 776 cm⁻¹; HRMS (ES) calcd for C₁₅H₂₈O₂Si [M+H] ⁺: 269.1931, found 269.1926.

From ketone *iv* (199 mg, 0.74 mmol), trityl hydrazone **11g** was obtained as a white solid (255 mg, 0.49 mmol, 66% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.38-7.17 (m, 18H), 5.63 (bs, 1H), 5.58 (dd, *J* = 11.0, 17.5 Hz, 1H), 4.83 (dd, *J* = 1.0, 11.0 Hz, 1H), 4.52 (dd, *J* = 1.0, 17.5 Hz, 1H), 3.86 (app tt, *J* = 4.0, 10.5 Hz, 1H), 2.69-2.55 (m, 1H), 1.95-1.71 (m, 3H), 1.38-1.22 (m, 2H), 0.87 (s, 9H), 0.84 (s, 3H), 0.05 (s, 3H), 0.04 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 151.7, 146.1, 146.1, 129.3, 127.5, 126.4, 112.9, 73.1, 67.4, 48.0, 45.9, 34.6, 27.1, 25.9, 19.9, 18.1, -4.6, -4.6; IR (Neat film): 2929, 2856, 1714, 1491, 1448, 1254, 1105, 1073, 866, 836, 774, 701 cm⁻¹; HRMS (ES) calcd for C₃₄H₄₄N₂OSi [M+H]⁺: 525.3296, found 525.3292.

11h

From tricyclo[5.2.1.0^{2,6}]decan-8-one (478 mg, 3.18 mmol), trityl hydrazone **11h** was obtained as a white solid (1.047 g, 2.58 mmol, 81% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.39-7.32 (m, 6H), 7.30-7.23 (m, 6H), 7.23-7.17 (m, 3H) 5.16 (bs, 1H), 2.43 (bs, 1H), 2.19 (br d, *J* = 4.0Hz, 1H), 1.94 (dd, *J* = 4.5, 15.5 Hz, 1H), 1.89-1.81 (m, 1H), 1.81-1.68 (m, 3H), 1.67-1.58 (m, 2H), 1.49-1.40 (m, 1H), 1.25-1.12 (m, 1H), 1.10 (br d, *J* = 10.5 Hz, 1H), 0.98-0.81 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 160.4, 145.8, 129.0, 127.7, 126.4, 72.8, 47.9, 47.1, 45.2, 40.1, 34.0, 32.4, 32.3, 31.2, 27.7; IR (Neat film): 3056, 2948, 2861, 1596, 1490, 1447, 1185, 1032, 902, 742, 701 cm⁻¹; HRMS (ES) calcd for C₂₉H₃₀N₂ [M+H]⁺: 407.2482, found 407.2473.

11i

From (-)- α -thujone (484 mg, 3.18 mmol), trityl hydrazone **11i** was obtained as a light yellow solid (825 mg, 2.02 mmol, 64%, yield). ¹H NMR (500 MHz, CDCl₃): δ 7.35-7.30 (m, 6H), 7.29-7.23 (m, 6H), 7.23-7.17 (m, 3H), 5.25 (bs, 1H), 2.44-2.36 (m, 1H), 2.19 (d, *J* = 16.5 Hz, 1H), 2.10 (d, *J* = 16.5 Hz, 1H), 1.30 (sept, *J* = 7.0 Hz, 1H), 0.94 (d, *J* = 7.0 Hz, 3H), 0.91 (d, *J* = 7.0 Hz, 3H), 0.88 (d, *J* = 7.0 Hz, 3H), 0.79 (dd, *J* = 4.0, 8.0 Hz, 1H), 0.48-0.42 (m, 1H), -0.19 (dd, J = 4.5, 4.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 160.2, 145.9, 129.1, 127.7, 126.5, 72.9, 42.4, 32.5, 31.7, 27.9, 26.6, 21.5, 20.1, 19.7, 17.1; IR (Neat film): 2957, 1491, 1448, 1033, 759, 701 cm⁻¹; HRMS (ES) calcd for C₂₉H₃₂N₂ [M+H]⁺: 409.2638, found 409.2630; [α]^{21.1}_D +31.8° (*c* 1, CHCl₃).

