
Appendix A. Mathematical derivation for the master equations introduced in the article

Longitudinal and Transversal Ionic Flow Resistances
The transport law and assumptions introduced in section 2.2 provide the following equation

for the axial electric surface current density1

iz(r) = k(r)Ez + vz(r)ρe(r) r ≥ rξ > R (A.1)

This expression depends on the electrolyte conductivity

k(r) = F 2
∑
i

z2i uici(r) (A.2)

and the total charge density distribution

ρe(r) = F
∑
i

zici(r) (A.3)

In the previous expressions, F is Faraday’s constant, whereas, the mobility, valence, and
concentration of ion species i are represented by ui, zi, and ci(r), respectively.

Moreover, we combine Poisson and the Navier-Stokes equations to obtain the following ex-
pression for the axial velocity profile

vz(r) =
εEz
µ

[φ(r)− φ(rξ)] r ≥ rξ. (A.4)

This expression indicates that under the action of a uniform axial electric field, the velocity profile
of the fluid is proportional to the radial electric potential drop φ(r)− φ(rξ). In the latter equation,
ε = 7.0832 · 10−10 F

m
and µ = 0.00089Kg

m.s
represent the absolute bulk permittivity and viscosity

parameters, respectively. On the other hand, the radial electric potential φ(r) generated by the
total charge density distribution is dictated by the Poisson equation

ρe(r) = − ε
r

∂

∂r

(
r
∂φ(r)

∂r

)
(A.5)

To obtain an analytic solution for the electric potential we use a Boltzmann distribution and
Debye-Hückel (linearized PB) approximation for the ion density distributions

ci(r) = c∞i exp

[
−ziFφ(r)

RT

]
≈ c∞i

(
1− ziFφ(r)

RT

)
,

∣∣∣∣ziFφ(r)

RT

∣∣∣∣� 1 (A.6)

where c∞i is the bulk concentration of species i
[
mol
m3

]
, R the gas constant, and T the electrolyte

temperature. After substitution of eqn (A.6) into eqn (A.3), the use of the bulk electroneutrality
condition (

∑
i zic

∞
i = 0), and the replacement of the resulting expression into eqn (A.5), we obtain

the expression for φ(r) given by eq.(1) in the article, namely

φ(r) =
σλD
ε

K0

(
r
λD

)
K1

(
rξ
λD

) r > R (A.7)
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where K is the modified Bessel function of the second kind, λD represents the Debye length
λD = (εRT/ (F 2

∑
i z

2
i c
∞
i ))

1
2 , σ the monomer surface charge density, and rξ is the radius predicted

by the cylindrical model.
We numerically evaluate the mean electric potential obtained for both electrolytes using the

non-linearized and linearized PB solutions for validation purposes (see figure A.1). We obtained
a maximum deviation of 9 %, which is within the range of values accepted for this kind of approx-
imation.

(a) Intracellular conditions.

Figure A.1: Mean electrostatic potential as a function of the separation distance. Comparison between numerical
NLPB (blue color) and analytic LPB (red color) solutions. The figures to the left and right sides correspond to the
in-vitro and intracellular electrolyte solutions, respectively.

The approximate analytic solution obtained for the electric potential φ(r) is subsequently re-
placed into eqn (A.6), (A.5), (A.4), and (A.2) to get an analytic solution for the surface current
density. This solution is integrated over the Bjerrum length `b = e2

4πεε0kbT
= 6.738Å. In the latter

expressions, ε = 80 is the relative bulk solvent dielectric constant; ε0 = 8.854 · 10−12
[
F
m

]
the vac-

uum permittivity; kb = 1.381 ·10−23
[
J
K

]
the Boltzmann’s constant, and T the temperature in Kelvin

degree. The integration yields the following expression for the total longitudinal ionic current

Il
2π

= Ez

`b+rξ∫
rξ

rk(r)dr +

`b+rξ∫
rξ

rv(z)ρe(r)dr (A.8)

After performing some algebra and integral calculations using mathematica11.1 software2

expression A.8 becomes

Il = Ezπ
(
(`b + rξ)

2 − r2ξ
)
{k∞ +4kl} =

|∆V |
`

π
(
(`b + rξ)

2 − r2ξ
)
{k∞ +4kl} (A.9)

where k∞ is the bulk electrolyte conductivity

k∞ = F 2
∑
i

z2i uic
∞
i , (A.10)

