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Supplementary Figure A1: Schematic of training of deep learning-based segmentation.  

Each of the 21 MSOT image stacks consisted of up to 163 time frames with a total of 2513 time 

frames. For each animal, 15 time frames were selected randomly, excluding the first time frame (t = 

0), and distributed among the three experimenters. These 315 time frames were used as ground truth 

for the training of the Cellpose neural network and were divided into 80% for training, 10% for testing 

and 10% for validation. The derived model was then used for the final segmentation of the first time 

frame (t = 0) of each MSOT image stack. 
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Supplementary Table A2: Software and libraries used in Mcat. 

Software Version URL 

Apache Commons 2.6.0 https://commons.apache.org/ 

Apache Maven 3.6.3 http://maven.apache.org/ 

ImageJ 1.52r https://imagej.net/ 

ImageScience 3.0.0 https://imagescience.org/ 

Imglib2 5.1.0 https://imagej.net/ 

FeatureJ 2.0.0 https://imagescience.org/meijering/software/featurej/ 

Flexmark 0.18.5 https://github.com/vsch/flexmark-java 

Jackson (JSON) 2.11.2 https://github.com/FasterXML/jackson 

Java 1.8 https://java.com/ 

JFreeChart 1.5.0 http://jfree.org/ 

JFreeSVG 3.4 http://jfree.org/ 

JGraphT 1.3.1 https://jgrapht.org/ 

IJP-Toolkit 2.1.2 https://github.com/ij-plugins/ijp-toolkit 

MorphoLibJ 1.4.1 https://github.com/ijpb/MorphoLibJ/ 

MTrackJ 1.5.4 https://imagescience.org/meijering/software/mtrackj/ 

MultiStackRegistration 1.46.2 https://github.com/miura/MultiStackRegistration 

RandomJ 2.0.0 https://imagescience.org/meijering/software/randomj/ 

SciJava 27.0.1 https://scijava.org/ 

Slf4J 1.7.9 http://www.slf4j.org/ 

SwingX 1.6.5-1 https://mvnrepository.com/artifact/org.swinglabs/swingx 
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Supplementary Information A3: Descriptive statistics 

 

Signal-oriented analysis 

AUC values 

μSham = 0.9; σSham = 0.19 

μPCI = 1.46; σPCI = 0.35 

 

Tissue-oriented analysis 

AUC of mean signal intensity values 

μSham = -0.3; σSham = 0.64 

μPCI = 0.38; σPCI = 1.07 

AUC of maximum signal intensity values 

μSham = 46.73; σSham = 15.36 

μPCI = 52.83; σPCI = 12.93 

AUC of 95th-percentile signal intensity values 

μSham = 16.15; σSham = 3.96 

μPCI = 19.3; σPCI = 4.03 

 

 

Robustness of signal-oriented analysis towards slight changes of ROIs 

AUC values deep learning-based segmentation 

μSham = 0.9; σSham = 0.18 

μPCI = 1.45; σPCI = 0.34  

AUC values experimenter 1 

μSham = 0.86; σSham = 0.19 

μPCI = 1.45; σPCI = 0.36  

AUC values experimenter 2 

μSham = 0.88; σSham = 0.2 

μPCI = 1.46; σPCI = 0.36 

AUC values experimenter 3 

μSham = 0.85; σSham = 0.19 

μPCI = 1.4; σPCI = 0.34 
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Supplementary Figure A4: Integrated signal of WACs from the signal-oriented analysis.  

The time derivative values of the WACs were integrated to obtain the original kinetic shape of the 

curves for the signal-oriented analysis. The curves of Sham and PCI animals can visually be well 

distinguished. Seven of the twelve PCI animals show a delayed signal increase and lower plateau 

values.  

  



 

6 
 

 

Supplementary Figure A5: Spatial distribution of kinetic clusters.  

Colour-coded images reveal the biodistribution of ICG. The two top rows show all colour-coded 

images for Sham animals, the two bottom rows for PCI animals. The biodistribution is visually not 

different between Sham and PCI animals. 
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Supplementary Figure A6: Integrated signal of time derivative values from tissue-oriented 

analysis.  

The time derivative values were integrated for the three different intensity features of the tissue-

oriented analysis to obtain the original kinetic shape of the ICG signal uptake. The time curves of 

Sham and PCI animals are strongly overlapping, making visual distinction impossible.  
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Supplementary Figure A7: Curves of kinetic clusters for Sham and PCI treatment with different 

values of k-means k.  