A 25 mL 14/20 recovery flask equipped with a Teflon-coated magnetic stir bar was charged with Ph₃CNHNH₂•HCl (504 mg, 1.62 mmol, 1.0 equiv.) and MeOH (4 mL), and the resulting solution was then treated with NaOAc•3H₂O (3.27M in H₂O, 0.75 mL, 2.45 mmol, 1.5 equiv.). Following addition of O-Me estrone (453 mg, 1.59 mmol) and DCM (12 mL), the reaction vessel was evacuated, backfilled with N₂, and stirred at ambient temperature for two weeks. During this time period, an additional total of ca. 260 mg Ph₃CNHNH₂•HCl was added. Conversion was monitored by ¹H NMR. Following evaporation of DCM over a stream of N₂, workup as described in the Representative Procedure provided trityl hydrzone 11j as a white solid (856 mg, 1.58 mmol, 99% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.36-7.31 (m, 6H), 7.29-7.23 (m, 6H), 7.23-7.19 (m, 3H), 7.17 (d, J = 8.5 Hz, 1H), 6.69 (dd, J = 2.5, 8.5Hz, 1H), 6.61 (d, J = 2.5 Hz, 1H), 5.24 (bs, 1H), 2.92-2.78 (m, 2H), 2.29-2.05 (m, 4H), 1.95-1.85 (m, 2H), 1.85-1.77 (m, 1H), 1.49-1.31 (m, 4H), 1.27-1.13 (m, 2H), 0.67 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 162.5, 157.4, 146.1, 137.8, 132.7, 129.3, 127.5, 126.4, 126.3, 113.7, 111.4, 72.9, 55.2, 52.6, 44.4, 44.2, 38.2, 34.3, 29.8, 27.2, 26.2, 24.9, 23.3, 17.0; IR (Neat film): 2928, 1609, 1498, 1448, 1255, 1033, 901, 747, 702 cm⁻¹; HRMS (ES) calcd for $C_{38}H_{40}N_2O$ [M+H]⁺: 541.3213, found 541.3208; $[\alpha]^{21.1}_{D} + 37.3^{\circ} (c 1, \text{CHCl}_3).$

Reductive Chlorination of Trityl Hydrazones

Representative Procedure: An oven-dried 25 mL 14/20 recovery flask equipped with a Teflon-coated magnetic stir bar was charged with trityl hydrazone 11h (211 mg, 0.52 mmol, 1.0 equiv), DCM (1 mL), and cyclohexane (4 mL). The resulting colorless solution was evacuated and backfilled with N₂ (3 times) and then cooled to -20 °C (external temperature). tert-Butyl hypochlorite (1.24M in DCM, 0.46 mL, 1.1 equiv.) at ambient temperature was added dropwise over 2 minutes to the cooled solution of hydrazone and stirred for 15 minutes. The resulting yellow solution was then frozen in a liquid N₂ bath and degassed by two FPT cycles, each time thawing in a -20 °C bath. After backfilling with N₂, the reaction was maintained at an external temperature ≤ -15 °C for at least 20 minutes. During this time EtSH was degassed once by FPT. Excess EtSH (3 mL) at ambient temperature was added to the cooled reaction without appreciable change, and the reaction flask was subsequently transferred to a pre-heated 35-40°C oil bath. After 1.5 hours, significant color dissipation was observed, and the reaction was allowed to cool to ambient temperature. In a 60 mL separatory funnel, the reaction was partitioned between 20 mL 1:1 H₂O:brine and 20 mL 1:1 Et₂O:pentane. The aqueous layer was separated and extracted once with 20 mL 1:1 Et₂O:pentane. The combined organic layers were dried over Na₂SO₄ and carefully concentrated under reduced pressure (ca. 140 mmHg). The crude residue was purified by flash chromatography (100% pentane) to afford chloride 13h as a colorless oil with 21:1 dr, as measured by its ¹H NMR spectrum (73 mg, 0.43 mmol, 83% yield). $R_f = 0.65$ (100% pentane); ¹H NMR (500 MHz, CDCl₃): δ 4.22 (app dt, J = 4.0, 10.5 Hz, 1H), 2.63-2.53 (m, 1H), 2.25-2.16 (m, 2H), 1.97 (bd, J = 5.0 Hz, 1H), 1.96-1.85 (m, 3H), 1.70-1.62 (m, 1H), 1.49 (app d(dt), J = 2.0, 3.5, 11.0 Hz 1H), 1.29-1.17 (m, 1H), 1.15 (app dt, J = 4.0, 13.5 Hz, 1H), 1.10-1.05 (m, 1H), 1.02-0.86 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ (60.6, 60.6), 47.8, 47.7, 41.1, 40.5, 39.7, 32.4, 32.2, 31.8, 27.0; IR (Neat film): 2950, 2863, 1475, 1464, 1449, 1319, 1301, 1260, 953, 922, 888, 849, 767, 749, 674 cm⁻¹; HRMS (ES) calcd for C₁₀H₁₅Cl [M+Cl]⁻: 205.0556, found 205.0550.