4kl the correction predicted by our approach
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4kl = −2F 3σλ2Drξ
∑

i z
3
i uic

∞
i

εRT ((`b + rξ)2 − r2ξ)

1−
(`b + rξ)K1

(
`b+rξ
λD

)
rξK1

(
rξ
λD

)
+ (A.11)

r2ξσ
2

µ
(
(`b + rξ)2 − r2ξ

)G (`b, rξ, λD)

and G is the following analytic function

G (`b, rξ, λD)

[
K1

(
rξ
λD

)]2
=

{(
K0

(
rξ
λD

)2

−K1

(
rξ
λD

)2
)

+ 2
λD
rξ
K0

(
rξ
λD

)
K1

(
rξ
λD

)

−
(`b + rξ)

2

(
K0

(
(`b+rξ)

λD

)2
−K1

(
(`b+rξ)

λD

)2)
− 2

λD(`b+rξ)

r2ξ
K0

(
(`b+rξ)

λD

)
K1

(
(`b+rξ)

λD

)
r2ξ

 .

Finally, we use Ohm’s law, which relates the axial voltage drop ∆V and the total electric
current I as Rl = |∆V/Il|, to obtain the expression for the longitudinal ionic flow resistance Rl

introduced in the article by eq.(2), namely

Rl =
`

π
(
(`b + rξ)2 − r2ξ

)
|k∞ +4kl|

=
`

Sl%l
, (A.12)

A similar approach is used for the transversal ionic flow resistance calculations. The trans-
port’s law and the assumptions introduced in section 2.2 provide the following equation for the
radial surface current density

ir(r) = −F
∑
i

zi

(
Fziuici(r)

∂φ(r)

∂r

)
(A.13)

Since this expression does not depend on the axial and azimuthal coordinates, the total radial
current Ir passing from the inner to the outer layer is obtained by multiplying the radial surface
current density by the lateral monomeric surface layer area at a section r in the solution, e.g.
Ir = ir(r)2π`r.1 Since Ir is a constant independent of position, this expression can be integrated
across the electrical double layer to obtain

`b+rξ∫
rξ

Ir
2π`r

dr =

`b+rξ∫
rξ

ir(r)dr = −k∞
`b+rξ∫
rξ

∂φ(r)

∂r
dr +

F 3

RT

∑
i

z3i uic
∞
i

`b+rξ∫
rξ

φ(r)
∂φ(r)

∂r
dr (A.14)

Therefore,

3



Ir ln
(
`b+rξ
rξ

)
2π`

= −k∞ [φ(`b + rξ)− φ(rξ)] +
F 3

2RT

∑
i

z3i uic
∞
i

[
φ2(`b + rξ)− φ2(rξ)

]
After some algebra we obtain a linear dependence between the total radial current Ir and

the electric potential drop across the electrical double layer ∆φ ≡ φ(rξ)− φ(`b + rξ) following the
Ohm-like law equation

Ir ln
(
`b+rξ
rξ

)
2π`

[
k∞ − F 3

2RT

∑
i z

3
i uic

∞
i [φ(`b + rξ) + φ(rξ)]

] ≡ IrRt = ∆φ

where

Rt =
ln
(
`b+rξ
rξ

)
2π`

∣∣k∞ − F 3

2RT

∑
i z

3
i uic

∞
i [φ(`b + rξ) + φ(rξ)]

∣∣ =
`b

2π`rξ |k∞ +4kt|
=

`b
St%t

, (A.15)

is the expression for radial ionic flow resistance introduced in the article by eq. (3). In the later
expression 4kt represents the correction to the bulk electrolyte conductivity

4kt = k∞

 `b

rξ ln
(
`b+rξ
rξ

) − 1

− `bσλDF
3
∑

i z
3
i uic

`
i

2rξRTεK1

(
rξ
λD

)
ln
(
`b+rξ
rξ

) [K0

(
(`b + rξ)

λD

)
+K0

(
rξ
λD

)]
(A.16)

Capacitance
CSDFT characterizes the polyelectrolyte properties of the an actin filament by the effective

molecular radius R and uniform bare surface charge density σ, obtained in this work from the
Cong molecular structure model, whereas the biological environment is represented by an elec-
trolyte (either alkaline, acid or neutral) solution comprised of ionic species (characterized by
crystal radius,3 charge and bulk concentration), explicit water molecules (characterized by neu-
tral ions at experimental size (2.75Å) and bulk concentration (55.56M )). We assume that the
filament, monomer radius and surface charge density are approximately similar. We consider a
monomer exposed to different pH levels (alkaline, acid and neutral levels) in the solution. For
each pH level, we use the Cong molecular structure model and perform titration calculations to
predict the corresponding surface charge density value σ, as explained previously. Subsequently,
we apply CSDFT to predict the surface electrical potential ψo for each of the values σ obtained
in the previous step. These two sets of parameter values [σ, ψo], when correlated using a cubic
fitting polynomial curve, determine the slope analytically from where the following expression for
the differential capacitance Cd is obtained