The curves of the kinetic clusters as found by pixel-wise clustering with varying values for k are shown 

for the smoothing factor s ranging from 1 to 8 and k-means k ranging from 2 to 20. Low values of s 

show strong breathing artefacts in the curves, while increasing s leads to decreasing temporal 

resolution. Large values of k result in curves with apparent signal fluctuations also for larger values of 

s, which are expected due to overfitting.  
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Supplementary Figure A8: Graphical user interface of Mcat software toolkit.  

The main graphical user interface is divided into a Data (a) and a Parameters (b) view. In the Data 

view, data can be imported manually or by a batch importer functionality, and imported sample data 

can be edited. Analysis parameters can be adjusted in the Parameters view. A short description of 

each parameter is shown in the bottom right part of the view when hovering over a parameter name.  
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Supplementary Information A9: Documentation of Mcat parameters 

The MSOT clustering analysis toolkit (Mcat) comprises three main steps: (i) pre-processing of the 

MSOT image stacks, (ii) pixel-wise clustering of kinetics and (iii) post-processing of the clustering 

result. For these steps, the following parameters can be adjusted: 

 

i) Pre-processing 

anatomic channel 

Defines which channel of the MSOT image stack contains the anatomic information (first channel 

is indexed as 1). This channel is used for image registration to reduce motion artefacts. If no 

anatomic channel is available, set this value to 0 to skip image registration. 

signal channel 

Defines which channel of the MSOT image stack contains the signal that should be analysed. 

This parameter has to be set to a value between 1 and the number of image channels. 

smoothing factor s 

Defines how strongly image data is smoothed in the time domain. This parameter is used to 

reduce breathing artefacts by performing downsampling and averaging over s consecutive time 

frames. Set this value to 1 if the image data shall not be smoothed. Smaller values lead to 

increased computation time and possibly strong fluctuations in the extracted kinetic curves, while 

larger values decrease computation time while reducing the time resolution.  

start time frame and end time frame 

Define which time frames are taken into account. Start time frame and end time frame have to be 

in the range of 0 and number of time frames. The stack will be cropped to the time range [start 

time frame, end time frame].  

save ROI and save raw image 

Define if raw data is saved to the output folder. If save ROI is enabled, the original or derived ROI 

file will be stored in the output folder. If save raw image is enabled, the original raw image will be 

stored in the output folder. 

custom Cellpose model 

If a custom Cellpose model shall be used for the segmentation, specify the path to the model file 

here. Don’t rename Cellpose model files as the name encodes important model information. 

 

ii) Clustering 

k-means k 

Defines how many kinetic clusters are extracted. This parameter controls how many clusters are 

used when performing k-means clustering. Smaller values can lead to bad approximation of the 
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true kinetics present in the image, while larger values can lead to overfitting to confined regions 

with possibly strongly fluctuating signal intensities. 

clustering hierarchy 

Defines how samples are grouped when performing k-means clustering. This parameter can be 

set to one of the three options: per subject, per treatment or all in one.  

If per subject is used, clustering is performed for each subject individually, resulting in individual 

kinetic clusters for each subject. This setting can be used to see if subjects show different 

kinetics. If per treatment is used, all subjects from one treatment are grouped together and 

clustering is performed per treatment. This setting can be used to compare treatments against 

each other. If all in one is used, all subjects are grouped together for clustering. This setting can 

be used to obtain main kinetic clusters for the whole dataset and examine how the clusters are 

distributed across samples.  

 

iii) Post-processing 

cutoff value 

Defines which part of the kinetic curves is used for calculation of area under the curve (AUC) 

statistics. This parameter can be set to a floating point number between 0 and 1 and controls 

which portion at the beginning of the curves is excluded from AUC calculation. If this parameter 

is set to 0, the whole curve is taken into account. If it is set to 0.5, the first half of the curve is 

omitted. This option can for example be useful to analyse initial dye uptake and dye excretion 

separately or to limit a study to certain phases of signal development. 

analyse max decrease 

Defines if the kinetic cluster with the maximum signal decrease should be used for AUC 

calculation. If it is enabled, a weighted curve is calculated for each subject with the weight being 

the corresponding pixel abundance value for the kinetic cluster with the maximum signal 

decrease. These curves are then normalised by the total number of pixels of the respective 

subjects and the AUC is calculated, taking into account the cutoff value. 

analyse net decrease 

Defines if all kinetic clusters with a signal net decrease should be used for AUC calculation. If it is 

enabled, a weighted curve is calculated for each subject with the weights being the 

corresponding pixel abundance values for all kinetic clusters with a signal net decrease. These 

curves are then normalised by the total number of pixels of the respective subjects and the AUC 

is calculated, taking into account the cutoff value. 