From hydrazone **11a** (405 mg, 1.00 mmol), chloride **13a** was obtained as a colorless oil (138 mg, 0.82 mmol, 82% yield) following purification by flash chromatography (99:1 pentane:EtOAc). Along with **13a**, \leq 4 mol % diethyl disulfide present accounts for < 3 wt % of the final product. The spectral data obtained are in accord with that in the literature.³

From hydrazone **11c** (209.5 mg, 0.3258 mmol), chloride **13c** was obtained as a white solid (75.3 mg, 0.1850 mmol, 57% yield) following purification by flash chromatography (100% hexanes). The spectral data obtained are in accord with that in the literature.⁴

From hydrazone **11d** (234.6 mg, 0.571 mmol), chloride **13d** was obtained as a colorless oil (68.5 mg, 0.392 mmol, 69% yield) following purification by flash chromatography (100% pentane). The spectral data obtained are in accord with that in the literature.⁵

From hydrazone **11e** (238 mg, 0.58 mmol), chloride **13e** was purified by flash chromatography (100% pentane) and obtained as a colorless oil with 1.3:1 dr, as measured by its ¹H NMR spectrum (71 mg, 0.41 mmol, 71% yield). $R_f = 0.66$ (100% pentane); ¹H NMR (500 MHz, CDCl₃, * denotes minor

³ Gaspar, B.; Waser, J.; Carreira, E. M.; Org. Synth. 2010, 87, 88.

⁴ Mondal et al. J. Org. Chem. 2013, 78, 2118.

⁵ Iwasaki et al. J. Am. Chem. Soc. **2014**, 136, 1300.

diastereomer): δ 4.25-4.20 (m, 1H*), 3.58 (ddd, J = 4.25, 10.35, 11.75 Hz, 1H), 2.31-0.80 (m, 16H and 16H*); ¹³C NMR (125 MHz, CDCl₃): δ (66.8, 66.6), (66.1, 66.1), 51.0, 47.4, 43.2, 38.1, 35.1, 34.9, 34.0, 33.8, 33.6, 33.2, 31.0, 30.7, 26.3, 26.3, 26.2, 26.0, 25.9, 20.0; IR (Neat film): 2928, 2854, 1447, 1257, 1231, 1030, 915, 737 cm⁻¹; HRMS (ES) calcd for C₁₀H₁₇Cl [M]⁻: 172.1019, found 172.1023.