Cd =
dσ

dψo
= Ĉo

(
1− 2b̂ψo + 3ĉψ2

o +O
(
ψ3
o

))
(A.17)
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Integration of this expression with respect to the electric potential along the voltage drop V
across the electrical double layer leads to the expression for the total charge accumulated in the
capacitor introduced in the article by eq.(4), namely4

Q = 2πrξ`Ĉo

(
V − b̂V 2

)
= Co

(
V − bV 2

)
= V Co (1− bV ) = V C (V ) (A.18)

Electrical Signal Propagation
The current conservation law at the node A between the cells “m − 1” and “m”, provides the

following equation (see Fig. 3 in the article)

Im−1 − Im =
∂Qm

∂t
(A.19)

where ∂Qm/∂t represents the current across the capacitor in the cell “m”. By replacing eqn (4)
into eqn (A.19) we have

Im−1 − Im = Co

(
∂Vm
∂t
− 2bVm

∂Vm
∂t

)
(A.20)

On the other hand, Kirchhoff’s voltage law along the circuit ABCD generates the following ex-
pression (see Fig. 3 in the article)

vm − vm+1 = L
∂Im
∂t

+ ImRl (A.21)

where vm is given by

vm = Rt (Im−1 − Im) + Vo + Vm (A.22)

and Vo represents a constant DC bias electric potential. Further substitution of eqn (A.22) into
eqn (A.21) yields

L
∂Im
∂t

+ ImRl = Rt (Im−1 − 2Im + Im+1) + (Vm − Vm+1) (A.23)

The later equation can be written in terms of the characteristic impedance of the electrical circuit
unit Z and the new function Um(t), where as usual:5 Z−1/2Um = Im and Z1/2Um = Vm. In this
article, the characteristic impedance is estimated as follows

Z '
√
R2
equiv +X2

equiv (A.24)

where Requiv = Rl+Rt, Xequiv = TG−actin
o

2πCo
, and TG−actino is a parameter characterizing the electrical

circuit unit time scale.
These expressions, when replaced into eqn (A.20) and (A.23), lead to the coupled equations

(6) and (7) introduced in the article, namely

Um−1 − Um = C0Z

(
∂Um
∂t
− 2bZ1/2Um

∂Um
∂t

)
(A.25)
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Um − Um+1 = Z−1
[
L
∂Um
∂t

+ UmRl −Rt (Um+1 − 2Um + Um−1)

]
(A.26)

Using the continuum approximation Um(t) w U(x, t) with a Taylor series in terms of the pa-
rameter ` mentioned in the article, we obtain the following expansion for Um±1(t)

Um±1 = U(x± `, t) w U ± `∂U
∂x

+
`2

2

∂2U

∂x2
± `3

3!

∂3U

∂x3
(A.27)

Consequently,

Um+1 − 2Um + Um−1 = `2
∂2U

∂x2
(A.28)

Um−1 − Um+1 = −2`
∂U

∂x
− `3

3

∂3U

∂x3
(A.29)

By summing eqn (A.25), (A.26), and using eqn (A.28) and (A.29) we have

Z−1
[
L
∂U

∂t
+ URl −Rt

(
`2
∂2U

∂x2

)]
+ C0

(
Z
∂U

∂t
− 2bZ3/2U

∂U

∂t

)
= −2`

∂U

∂x
− `3

3

∂3U

∂x3
(A.30)

The later equation can be conveniently rewritten as follows

[
L

Z
+ C0Z

]
∂U

∂t
+
Rl

Z
U − Rt`

2

Z

∂2U

∂x2

− 2bZ3/2C0U
∂U

∂t
+ 2`

∂U

∂x
+
`3

3

∂3U

∂x3
= 0 (A.31)

The master equation (A.31) can be solved for U(x, t) = U(x(ξ, τ), t(τ)) = U(ξ, τ) in terms of
dimensionless variables

ξ =
x

β
− t

α
, τ =

t

24α
, where α =

L

Z
+ C0Z > 0, and β = 2`, (A.32)