analyse max increase 

Defines if the kinetic cluster with the maximum signal increase should be used for AUC 

calculation. If it is enabled, a weighted curve is calculated for each subject with the weight being 

the corresponding pixel abundance value for the kinetic cluster with the maximum signal 
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increase. These curves are then normalised by the total number of pixels of the respective 

subjects and the AUC is calculated, taking into account the cutoff value. 

analyse net increase 

Defines if all kinetic clusters with a signal net increase should be used for AUC calculation. If it is 

enabled, a weighted curve is calculated for each subject with the weights being the 

corresponding pixel abundance values for all kinetic clusters with a signal net increase. These 

curves are then normalised by the total number of pixels of the respective subjects and the AUC 

is calculated, taking into account the cutoff value. 
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Supplementary Information A10: Application of DL-based segmentation and 

signal-oriented analysis to different MSOT data and photoabsorber 

To evaluate the applicability of our DL-based segmentation for other MSOT data and our signal-

oriented analysis for a photoabsorber other than ICG, we used Mcat to analyse MSOT data that we 

derived from another study.  

In brief, eleven FVB/N mice of mixed gender and aged older than eight weeks were anesthetised and 

shaved thoroughly for the whole abdomen area using shaver and commercial hair removal cream. 

After insertion of a tail-vein catheter, mice were placed in a Multispectral Optoacoustic Tomography 

inVision 256-TF machine (iTheraMedical, Germany) equipped with laser wavelength from 680-980 

nm. Mice were anaesthetised with 1.5 to 2 % of isoflurane vaporised in oxygen throughout the 

preparation and imaging process. After 2 min of baseline image acquisition, 30 µg polyplex micelles 

loaded with BHQ3 labelled siRNA were injected intravenously through the tail vein catheter. Imaging 

was continued for 45 min at 6 wavelengths (680 nm, 700 nm, 720 nm, 760 nm, 800 nm, 900 nm) and 

captured two cross-sectional frames, i.e. liver and kidney. The acquired raw MSOT images were 

reconstructed by model-based backprojection (filter range: 50kHz to 6.5MHz) using the proprietary 

software ViewMSOT v3.8.1.04 (iTheraMedical, Munich, Germany), and spectrally unmixed into 4 

channels (water, BHQ3, deoxygenated blood, oxygenated blood) by linear regression. 

As a proof of principle, we performed the automated segmentation of the liver in the water channel 

with the inbuilt DL model and compared it to manual segmentation. We then applied the signal-

oriented analysis to extract five kinetic clusters for the channel representing oxygenated blood for both 

DL-based and manual segmentation. Except for the channel of interest, all other settings were kept at 

their default values.  

The comparison of DL-based segmentation and manual segmentation was carried out as described in 

the main manuscript in section 3.1. The resulting Dice scores for all animals are shown in Fig. A10a. 

The Dice score for nine out of the eleven animals was comparable to the concordance found between 

experimenters 2 and 3 in the main manuscript (see Fig. 2 in main manuscript). Two animals reached 

clearly lower Dice scores. While large parts of the animal outlines were identified correctly in these 

cases, the upper left region was not segmented properly. This area typically has low resolution of the 

animal outline because it spatially corresponds to the 90-degree “dead space”, where no ultrasonic 

detectors are placed due to the need to provide physical access to the sample. Representative 

examples of manual and DL-based segmentation are shown in Fig. A10b, including one of the cases 

with a lower Dice score at the very right.  

The results of the signal-oriented analysis for DL-based and manual segmentation are shown in 

Supplementary Figs. A10c and A10d. The extracted kinetic clusters were virtually identical for both 

DL-based and manual segmentation. Also the AUC values that were calculated for the kinetic clusters 

reflecting a signal net increase (see section 3.2 of main manuscript for details on calculation) were 

found to be very similar (Wilcoxon rank sum test p = 0.89, Hedges' g = 0.018).   
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These findings demonstrate the general applicability of our inbuilt DL-based segmentation for similar 

MSOT images and highlight that our signal-oriented analysis does not rely on exact ROI definition but 

provides results that are robust against the various ways of determining the mouse ROI. 

 

Figure A10: Application of DL-based segmentation and signal-oriented analysis to other MSOT 

data.  

(a) The Dice score between manual and DL-based segmentation shows a high concordance for nine 

out of the eleven animals. (b) This is also supported by the visual comparison of representative 

example segmentations. In two cases, the upper left animal outline was not segmented properly with 

the inbuilt DL model (one example shown at the very right). (c) The comparison of extracted kinetic 

clusters and (d) corresponding AUC values of curves reflecting a net increase shows similar results 

for DL-based and manual segmentation (statistical comparison of AUC values: p = 0.89, g = 0.018). 