From hydrazone **11g** (220 mg, 0.42 mmol), chloride **13g** was purified by two successive columns (first using 4:1 hexanes:CHCl₃, then a second using 9:1 hexanes:acetone) and obtained as a single diastereomer as a colorless oil (60 mg, 0.21 mmol, 50% yield). The crude ¹H NMR indicated a dr of 2.8:1. $R_f = 0.40$ (2:1 hexanes:CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 6.13 (dd, J = 11.0, 18.0 Hz, 1H), 5.20 (ddd, J = 0.5, 1.0, 11.0 Hz, 1H), 5.15 (dd, J = 1.0, 17.5 Hz, 1H), 3.82 (tt, J = 4.5, 10.5 Hz, 1H), 3.76 (dd, J = 4.0, 12.0 Hz, 1H), 2.11-1.98 (m, 2H), 1.95-1.86 (m, 1H), 1.85-1.73 (m, 1H), 1.44-1.32 (m, 2H), 1.17 (s, 3H), 0.87 (9H), 0.04 (s, 3H), 0.04 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 140.3, 114.5, (69.0, 69.0), 66.6, 46.9, 43.0, 35.6, 31.7, 28.7, 25.8, 18.1, -4.7, -4.7; IR (Neat film): 2953, 2931, 2858, 1462, 1371, 1252, 1106, 1005, 917, 865, 836, 794, 775 cm⁻¹; HRMS (ES) calcd for C₁₅H₂₉ClOSi [M]⁺: 288.1676, found 288.1662.

From hydrazone **11i** (240.1 mg, 0.588 mmol), chloride **13i** was purified by flash chromatography (100% pentane) and obtained as a colorless oil with 2.6:1 dr, as measured by its ¹H NMR spectrum (71.3 mg, 0.413 mmol, 70% yield). $R_f = 0.7$ (100% pentane); ¹H NMR (500 MHz, CDCl₃, * denotes minor diastereomer): δ 3.92 (app dt, J = 7.0, 10.5, 1H), 3.90-3.84 (m, 1H*), 2.38 (ddd, J = 1.5, 8.0, 14.5 Hz, 1H*), 2.26 (dq, J = 7.0, 7.0 Hz, 1H), 2.17 (qd, J = 3.0, 7.0 Hz, 1H*), 2.08 (dd, J = 7.5, 12.5 Hz, 1H), 1.89 (dd, J = 1.0, 10.5 Hz, 1H), 1.79 (dd, J = 3.5, 14.5 Hz, 1H*), 1.30 (sept, J = 7.0 Hz, 1H), 1.28 (sept, J = 7.0 Hz, 1H*), 1.06 (d, J = 7.0 Hz, 3H*), 1.02 (d, J = 7.0 Hz, 3H), 0.97 (d, J = 7.0 Hz, 3H), 0.93 (d, J = 7.0 Hz, 3H*), 0.91 (d, J = 7.0 Hz, 3H), 0.90 (d, J = 7.0 Hz, 3H*), 0.89-0.83 (m, 1H*), 0.57 (ddd, J = 1.5, 5.0, 8.5 Hz, 1H*), 0.41 (dd, J = 4.0, 5.5 Hz, 1H), 0.29 (ddd, J = 1.5, 5.5, 8.5 Hz, 1H); ¹³C NMR

(125 MHz, CDCl₃): δ 65.6, 66.6, 60.0, 60.0, 47.0, 38.2, 37.9, 35.1, 33.0, 32.3, 29.7, 28.4, 20.6, 20.1, 20.1, 19.7, 19.6, 18.9, 17.0, 13.49; IR (Neat film): 2959, 2872, 1456, 1375, 888, 846, 789 cm⁻¹; HRMS (ES) calcd for C₁₀H₁₇Cl [M+Na]⁺: 195.0911, found 195.0911.