After some manipulations and using the following relationships ∂
∂t

= 1
α

( ∂
24∂τ
− ∂

∂ξ
), ∂

∂x
= 1

β
∂
∂ξ

,
∂2

∂x2
= 1

β2
∂2

∂ξ2
and ∂3

∂x3
= 1

β3
∂3

∂ξ3
, we have

γ∂U

24∂τ
+
γRl

Z
U − γRt

4Z

(
∂2U

∂ξ2

)
+ 6U

(
∂U

∂ξ
− ∂U

∂τ

)
+

γ

24

∂3U

∂ξ3
= 0 (A.33)

where γ = 3α
bZ3/2C0

. Since we look for slow changes on the time evolution in the electrical impulse
solution of eqn (A.33), 1

24
∂U
∂τ
� ∂U

∂ξ
, the time rate in the electrical impulse is considered to be

much slower than on the traveling variable. As a result, an analytic solution of eqn (A.33) can
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be obtained by performing the change, U = − γ
24
W and defining new parameters µ2 = 6Rt

Z
,

µ3 = 24Rl
Z

. Accordingly, eqn (A.33) becomes the well-known perturbated Korteweg-de Vries
(pKdV) differential equation6,7 introduced in the article by eq. (8), namely

∂W

∂τ
− 6W

∂W

∂ξ
+
∂3W

∂ξ3
= µ2

∂2W

∂ξ2
− µ3W ≡ P (W ) (A.34)

The left and right sides in the later equation represent the regular KdV equation8 and the corre-
sponding perturbation, respectively.

An initial pulse W (ξ, 0) in the transmission line may decay into a sequence of solitons and
a tail. In this work, we will consider single soliton solutions only. In doing so, we assume that
the perturbation is so small that it has a negligible influence on the soliton formation. Therefore,
the perturbation will manifest itself by affecting the soliton only after an extended amount of time
from its origination. Thus, the mutual interaction between solitons becomes unimportant when
the soliton movement is of the order of its length. In what follows we consider this problem in
the first approximation. In this case, the solution of equation (A.34) for non-dissipative systems
(Rl = Rt = 0) represents a non perturbated pulse soliton of the regular KdV equation (9)

Wnp(ξ, τ) = −2Ω2
0sech

2
[
Ω0

(
ξ − 4Ω2

0τ
)]

(A.35)

with dimensionless constant voltage amplitude 2Ω2
0 and propagation velocity 4Ω2

0 . Solitary-wave
solutions that propagate without changing form may also be expected due to a balance between
non-linearity and dispersion (e.g. |P (W )| ' 0). Hence, requiring the effect of the perturbing
terms on the shape of the soliton cancel each other out.10 Otherwise, when µ2 and/or µ3 are not
zero, equation (A.35) is no longer the solution of the perturbed KdV equation.8,9,11,12

In this analysis, we look for an analytic solution of eqn (A.35) in the framework of the pertur-
bation theory on the basis of the adiabatic approximation.9 In that case, the solution is a soliton
pulse W (ξ, τ) in the form introduced in the article by equation (9), namely

W (ξ, τ) = −2 [Ω (τ)]2 sech2 [Ω (τ) (ξ − η (τ))] (A.36)

where Ω (τ) and η (τ) satisfy the following equations

dΩ

dτ
= − 1

4Ω

∞∫
−∞

P (W )sech2zdz, (A.37)

dη

dτ
= 4Ω2 − 1

4Ω3

∞∫
−∞

P (W )

[
z +

1

2
sinh(2z)

]
sech2zdz, (A.38)

z = Ω (τ) (ξ − η (τ)) and P (W ) is the perturbation term defined in eqn (A.34). The calculation of
the integrals appearing in eqn (A.37) and (A.38) provide the following analytic solutions

Ω (τ) = Ω0

√
exp(− 4τµ3

3 )

1+
4µ2Ω

2
0

5µ3
(1−exp(− 4τµ3

3 ))
≡ Ω0M1 (τ)

' Ω0

(
1− 2

15
(4µ2Ω

2
0 + 5µ3) τ +O

(
(4τµ3

3
)2
)) (A.39)
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η(τ) = − 5
4µ2

[4µ3τ + 3 log [5µ3]]

− 5
4µ2

[
−3 log

[
−4Ω2

0µ2 + exp
(
4τµ3
3

)
(4Ω2

0µ2 + 5µ3)
]]
≡ 4Ω2

0τM2 (τ)