An oven-dried 25 mL 14/20 recovery flask equipped with a Teflon-coated magnetic stir bar was charged with trityl hydrzaone 11j (111 mg, 0.21 mmol, 1.0 equiv) and THF (2.5 mL) and subsequently evacuated and backfilled with N2 (3 times). After cooling to -40 °C (external temperature), nbutyllithium (1.6M in hexanes, 0.14 mL, 1.1 equiv.) was added dropwise over 1 minute, and the resulting deep red-orange solution was stirred for an additional 30 minutes. An ambient temperature solution of dichloramine-T (60.6 mg, 0.25 mmol, 1.2 equiv.) in 0.6 mL THF was added dropwise over 1 minute to the cooled lithiated hydrazone, and immediate color dissipation to a light yellow solution was observed. After stirring for an addition 10 minutes, the reaction was frozen in a liquid N₂ bath and degassed by two FPT cycles, each time thawing in a -15 °C bath. After backfilling with N₂, the reaction was maintained at external temperature ≤ -15 °C for 35 minutes. Excess EtSH (1.5 mL) at ambient temperature was added to the cooled reaction, and the reaction flask was subsequently transferred to a pre-heated 35-40°C oil bath. After 50 minutes, the reaction was allowed to cool to ambient temperature and subjected to workup as in the representative procedure for chlorination. The crude residue was purified by flash chromatography (3 successive columns - 9:1 hexanes:Et₂O, 4:1 hexanes:CHCl₃, 1:1 hexanes:CHCl₃) to afford chloride **13** as a white solid with a slight tint of yellow (42 mg, 0.14 mmol, 67% yield). $R_f = 0.45$ (1:1 hexanes:CHCl₃); ¹H NMR (500 MHz, C₆D₆): δ 7.12 (d, J = 8.5 Hz, 1H), 6.79 (dd, J = 3.0, 8.5 Hz, 1H), 6.70 (d, J = 3.0 Hz, 1H), 3.51 (app t, J = 9.0 Hz, 1H), 3.42 (s, 3H), 2.76-2.61 (m, 2H), 2.13-2.05 (m, 1H), 2.05-1.90 (m, 3H), 1.80-1.71 (m, 1H), 1.62-1.55 (m, 1H), 1.38-1.25 (m, 2H), 1.25-0.93 (m, 4H), 0.76 (s, 3H), 0.67 (ddd, J = 7.5, 11.0, 12.5 Hz, 1H); ¹³C NMR (125 MHz, 125 MHz) CDCl₃): δ 157.5, 137.8, 132.3, 126.3, 113.8, 111.5, 69.1, 55.2, 50.7, 44.5, 43.8, 39.4, 36.3, 32.0, 29.8, 27.4, 26.2, 23.7, 12.6; IR (Neat film): 2913, 1653, 1608, 1559, 1540, 1501, 1457, 1251, 1038, 859, 824 cm⁻¹; HRMS (ES) calcd for C₁₉H₂₅ClO [M]⁺: 304.1594, found 304.1605; $[\alpha]^{21.1}_{D}$ +82.0° (*c* 1, CHCl₃).

Reductive Bromination of Trityl Hydrazones

Representative Procedure: An oven-dried 25 mL 14/20 recovery flask equipped with a Teflon-coated magnetic stir bar was charged with trityl hydrazone 11h (233 mg, 0.57 mmol, 1.0 equiv), DCM (1 mL), and cyclohexane (4 mL). The resulting colorless solution was evacuated and backfilled with N₂ (3 times) and then cooled to -20 °C (external temperature). N-bromosuccinimide (0.4M in THF, 1.1 equiv.) at ambient temperature was added dropwise over 2 minutes to the cooled solution of hydrazone and stirred for 15 minutes. The resulting yellow reaction was then frozen in a liquid N2 bath and degassed by two FPT cycles, each time thawing in a -20 °C bath. After backfilling with N₂, the reaction was maintained at an external temperature ≤ -15 °C for at least 20 minutes. During this time EtSH was degassed once by FPT. Excess EtSH (4 mL) at ambient temperature was added to the cooled reaction without appreciable change, and the reaction flask was subsequently transferred to a pre-heated 35-40 °C oil bath. After 1 hour, significant color dissipation was observed, and the reaction was allowed to cool to ambient temperature. In a 60 mL separatory funnel, the reaction was partitioned between 20 mL 1:1 H₂O:brine and 20 mL 1:1 Et₂O:pentane. The aqueous layer was separated and extracted once with 20 mL 1:1 Et₂O:pentane. The combined organic layers were dried over Na₂SO₄ and carefully concentrated under reduced pressure (ca. 140 mmHg). The crude residue was purified by flash chromatography (100% pentane) to afford bromide 16h as a colorless oil (74 mg, 0.34 mmol, 60% yield). $R_f = 0.62$ (100% pentane); ¹H NMR (500 MHz, CDCl₃): δ 4.28 (app dt, J = 4.0, 10.5 Hz, 1H), 2.61-2.51 (m, 1H), 2.27 (ddd, J = 4.5, 10.5, 13.5, 1H), 2.22-2.18 (m, 1H), 1.97-1.84 (m, 4H), 1.70-1.62(m, 1H), 1.46 (app d(dt), J = 2.0, 3.5, 10.5, 1H), 1.32 (ddd, J = 3.5, 4.0, 13.5, 1H), 1.29-1.17 (m, 1H), 1.12-1.06 (m, 1H), 1.01-0.87 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 53.5, 47.9, 47.8, 42.0, 41.1, 41.1, 32.3, 32.0, 32.0, 27.0; IR (Neat film): 2949, 2863, 1474, 1449, 1317, 1240, 1209, 952, 879, 759, 745, 634 cm⁻¹; HRMS (ES) calcd for $C_{10}H_{15}Br [M+^{81}Br]^-$: 294.9526, found 294.9513.

From hydrazone **11a** (147.1 mg, 0.3636 mmol), bromide **16a** was obtained as a colorless oil (50.1 mg, 0.2351 mmol, 65% yield) following purification by flash chromatography (100% pentane). The spectral data obtained are in accord with that in the literature.⁶

From hydrazone **11d** (246.8 mg, 0.6011 mmol), bromide **16d** was obtained as a colorless oil (91.5 mg, 0.4175 mmol, 69% yield) following purification by flash chromatography (100% pentane). The spectral data obtained are in accord with that in the literature.⁵

From hydrazone **11e** (204.6 mg, 0.5008 mmol), bromide **16e** was obtained as a colorless oil (52.8 mg, 0.2432 mmol, 49% yield) following purification by flash chromatography (100% pentane). ¹H NMR (500 MHz, CDCl₃, * denotes minor diastereomer): δ 4.45-4.41 (m, 1H), 3.79 (ddd, *J* = 4.5, 10.5, 12.0 Hz, 1H*), 2.40-0.80 (m, 16H + 16H*); ¹³C NMR (125 MHz, CDCl₃): δ 63.0, 61.5, 51.4, 47.6, 44.1, 39.4, 35.7, 35.6, 34.0, 33.9, 33.6, 33.4, 32.7, 32.5, 27.3, 26.5, 26.4, 26.2, 26.0, 20.8; IR (Neat film): 2925, 2853, 1447 cm⁻¹; HRMS (ES) calcd for C₁₀H₁₇Br [M+H]⁺: 217.0586, found 217.0586.

⁶ Dai et al. Nat. Chem. 2011, 3, 140.

rrent Data Parameters ME JRR-VI-009A PNO 2 OCNO 1 - Acquisition Parameter	Lee 20141015 me 59ect 0.59 STRUM 5 mm PABB0 BB/ LVENT 222268 LVENT 3575 0 0 H 37878.789 H 0.166670 H 0.166670 H 0.166670 H 13.200 u 6.50 u 6.50 u 6.50 u 0 0.03000000 s 1.0000000 s	===== CHANNEL fl ====== 01 1.25.7049802.MT c1 1.25.7049802.MT n13C 10.00 uk M1 72.83999634 W	====== CHANNEL f2 ====== 02 499.8724993 MI C2 1H DPPG[2 walt216 PD2 19.0000000 W W12 0.2968001 W	- Processing parameter: 1048576 M 125.6924116 M W no B 0 Hz 0 Hz 1.40	
CCC.#=-	ЧТН ЧТН В В В В В В В В В В В В В В В В В В В	SF SF NU PL	SFU SFU PCD PLL	F2 ST SSI CLB CLB CB CB CB CB	-20 ppm
272.81 252.81 258.61					
22.85.867 07.07.070 027.070 02.907 00.020 00.020					40
200 20 190 20 180 20 972 90 000 00					00
SSZ. TT					100
112 032 120.338 122.228 123.329					120
150'9#T 98T'9#T 782'15T					50 140
					180
					200
	5 MHz)				220
	1g (CDCl ₃ , 12				240

S37