' 4Ω2
0τ

(
1− 2

15

(
4µ2Ω

2
0 + 5µ3

)
τ +O

(
(
4τµ3

3
)2
))

(A.40)

Note that V = −γ
√
Z

24
W , therefore the unperturbated dimensionless amplitude Ω2

0 is linearly
proportional to the external voltage input Vinp

Ω2
0 = 24Vinp/(Z

1/2 |γ|) (A.41)

It is worth mentioning that eqn (A.39), (A.40) and (A.41) describe the evolution of one soliton
in the presence of a perturbation characterized by the amplitudes M1 (τ) and M2 (τ) which are
expected to yield a slow change on the soliton parameters.9 Therefore, the expansions appear-
ing in eqn (A.39) and (A.40) provide a good estimation of the characteristic soliton travel time (in
seconds) T soliton0 = 360α

2(4µ2Ω2
0+5µ3)

. This time should be, in principle, larger than the characteristic

ion flow time, such that T soliton0 & TG−actin0 = 2πCo

√
Z2 − (Rl +Rt)

2. Additionally, for the elec-
trolyte conditions and models considered in the present article, we have Ω2

0 . 1 , L/Z � 1 and
Rt/Rl � 1 which yield the following approximate implicit equation for the impedance

360α

2 (4µ2Ω2
0 + 5µ3)

'
(

3ZCo
16

Z

Rl

)
& 2πCo

√
Z2 − (Rl +Rt)

2 ' 2πCo

√
Z2 −R2

l

with solution Z & 25.1128Rl and T soliton0 & 50.1858πCoRl.

Appendix B. Numerical and Analytic Solution Comparison

We solve equation (8) numerically by using periodic boundary conditionsW (ξ, τ) = W (−ξ, τ)
and a voltage input signal:

W (ξ, 0) = −2Ω2
0sech

2 [ξ] (B.1)

The artificially periodic boundary conditions were imposed to facilitate the resolution of the partial
differential equation (8). However, for lengths of the microfilament big enough it does not affect
the solution of the system.13. Equation (8) was solved using the commercial software Mathemat-
ica 11.0.2 We applied the numerical method of lines algorithm, which is an efficient approach to
numerically solve partial differential equations provided it is an initial value problem. This method
discretizes all but one dimension, then integrates the semi-discrete problem as a system of Or-
dinary Differential Equations (ODEs) or Differential-Algebraic Equations (DAEs). Additionally,
we configured some parameters to obtain the solution. We set the WorkingPrecision (e.g. how
many digits of precision should be maintained in internal computations) to the MachinePrecision
value (double-precision floating-point numbers: ≈ 16 decimal digits) . The AccuracyGoal and
the PrecisionGoal (e.g. how many effective digits of accuracy and precision, respectively) were
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(a) Intracellular conditions.

(b) In-vitro conditions

Figure B.2: Comparison between numerical (red color) and analytic (blue color) solutions. The figures to the left
and right sides correspond to the electrical signal impulse amplitude generated by 0.05V and 0.15V input voltage
peaks, respectively. The electrical impulse peaks correspond to the snapshots mentioned in Fig. 6

set to a value equal to half the setting for WorkingPrecision. The InterpolationOrder of the so-
lution (e.g. continuity degree of the final output) was set to 6 for the ξ variable and 3 for the τ
variable. The MaxStepFraction (e.g. maximum fraction of the total range to cover in a single
step) was equal to 1/10, the MaxStepSize (e.g. maximum size of each step) was defined as the
inverse of MaxStepFraction (10) and the MaxSteps (e.g. maximum number of steps to take in
generating a result) was set to 10000. In the case of the NormFunction parameter, we used an
infinity-norm.2 It is worth mentioning that the inductance value considered in this work does not
affect the numerical solution obtained for the soliton.

Fig. B.2 shows the soliton profile comparison between the numerical and the approximate
analytic solution (9) for both intracellular and in-vitro conditions, obtaining a good visual matching
over the whole domain. In general, there was a short and intermediate time evolution where
the adiabatic approximation is valid. Certainly, at longer times the perturbation increases the
impact on the soliton shape and tails. Overall, the peak position and width, as well as the kern
velocity between the numerical and analytic solutions in intracellular conditions, are in very good
agreement. Whereas, the analytic solution predicts a wider and more attenuated soliton for in-
vitro conditions. Higher order approximations and multisoliton solutions will be considered in a
future work.
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